Molecular Neurobiology

, Volume 54, Issue 8, pp 6018–6031 | Cite as

Pinocembrin Provides Mitochondrial Protection by the Activation of the Erk1/2-Nrf2 Signaling Pathway in SH-SY5Y Neuroblastoma Cells Exposed to Paraquat

  • Marcos Roberto de OliveiraEmail author
  • Alessandra Peres
  • Clarissa Severino Gama
  • Simone Morelo Dal Bosco


Pinocembrin (PB; 5,7-dihydroxyflavanone; C15H12O4) is a flavonoid found in propolis and exerts antioxidant, anti-inflammatory, and antimicrobial effects. Furthermore, PB has been studied as a neuroprotective agent. However, it remains to be understood whether and how PB would induce mitochondrial protection in mammalian cells. Therefore, we investigated here the mechanism involved in the protective effects elicited by PB in paraquat (PQ; 100 μM)-treated SH-SY5Y neuroblastoma cells. PB (25 μM) pretreatment (for 4 h) downregulated the levels of Bcl-2-associated X protein (Bax), blocked the release of cytochrome c to the cytosol, and inhibited the PQ-induced activation of caspase-9 and caspase-3. Besides, PB prevented mitochondrial dysfunction by suppressing the PQ-elicited inhibition of complexes I and V. Moreover, PB abrogated the loss of mitochondrial membrane potential (MMP) and the decline in ATP levels in the cells exposed to PQ. PB exerted antioxidant effects on mitochondria by decreasing the levels of redox impairment markers in mitochondrial membranes. Importantly, PB enhanced the levels of mitochondrial reduced glutathione (GSH). Upregulation of enzymes involved in the synthesis of GSH was seen in the cells exposed to PB. PB afforded mitochondrial protection by activating the extracellular signal-regulated kinase/nuclear factor erythroid 2-related factor 2 (Erk1/2-Nrf2) axis, since inhibition of Erk1/2 or silencing of Nrf2 abrogated these effects. Therefore, PB exerted mitochondrial and cellular protection by an Erk1/2-Nrf2-dependent mechanism.


Pinocembrin Mitochondria Paraquat Antioxidant Nrf2 



CSG is a recipient of a fellow of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; Bolsista de Produtividade em Pesquisa 1D). This work was supported by the CNPq.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2016_135_MOESM1_ESM.pdf (99 kb)
Figure S1 The effects of a pretreatment with pinocembrin (PB) at 1–25 μM for 4 h on the cell viability (A) and cytotoxicity (B) parameters of SH-SY5Y cells exposed to paraquat (PQ) for further 24 h. Data are presented as the mean ± SEM of three or five independent experiments each done in triplicate. One-way ANOVA followed by the post hoc Tukey’s test, # p < 0.05 vs the control group, * p < 0.05 different from PQ-treated cells, ** p < 0.01 different from PQ-treated cells. (PDF 98 kb)
12035_2016_135_MOESM2_ESM.pdf (89 kb)
Figure S2 The effects of a pretreatment with pinocembrin (PB) at 1–25 μM for 4 h on the contents of Bcl-2 (A), Bax (B), cytosolic cytochrome c (cyt c) (C), and mitochondrial cyt c (D), and on the activities of caspase-9 (E) and caspase-3 (F) in SH-SY5Y cells exposed to paraquat (PQ) for further 24 h. Data are presented as the mean ± SEM of three or five independent experiments each done in triplicate. One-way ANOVA followed by the post hoc Tukey’s test, * p < 0.05 different from control cells, # p < 0.05 different from PQ-treated cells. (PDF 89 kb)
12035_2016_135_MOESM3_ESM.pdf (83 kb)
Figure S3 The effects of a pretreatment with pinocembrin (PB) at 1–25 μM for 4 h on the levels of DNA fragmentation in SH-SY5Y cells exposed to paraquat (PQ) for further 24 h. Data are presented as the mean ± SEM of three or five independent experiments each done in triplicate. One-way ANOVA followed by the post hoc Tukey’s test, * p < 0.05 different from control cells, # p < 0.05 different from PQ-treated cells. (PDF 82 kb)


  1. 1.
