Molecular Neurobiology

, Volume 54, Issue 6, pp 4820–4831

Semaphorin 7A as a Potential Therapeutic Target for Multiple Sclerosis

  • Ana Gutiérrez-Franco
  • Herena Eixarch
  • Carme Costa
  • Vanessa Gil
  • Mireia Castillo
  • Laura Calvo-Barreiro
  • Xavier Montalban
  • José A. Del Río
  • Carmen Espejo
Article

Abstract

Semaphorin 7A (sema7A) is classified as an immune semaphorin with dual functions in the immune system and in the central nervous system (CNS). These molecules are of interest due to their potential role in multiple sclerosis (MS), which is a chronic demyelinating and neurodegenerative disease of autoimmune origin. In this study, we elucidated the role of sema7A in neuroinflammation using both in vitro and in vivo experimental models. In an in vitro model of neuroinflammation, using cerebellar organotypic slice cultures, we observed that challenge with lipopolysaccharide (LPS) endotoxin did not affect demyelination or cell death in sema7A-deficient cultures compared to wild-type cultures. Moreover, the in vivo outcome of experimental autoimmune encephalomyelitis (EAE) in sema7A-deficient mice was altered in an antigen- and adjuvant-dose-dependent manner, while no differences were observed in the wild-type counterparts. Altogether, these results indicate that sema7A is involved in peripheral immunity and CNS inflammation in MS pathogenesis. Indeed, these data suggest that sema7A might be a potential therapeutic target to treat MS and autoimmune conditions.

Keywords

Semaphorin 7A Experimental autoimmune encephalomyelitis Multiple sclerosis Neuroinflammation Neurodegeneration 

Supplementary material

12035_2016_154_MOESM1_ESM.pdf (442 kb)
ESM 1(PDF 442 kb)