    Rasul A, Millimouno FM, Ali Eltayb W, Ali M, Li J, Li X (2013) Pinocembrin: a novel natural compound with versatile pharmacological and biological activities. Biomed Res Int 2013:379850. doi: 10.1155/2013/379850 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Liu R, Gao M, Yang ZH, Du GH (2008) Pinocembrin protects rat brain against oxidation and apoptosis induced by ischemia-reperfusion both in vivo and in vitro. Brain Res 1216:104–115. doi: 10.1016/j.brainres.2008.03.049 CrossRefPubMedGoogle Scholar
  3. 3.
    Soromou LW, Chu X, Jiang L, Wei M, Huo M, Chen N, Guan S, Yang X, Chen C, Feng H, Deng X (2012) In vitro and in vivo protection provided by pinocembrin against lipopolysaccharide-induced inflammatory responses. Int Immunopharmacol 14:66–74. doi: 10.1016/j.intimp.2012.06.009 CrossRefPubMedGoogle Scholar
  4. 4.
    Zhou LT, Wang KJ, Li L, Li H, Geng M (2015) Pinocembrin inhibits lipopolysaccharide-induced inflammatory mediators production in BV2 microglial cells through suppression of PI3K/Akt/NF-κB pathway. Eur J Pharmacol 761:211–216. doi: 10.1016/j.ejphar.2015.06.003 CrossRefPubMedGoogle Scholar
  5. 5.
    Czyżewska U, Siemionow K, Zaręba I, Miltyk W (2016) Proapoptotic activity of propolis and their components on human tongue squamous cell carcinoma cell line (CAL-27). PLoS One 11:e0157091. doi: 10.1371/journal.pone.0157091 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Xuan H, Wang Y, Li A, Fu C, Wang Y, Peng W (2016) Bioactive components of Chinese propolis water extract on antitumor activity and quality control. Evid Based Complement Alternat Med 2016:9641965. doi: 10.1155/2016/9641965 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bremner PD, Meyer JJ (1998) Pinocembrin chalcone: an antibacterial compound from Helichrysum trilineatum. Planta Med 64:777CrossRefPubMedGoogle Scholar
  8. 8.
    Massaro CF, Katouli M, Grkovic T, Vu H, Quinn RJ, Heard TA, Carvalho C, Manley-Harris M, Wallace HM, Brooks P (2014) Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae). Fitoterapia 95:247–257. doi: 10.1016/j.fitote.2014.03.024 CrossRefPubMedGoogle Scholar
  9. 9.
    Nina N, Quispe C, Jiménez-Aspee F, Theoduloz C, Feresín GE, Lima B, Leiva E, Schmeda-Hirschmann G (2015) Antibacterial activity, antioxidant effect and chemical composition of propolis from the Región del Maule, Central Chile. Molecules 20:18144–18167. doi: 10.3390/molecules201018144 CrossRefPubMedGoogle Scholar
  10. 10.
    Gao M, Zhang WC, Liu QS, Hu JJ, Liu GT, Du GH (2008) Pinocembrin prevents glutamate-induced apoptosis in SH-SY5Y neuronal cells via decrease of bax/bcl-2 ratio. Eur J Pharmacol 591:73–79. doi: 10.1016/j.ejphar.2008.06.071 CrossRefPubMedGoogle Scholar
  11. 11.
    Gao M, Liu R, Zhu SY, Du GH (2008) Acute neurovascular unit protective action of pinocembrin against permanent cerebral ischemia in rats. J Asian Nat Prod Res 10:551–558. doi: 10.1080/10286020801966955 CrossRefPubMedGoogle Scholar
  12. 12.
    Wang Y, Gao J, Miao Y, Cui Q, Zhao W, Zhang J, Wang H (2014) Pinocembrin protects SH-SY5Y cells against MPP+-induced neurotoxicity through the mitochondrial apoptotic pathway. J Mol Neurosci 53:537–545. doi: 10.1007/s12031-013-0219-x CrossRefPubMedGoogle Scholar
  13. 13.
    Meng F, Liu R, Gao M, Wang Y, Yu X, Xuan Z, Sun J, Yang F, Wu C, Du G (2011) Pinocembrin attenuates blood-brain barrier injury induced by global cerebral ischemia-reperfusion in rats. Brain Res 1391:93–101. doi: 10.1016/j.brainres.2011.03.010 CrossRefPubMedGoogle Scholar
  14. 14.
    Shi LL, Chen BN, Gao M, Zhang HA, Li YJ, Wang L, Du GH (2011) The characteristics of therapeutic effect of pinocembrin in transient global brain ischemia/reperfusion rats. Life Sci 88:521–528. doi: 10.1016/j.lfs.2011.01.011 CrossRefPubMedGoogle Scholar
  15. 15.
    Jin X, Liu Q, Jia L, Li M, Wang X (2015) Pinocembrin attenuates 6-OHDA-induced neuronal cell death through Nrf2/ARE pathway in SH-SY5Y cells. Cell Mol Neurobiol 35:323–333. doi: 10.1007/s10571-014-0128-8 CrossRefPubMedGoogle Scholar
  16. 16.
    Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153. doi: 10.1016/j.bbagen.2012.09.008 CrossRefPubMedGoogle Scholar
  17. 17.
    Costa SL, Silva VD, Dos Santos Souza C, Santos CC, Paris I, Muñoz P, Segura-Aguilar J (2016) Impact of plant-derived flavonoids on neurodegenerative diseases. Neurotox Res 30:41–52. doi: 10.1007/s12640-016-9600-1 CrossRefPubMedGoogle Scholar
  18. 18.
    Das J, Ramani R, Suraju MO (2016) Polyphenol compounds and PKC signaling. Biochim Biophys Acta 1860:2107–2121. doi: 10.1016/j.bbagen.2016.06.022 CrossRefPubMedGoogle Scholar
  19. 19.
    Kim J, Keum YS (2016) NRF2, a key regulator of antioxidants with two faces towards cancer. Oxidative Med Cell Longev 2016:2746457. doi: 10.1155/2016/2746457 Google Scholar
  20. 20.
    Wang H, Wang Y, Zhao L, Cui Q, Wang Y, Du G (2016) Pinocembrin attenuates MPP(+)-induced neurotoxicity by the induction of heme oxygenase-1 through ERK1/2 pathway. Neurosci Lett 612:104–109. doi: 10.1016/j.neulet.2015.11.048 CrossRefPubMedGoogle Scholar
  21. 21.
    Hsu MJ, Sheu JR, Lin CH, Shen MY, Hsu CY (2010) Mitochondrial mechanisms in amyloid beta peptide-induced cerebrovascular degeneration. Biochim Biophys Acta 1800:290–296. doi: 10.1016/j.bbagen.2009.08.003 CrossRefPubMedGoogle Scholar
  22. 22.
    Tait SW, Green DR (2012) Mitochondria and cell signalling. J Cell Sci 125:807–815. doi: 10.1242/jcs.099234 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Solá S, Morgado AL, Rodrigues CM (2013) Death receptors and mitochondria: two prime triggers of neural apoptosis and differentiation. Biochim Biophys Acta 1830:2160–2166. doi: 10.1016/j.bbagen.2012.09.021 CrossRefPubMedGoogle Scholar
  24. 24.
    Green DR, Galluzzi L, Kroemer G (2014) Metabolic control of cell death. Science 345:1250256. doi: 10.1126/science.1250256 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Prozorovski T, Schneider R, Berndt C, Hartung HP, Aktas O (2015) Redox-regulated fate of neural stem progenitor cells. Biochim Biophys Acta 1850:1543–1554. doi: 10.1016/j.bbagen.2015.01.022 CrossRefPubMedGoogle Scholar
  26. 26.
    Nicholls DG, Budd SL (1998) Neuronal excitotoxicity: the role of mitochondria. Biofactors 8:287–299CrossRefPubMedGoogle Scholar
  27. 27.
    Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355CrossRefPubMedGoogle Scholar
  28. 28.
    Bek T, Chair (2016) Mitochondrial dysfunction and diabetic retinopathy. Mitochondrion. doi: 10.1016/j.mito.2016.07.011 PubMedGoogle Scholar
  29. 29.
    de Oliveira MR (2016) Fluoxetine and the mitochondria: a review of the toxicological aspects. Toxicol Lett 258:185–191. doi: 10.1016/j.toxlet.2016.07.001 CrossRefPubMedGoogle Scholar
  30. 30.
    de Oliveira MR, Jardim FR (2016) Cocaine and mitochondria-related signaling in the brain: a mechanistic view and future directions. Neurochem Int 92:58–66. doi: 10.1016/j.neuint.2015.12.006 CrossRefPubMedGoogle Scholar
  31. 31.