References

  1. 1.
    Roth L, Koncina E, Satkauskas S, Cremel G, Aunis D, Bagnard D (2009) The many faces of semaphorins: from development to pathology. Cell Mol Life Sci 66(4):649–666CrossRefPubMedGoogle Scholar
  2. 2.
    Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL (2003) Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 424(6947):398–405CrossRefPubMedGoogle Scholar
  3. 3.
    Kopp MA, Brommer B, Gatzemeier N, Schwab JM, Pruss H (2010) Spinal cord injury induces differential expression of the profibrotic semaphorin 7A in the developing and mature glial scar. Glia 58(14):1748–1756CrossRefPubMedGoogle Scholar
  4. 4.
    Comeau MR, Johnson R, DuBose RF, Petersen M, Gearing P, Vanden Bos T, Park L, Farrah T et al (1998) A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR. Immunity 8(4):473–482Google Scholar
  5. 5.
    Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, Chedotal A, Winberg ML et al (1999) Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99(1):71–80Google Scholar
  6. 6.
    Suzuki K, Okuno T, Yamamoto M, Pasterkamp RJ, Takegahara N, Takamatsu H, Kitao T, Takagi J et al (2007) Semaphorin 7A initiates T-cell-mediated inflammatory responses through alpha1beta1 integrin. Nature 446(7136):680–684Google Scholar
  7. 7.
    Xu X, Ng S, Wu ZL, Nguyen D, Homburger S, Seidel-Dugan C, Ebens A, Luo Y (1998) Human semaphorin K1 is glycosylphosphatidylinositol-linked and defines a new subfamily of viral-related semaphorins. J Biol Chem 273(35):22428–22434CrossRefPubMedGoogle Scholar
  8. 8.
    Costa C, Martinez-Saez E, Gutierrez-Franco A, Eixarch H, Castro Z, Ortega-Aznar A, Ramon YCS, Montalban X et al (2015) Expression of semaphorin 3A, semaphorin 7A and their receptors in multiple sclerosis lesions. Mult Scler 21(13):1632–1643Google Scholar
  9. 9.
    Gutierrez-Franco A, Costa C, Eixarch H, Castillo M, Medina-Rodriguez EM, Bribian A, de Castro F, Montalban X et al (2016) Differential expression of sema3A and sema7A in a murine model of multiple sclerosis: implications for a therapeutic design. Clin Immunol 163:22–33. doi:10.1016/j.clim.2015.12.005
  10. 10.
    Sato Y, Takahashi H (1998) Molecular cloning and expression of murine homologue of semaphorin K1 gene. Biochim Biophys Acta 1443(3):419–422CrossRefPubMedGoogle Scholar
  11. 11.
    Yamada A, Kubo K, Takeshita T, Harashima N, Kawano K, Mine T, Sagawa K, Sugamura K et al (1999) Molecular cloning of a glycosylphosphatidylinositol-anchored molecule CDw108. J Immunol 162(7):4094–4100Google Scholar
  12. 12.
    Mine T, Harada K, Matsumoto T, Yamana H, Shirouzu K, Itoh K, Yamada A (2000) CDw108 expression during T-cell development. Tissue Antigens 55(5):429–436CrossRefPubMedGoogle Scholar
  13. 13.
    Holmes S, Downs AM, Fosberry A, Hayes PD, Michalovich D, Murdoch P, Moores K, Fox J et al (2002) Sema7A is a potent monocyte stimulator. Scand J Immunol 56(3):270–275Google Scholar
  14. 14.
    Czopik AK, Bynoe MS, Palm N, Raine CS, Medzhitov R (2006) Semaphorin 7A is a negative regulator of T cell responses. Immunity 24(5):591–600CrossRefPubMedGoogle Scholar
  15. 15.
    Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747CrossRefPubMedGoogle Scholar
  16. 16.
    Comabella M, Fernandez M, Martin R, Rivera-Vallve S, Borras E, Chiva C, Julia E, Rovira A et al (2010) Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain 133(Pt 4):1082–1093Google Scholar
  17. 17.
    Canto E, Tintore M, Villar LM, Borras E, Alvarez-Cermeno JC, Chiva C, Sabido E, Rovira A et al (2014) Validation of semaphorin 7A and ala-beta-his-dipeptidase as biomarkers associated with the conversion from clinically isolated syndrome to multiple sclerosis. J Neuroinflammation 11:181Google Scholar
  18. 18.
    Mingorance A, Fontana X, Sole M, Burgaya F, Urena JM, Teng FY, Tang BL, Hunt D et al (2004) Regulation of Nogo and Nogo receptor during the development of the entorhino-hippocampal pathway and after adult hippocampal lesions. Mol Cell Neurosci 26(1):34–49. doi:10.1016/j.mcn.2004.01.001
  19. 19.
    Bribian A, Nocentini S, Llorens F, Gil V, Mire E, Reginensi D, Yoshida Y, Mann F et al (2014) Sema3E/PlexinD1 regulates the migration of hem-derived Cajal-Retzius cells in developing cerebral cortex. Nat Commun 5:4265. doi:10.1038/ncomms5265
  20. 20.