    Atamna H, Mackey J, Dhahbi JM (2012) Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction. Biofactors 38:158–166. doi: 10.1002/biof.197 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Arun S, Liu L, Donmez G (2016) Mitochondrial biology and neurological diseases. Curr Neuropharmacol 14:143–154. doi: 10.2174/1570159X13666150703154541 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Oliveira MR, Nabavi SF, Daglia M, Rastrelli L, Nabavi SM (2016) Epigallocatechin gallate and mitochondria—a story of life and death. Pharmacol Res 104:70–85. doi: 10.1016/j.phrs.2015.12.027 CrossRefPubMedGoogle Scholar
  34. 34.
    de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM (2016) Resveratrol and the mitochondria: from triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta 1860:727–745. doi: 10.1016/j.bbagen.2016.01.017 CrossRefPubMedGoogle Scholar
  35. 35.
    de Oliveira MR, Jardim FR, Setzer WN, Nabavi SM, Nabavi SF (2016) Curcumin, mitochondrial biogenesis, and mitophagy: exploring recent data and indicating future needs. Biotechnol Adv 34:813–826. doi: 10.1016/j.biotechadv.2016.04.004 CrossRefPubMedGoogle Scholar
  36. 36.
    de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF (2016) Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv 34:532–549. doi: 10.1016/j.biotechadv.2015.12.014 CrossRefPubMedGoogle Scholar
  37. 37.
    Picard M, Wallace DC, Burelle Y (2016) The rise of mitochondria in medicine. Mitochondrion. doi: 10.1016/j.mito.2016.07.003 PubMedPubMedCentralGoogle Scholar
  38. 38.
    Baltazar MT, Dinis-Oliveira RJ, de Lourdes Bastos M, Tsatsakis AM, Duarte JA, Carvalho F (2014) Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases—a mechanistic approach. Toxicol Lett 230:85–103. doi: 10.1016/j.toxlet.2014.01.039 CrossRefPubMedGoogle Scholar
  39. 39.
    Ruszkiewicz J, Albrecht J (2015) Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int 88:66–72. doi: 10.1016/j.neuint.2014.12.012 CrossRefPubMedGoogle Scholar
  40. 40.
    de Oliveira MR, Schuck PF, Bosco SM (2016) Tanshinone I induces mitochondrial protection through an Nrf2-dependent mechanism in paraquat-treated human neuroblastoma SH-SY5Y cells. Mol Neurobiol. doi: 10.1007/s12035-016-0009-x Google Scholar
  41. 41.
    Smythies J, De Iuliis A, Zanatta L, Galzigna L (2002) The biochemical basis of Parkinson’s disease: the role of catecholamine o-quinones: a review-discussion. Neurotox Res 4:77–81. doi: 10.1080/10298420290007655 CrossRefPubMedGoogle Scholar
  42. 42.
    Calì T, Ottolini D, Brini M (2011) Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson’s disease. Biofactors 37:228–240. doi: 10.1002/biof.159 CrossRefPubMedGoogle Scholar
  43. 43.
    Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI (2010) Molecular mechanisms of pesticide-induced neurotoxicity: relevance to Parkinson’s disease. Chem Biol Interact 188:289–300. doi: 10.1016/j.cbi.2010.06.003 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M et al (2011) Rotenone, paraquat, and Parkinson’s disease. Environ Health Perspect 119:866–872. doi: 10.1289/ehp.1002839 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kwon HJ, Heo JY, Shim JH, Park JH, Seo KS, Ryu MJ, Han JS, Shong M, Son JH, Kweon GR (2011) DJ-1 mediates paraquat-induced dopaminergic neuronal cell death. Toxicol Lett 202:85–92. doi: 10.1016/j.toxlet.2011.01.018 CrossRefPubMedGoogle Scholar
  46. 46.
    Fukushima T, Yamada K, Isobe A, Shiwaku K, Yamane Y (1993) Mechanism of cytotoxicity of paraquat. I. NADH oxidation and paraquat radical formation via complex I. Exp Toxicol Pathol 45:345–349CrossRefPubMedGoogle Scholar
  47. 47.
    Tsukamoto M, Tampo Y, Sawada M, Yonaha M (2002) Paraquat-induced oxidative stress and dysfunction of the glutathione redox cycle in pulmonary microvascular endothelial cells. Toxicol Appl Pharmacol 178:82–92CrossRefPubMedGoogle Scholar
  48. 48.
    Blanco-Ayala T, Andérica-Romero AC, Pedraza-Chaverri J (2014) New insights into antioxidant strategies against paraquat toxicity. Free Radic Res 48:623–640. doi: 10.3109/10715762.2014.899694 CrossRefPubMedGoogle Scholar
  49. 49.
    Moretto A, Colosio C (2011) Biochemical and toxicological evidence of neurological effects of pesticides: the example of Parkinson’s disease. Neurotoxicology 32:383–391. doi: 10.1016/j.neuro.2011.03.004 CrossRefPubMedGoogle Scholar
  50. 50.
    de Oliveira MR, Ferreira GC, Schuck PF (2016) Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: role for PI3K/Akt/Nrf2 pathway. Toxicol in Vitro 32:41–54. doi: 10.1016/j.tiv.2015.12.005 CrossRefPubMedGoogle Scholar
  51. 51.
    Moran JM, Gonzalez-Polo RA, Ortiz-Ortiz MA, Niso-Santano M, Soler G, Fuentes JM (2008) Identification of genes associated with paraquat-induced toxicity in SH-SY5Y cells by PCR array focused on apoptotic pathways. J Toxicol Environ Health A 71:1457–1467. doi: 10.1080/15287390802329364 CrossRefPubMedGoogle Scholar
  52. 52.
    Ortiz-Ortiz MA, Morán JM, González-Polo RA, Niso-Santano M, Soler G, Bravo-San Pedro JM, Fuentes JM (2009) Nitric oxide-mediated toxicity in paraquat-exposed SH-SY5Y cells: a protective role of 7-nitroindazole. Neurotox Res 16:160–173. doi: 10.1007/s12640-009-9065-6 CrossRefPubMedGoogle Scholar
  53. 53.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  54. 54.
    Wang K, Zhu L, Zhu X, Zhang K, Huang B, Zhang J, Zhang Y, Zhu L, Zhou B, Zhou F (2014) Protective effect of paeoniflorin on Aβ25-35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction. Cell Mol Neurobiol 34:227–234. doi: 10.1007/s10571-013-0006-9 CrossRefPubMedGoogle Scholar
  55. 55.
    Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92CrossRefPubMedGoogle Scholar
  56. 56.
    de Oliveira MR, Moreira JC (2007) Acute and chronic vitamin A supplementation at therapeutic doses induces oxidative stress in submitochondrial particles isolated from cerebral cortex and cerebellum of adult rats. Toxicol Lett 173:145–150CrossRefPubMedGoogle Scholar
  57. 57.
    de Oliveira MR, Ferreira GC, Schuck PF, Dal Bosco SM (2015) Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem Biol Interact 242:396–406. doi: 10.1016/j.cbi.2015.11.003 CrossRefPubMedGoogle Scholar
  58. 58.
    de Oliveira MR, Peres A, Ferreira GC, Schuck PF, Bosco SM (2016) Carnosic acid affords mitochondrial protection in chlorpyrifos-treated Sh-Sy5y cells. Neurotox Res. doi: 10.1007/s12640-016-9620-x Google Scholar
  59. 59.
    O’Connell MA, Hayes JD (2015) The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic. Biochem Soc Trans 43:687–689. doi: 10.1042/BST20150069 CrossRefPubMedGoogle Scholar
  60. 60.
    Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230CrossRefPubMedGoogle Scholar
  61. 61.
    Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Asp Med 25:17–26CrossRefGoogle Scholar
  62. 62.
    Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. doi: 10.1042/BJ20081386 CrossRefPubMedGoogle Scholar
  63. 63.
    Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658CrossRefPubMedGoogle Scholar
  64. 64.
    de Oliveira MR, da Rocha RF, Moreira JC (2012) Increased susceptibility of mitochondria isolated from frontal cortex and hippocampus of vitamin A-treated rats to non-aggregated amyloid-β peptides 1-40 and 1-42. Acta Neuropsychiatr 24:101–108. doi: 10.1111/j.1601-5215.2011.00588.x CrossRefPubMedGoogle Scholar
  65. 65.
    de Oliveira MR (2015) Vitamin A and retinoids as mitochondrial toxicants. Oxidative Med Cell Longev 2015:140267. doi: 10.1155/2015/140267 CrossRefGoogle Scholar
  66. 66.
    Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S, Lamas S (2015) Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 6:183–197. doi: 10.1016/j.redox.2015.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Dinkova-Kostova AT, Baird L, Holmström KM, Meyer CJ, Abramov AY (2015) The spatiotemporal regulation of the Keap1-Nrf2 pathway and its importance in cellular bioenergetics. Biochem Soc Trans 43:602–610. doi: 10.1042/BST20150003 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Dinkova-Kostova AT, Abramov AY (2015) The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88:179–188. doi: 10.1016/j.freeradbiomed.2015.04.036 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gruber J, Fong S, Chen CB, Yoong S, Pastorin G, Schaffer S, Cheah I, Halliwell B (2013) Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 31:563–592. doi: 10.1016/j.biotechadv.2012.09.005 CrossRefPubMedGoogle Scholar
  70. 70.
    Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30:42–59. doi: 10.1016/j.mam.2008.05.005 CrossRefGoogle Scholar
  71. 71.
    Agarwal R, Shukla GS (1999) Potential role of cerebral glutathione in the maintenance of blood-brain barrier integrity in rat. Neurochem Res 24:1507–1514CrossRefPubMedGoogle Scholar
  72. 72.
    Bakshi R, Zhang H, Logan R, Joshi I, Xu Y, Chen X, Schwarzschild MA (2015) Neuroprotective effects of urate are mediated by augmenting astrocytic glutathione synthesis and release. Neurobiol Dis 82:574–579. doi: 10.1016/j.nbd.2015.08.022 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Mitra S, Siddiqui WA, Khandelwal S (2015) C-phycocyanin protects against acute tributyltin chloride neurotoxicity by modulating glial cell activity along with its anti-oxidant and anti-inflammatory property: a comparative efficacy evaluation with N-acetyl cysteine in adult rat brain. Chem Biol Interact 238:138–150. doi: 10.1016/j.cbi.2015.06.016 CrossRefPubMedGoogle Scholar
  74. 74.
    Heales SJ, Davies SE, Bates TE, Clark JB (1995) Depletion of brain glutathione is accompanied by impaired mitochondrial function and decreased N-acetyl aspartate concentration. Neurochem Res 20:31–38CrossRefPubMedGoogle Scholar
  75. 75.
    Morris G, Anderson G, Dean O, Berk M, Galecki P, Martin-Subero M, Maes M (2014) The glutathione system: a new drug target in neuroimmune disorders. Mol Neurobiol 50:1059–1084. doi: 10.1007/s12035-014-8705-x CrossRefPubMedGoogle Scholar
  76. 76.
    Lash LH (2006) Mitochondrial glutathione transport: physiological, pathological and toxicological implications. Chem Biol Interact 163:54–67CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marcos Roberto de Oliveira
    • 1
    Email author
  • Alessandra Peres
    • 2
    • 3
  • Clarissa Severino Gama
    • 4
    • 5
  • Simone Morelo Dal Bosco
    • 6
  1. 1.Department of Chemistry/ICETFederal University of Mato Grosso (UFMT)CuiabaBrazil
  2. 2.Health Basic Sciences DepartmentFederal University of Health Sciences of Porto AlegrePorto AlegreBrazil
  3. 3.Centro de Pesquisa da Pós-Graduação, Centro Universitário Metodista IPAPorto AlegreBrazil
  4. 4.Laboratório de Psiquiatria Molecular, Instituto Nacional de Ciência e Tecnologia—Medicina Translacional (INCT-TM)Hospital de Clínicas de Porto Alegre (HCPA)Porto AlegreBrazil
  5. 5.Programa de Pós-Graduação em Medicina: PsiquiatriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  6. 6.Federal University of Health Sciences of Porto AlegrePorto AlegreBrazil

Personalised recommendations