    Pasterkamp RJ, Kolk SM, Hellemons AJ, Kolodkin AL (2007) Expression patterns of semaphorin7A and plexinC1 during rat neural development suggest roles in axon guidance and neuronal migration. BMC Dev Biol 7:98. doi:10.1186/1471-213X-7-98 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mingorance A, Fontana X, Soriano E, Del Rio JA (2005) Overexpression of myelin-associated glycoprotein after axotomy of the perforant pathway. Mol Cell Neurosci 29(3):471–483. doi:10.1016/j.mcn.2005.03.016 CrossRefPubMedGoogle Scholar
  22. 22.
    Soriano E, Alvarado-Mallart RM, Dumesnil N, Del Rio JA, Sotelo C (1997) Cajal-Retzius cells regulate the radial glia phenotype in the adult and developing cerebellum and alter granule cell migration. Neuron 18(4):563–577CrossRefPubMedGoogle Scholar
  23. 23.
    di Penta A, Moreno B, Reix S, Fernandez-Diez B, Villanueva M, Errea O, Escala N, Vandenbroeck K et al (2013) Oxidative stress and proinflammatory cytokines contribute to demyelination and axonal damage in a cerebellar culture model of neuroinflammation. PLoS One 8(2):e54722. doi:10.1371/journal.pone.0054722
  24. 24.
    Gil V, Bichler Z, Lee JK, Seira O, Llorens F, Bribian A, Morales R, Claverol-Tinture E et al (2010) Developmental expression of the oligodendrocyte myelin glycoprotein in the mouse telencephalon. Cereb Cortex 20(8):1769–1779. doi:10.1093/cercor/bhp246
  25. 25.
    Magalon K, Zimmer C, Cayre M, Khaldi J, Bourbon C, Robles I, Tardif G, Viola A et al (2012) Olesoxime accelerates myelination and promotes repair in models of demyelination. Ann Neurol 71(2):213–226. doi:10.1002/ana.22593
  26. 26.
    Espejo C, Carrasco J, Hidalgo J, Penkowa M, Garcia A, Saez-Torres I, Martinez-Caceres EM (2001) Differential expression of metallothioneins in the CNS of mice with experimental autoimmune encephalomyelitis. Neuroscience 105(4):1055–1065CrossRefPubMedGoogle Scholar
  27. 27.
    Baker D, Amor S (2012) Publication guidelines for refereeing and reporting on animal use in experimental autoimmune encephalomyelitis. J Neuroimmunol 242(1–2):78–83CrossRefPubMedGoogle Scholar
  28. 28.
    Eixarch H, Gutierrez-Franco A, Montalban X, Espejo C (2013) Semaphorins 3A and 7A: potential immune and neuroregenerative targets in multiple sclerosis. Trends Mol Med 19(3):157–164. doi:10.1016/j.molmed.2013.01.003 CrossRefPubMedGoogle Scholar
  29. 29.
    Kim CW, Cho EH, Lee YJ, Kim YH, Hah YS, Kim DR (2006) Disease-specific proteins from rheumatoid arthritis patients. J Korean Med Sci 21(3):478–484CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Reilkoff RA, Peng H, Murray LA, Peng X, Russell T, Montgomery R, Feghali-Bostwick C, Shaw A et al (2013) Semaphorin 7a + regulatory T cells are associated with progressive idiopathic pulmonary fibrosis and are implicated in transforming growth factor-beta1-induced pulmonary fibrosis. Am J Respir Crit Care Med 187(2):180–188. doi:10.1164/rccm.201206-1109OC
  31. 31.
    deLuca LE, Pikor NB, O’Leary J, Galicia-Rosas G, Ward LA, Defreitas D, Finlay TM, Ousman SS et al (2010) Substrain differences reveal novel disease-modifying gene candidates that alter the clinical course of a rodent model of multiple sclerosis. J Immunol 184(6):3174–3185Google Scholar
  32. 32.
    Pinto LH, Eaton E, Chen B, Fleisher J, Shuster D, McCauley J, Kedainis D, Siepka SM et al (2008) Gene-environment interactions in a mutant mouse kindred with native airway constrictor hyperresponsiveness. Mamm Genome 19(1):2–14Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ana Gutiérrez-Franco
    • 1
    • 2
  • Herena Eixarch
    • 1
    • 2
  • Carme Costa
    • 1
    • 2
  • Vanessa Gil
    • 3
    • 4
    • 5
    • 6
  • Mireia Castillo
    • 1
    • 2
  • Laura Calvo-Barreiro
    • 1
    • 2
  • Xavier Montalban
    • 1
    • 2
  • José A. Del Río
    • 3
    • 4
    • 5
    • 6
  • Carmen Espejo
    • 1
    • 2
  1. 1.Servei de Neurologia-Neuroimmunologia, Centre d’Esclerosi Múltiple de Catalunya, Vall d’Hebron Institut de RecercaHospital Universitari Vall d’HebronBarcelonaSpain
  2. 2.Universitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC)Parc Científic de BarcelonaBarcelonaSpain
  4. 4.Department of Cell Biology, Physiology and ImmunologyUniversitat de BarcelonaBarcelonaSpain
  5. 5.Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
  6. 6.Institut de NeurociènciesUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations