Advertisement

Molecular Neurobiology

, Volume 54, Issue 8, pp 6006–6017 | Cite as

Nrf2—a Promising Therapeutic Target for Defensing Against Oxidative Stress in Stroke

  • Rongrong Zhang
  • Mengxue Xu
  • Yu Wang
  • Fei Xie
  • Gang Zhang
  • Xinyue QinEmail author
Article

Abstract

Stroke is one of the leading causes of death and disability in the world. Oxidative stress, which refers to an excessive generation of reactive oxygen species (ROS), plays a key role in the pathological process of stroke. Excessive ROS production contributes to brain ischemia/reperfusion injury through many mechanisms including BBB disruption, inflammation, apoptosis, and cellular necrosis. Nuclear factor-E2-related factor 2 (Nrf2) is one of the critical regulators of endogenous antioxidant defense, which promote the transcription of a wide variety of antioxidant genes. Emerging evidence has demonstrated that activation of Nrf2 and its target genes may protect the brain against ischemia/reperfusion injury, and therapies aimed at increasing Nrf2 activity appear to be beneficial to alleviate brain injury in stroke through the suppression of oxidative stress. The main purpose of this review is to discuss the current evidence for the role of Nrf2 in stroke and the potential interventions to enhance Nrf2 activation to attenuate stroke-induced injury.

Keywords

Nrf2 Reactive oxygen species Antioxidants Stroke 

Notes

Acknowledgments

This work was supported by National Key Clinical Specialties Construction Program of China.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there are no conflicts of interests.

References

  1. 1.
    Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, McMullan PW Jr et al (2013) Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44:870–947. doi: 10.1161/STR.0b013e318284056a PubMedCrossRefGoogle Scholar
  2. 2.
    Fraser PA (2011) The role of free radical generation in increasing cerebrovascular permeability. Free Radic Biol Med 51:967–977. doi: 10.1016/j.freeradbiomed.2011.06.003 PubMedCrossRefGoogle Scholar
  3. 3.
    Radermacher KA, Wingler K, Langhauser F, Altenhofer S, Kleikers P, Hermans JJ, Hrabe de Angelis M, Kleinschnitz C et al (2013) Neuroprotection after stroke by targeting NOX4 as a source of oxidative stress. Antioxid Redox Signal 18:1418–1427. doi: 10.1089/ars.2012.4797 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kahles T, Brandes RP (2012) NADPH oxidases as therapeutic targets in ischemic stroke. Cell Mol Life Sci 69:2345–2363. doi: 10.1007/s00018-012-1011-8 PubMedCrossRefGoogle Scholar
  5. 5.
    Ouyang YB, Stary CM, White RE, Giffard RG (2015) The use of microRNAs to modulate redox and immune response to stroke. Antioxid Redox Signal 22:187–202. doi: 10.1089/ars.2013.5757 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P et al (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14:1505–1517. doi: 10.1089/ars.2010.3576 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14. doi: 10.1097/00004647-200101000-00002 PubMedCrossRefGoogle Scholar
  8. 8.
    Satoh T, Okamoto SI, Cui J, Watanabe Y, Furuta K, Suzuki M, Tohyama K, Lipton SA (2006) Activation of the Keap1/Nrf2 pathway for neuroprotection by electrophilic [correction of electrophillic] phase II inducers. Proc Natl Acad Sci U S A 103:768–773. doi: 10.1073/pnas.0505723102 PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2—an update. Free Radic Biol Med 66:36–44. doi: 10.1016/j.freeradbiomed.2013.02.008 PubMedCrossRefGoogle Scholar
  10. 10.
    Chen B, Lu Y, Chen Y, Cheng J (2015) The role of Nrf2 in oxidative stress-induced endothelial injuries. J Endocrinol 225:R83–R99. doi: 10.1530/joe-14-0662 PubMedCrossRefGoogle Scholar
  11. 11.
    Zhou S, Sun W, Zhang Z, Zheng Y (2014) The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxidative Med Cell Longev 2014:260429. doi: 10.1155/2014/260429 Google Scholar
  12. 12.
    Shah ZA, Li RC, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S, Dore S (2007) Role of reactive oxygen species in modulation of Nrf2 following ischemic reperfusion injury. Neuroscience 147:53–59. doi: 10.1016/j.neuroscience.2007.02.066 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Shih AY, Li P, Murphy TH (2005) A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci 25:10321–10335. doi: 10.1523/jneurosci.4014-05.2005 PubMedCrossRefGoogle Scholar
  14. 14.
    Narayanan SV, Dave KR, Saul I, Perez-Pinzon MA (2015) Resveratrol preconditioning protects against cerebral ischemic injury via nuclear erythroid 2-related factor 2. Stroke 46:1626–1632. doi: 10.1161/strokeaha.115.008921 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kunze R, Urrutia A, Hoffmann A, Liu H, Helluy X, Pham M, Reischl S, Korff T et al (2015) Dimethyl fumarate attenuates cerebral edema formation by protecting the blood-brain barrier integrity. Exp Neurol 266:99–111. doi: 10.1016/j.expneurol.2015.02.022 PubMedCrossRefGoogle Scholar
  16. 16.
    Shi H, Jing X, Wei X, Perez RG, Ren M, Zhang X, Lou H (2015) S-allyl cysteine activates the Nrf2-dependent antioxidant response and protects neurons against ischemic injury in vitro and in vivo. J Neurochem 133:298–308. doi: 10.1111/jnc.12986 PubMedCrossRefGoogle Scholar
  17. 17.
    Ding Y, Chen M, Wang M, Wang M, Zhang T, Park J, Zhu Y, Guo C et al (2014) Neuroprotection by acetyl-11-keto-beta-boswellic acid, in ischemic brain injury involves the Nrf2/HO-1 defense pathway. Sci Rep 4:7002. doi: 10.1038/srep07002 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Zhang M, Wang S, Mao L, Leak RK, Shi Y, Zhang W, Hu X, Sun B et al (2014) Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J Neurosci 34:1903–1915. doi: 10.1523/JNEUROSCI.4043-13.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, Yamamoto M (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13:76–86PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Itoh K, Wakabayashi N, Katoh Y, Ishii T, O’Connor T, Yamamoto M (2003) Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8:379–391PubMedCrossRefGoogle Scholar
  21. 21.
    Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139. doi: 10.1128/mcb.24.16.7130-7139.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL (2013) The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1:45–49. doi: 10.1016/j.redox.2012.10.001 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C (2014) NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology 79:298–306. doi: 10.1016/j.neuropharm.2013.11.004 PubMedCrossRefGoogle Scholar
  24. 24.
    Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A (2011) SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol Cell Biol 31:1121–1133. doi: 10.1128/mcb.01204-10 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Rada P, Rojo AI, Evrard-Todeschi N, Innamorato NG, Cotte A, Jaworski T, Tobon-Velasco JC, Devijver H et al (2012) Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/beta-TrCP axis. Mol Cell Biol 32:3486–3499. doi: 10.1128/mcb.00180-12 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Tong KI, Kobayashi A, Katsuoka F, Yamamoto M (2006) Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol Chem 387:1311–1320. doi: 10.1515/bc.2006.164 PubMedCrossRefGoogle Scholar
  27. 27.
    Eggler AL, Small E, Hannink M, Mesecar AD (2009) Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1. Biochem J 422:171–180. doi: 10.1042/bj20090471 PubMedCrossRefGoogle Scholar
  28. 28.
    Gao L, Wang J, Sekhar KR, Yin H, Yared NF, Schneider SN, Sasi S, Dalton TP et al (2007) Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3. J Biol Chem 282:2529–2537. doi: 10.1074/jbc.M607622200 PubMedCrossRefGoogle Scholar
  29. 29.
    Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322PubMedCrossRefGoogle Scholar
  30. 30.
    Hirotsu Y, Katsuoka F, Funayama R, Nagashima T, Nishida Y, Nakayama K, Engel JD, Yamamoto M (2012) Nrf2-MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Res 40:10228–10239. doi: 10.1093/nar/gks827 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Shelton P, Jaiswal AK (2013) The transcription factor NF-E2-related factor 2 (Nrf2): a protooncogene? FASEB J 27:414–423. doi: 10.1096/fj.12-217257 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A et al (2009) Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 46:443–453. doi: 10.1016/j.freeradbiomed.2008.10.040 PubMedCrossRefGoogle Scholar
  33. 33.
    Shelton LM, Park BK, Copple IM (2013) Role of Nrf2 in protection against acute kidney injury. Kidney Int 84:1090–1095. doi: 10.1038/ki.2013.248 PubMedCrossRefGoogle Scholar
  34. 34.
    Otterbein LE, Choi AM (2000) Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol 279:L1029–L1037PubMedGoogle Scholar
  35. 35.
    Limon-Pacheco J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674:137–147. doi: 10.1016/j.mrgentox.2008.09.015 PubMedCrossRefGoogle Scholar
  36. 36.
    Zhang H, Davies KJ, Forman HJ (2015) Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med. doi: 10.1016/j.freeradbiomed.2015.05.036 Google Scholar
  37. 37.
    Ross D, Siegel D (2004) NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol 382:115–144. doi: 10.1016/s0076-6879(04)82008-1 PubMedCrossRefGoogle Scholar
  38. 38.
    Nioi P, Hayes JD (2004) Contribution of NAD(P)H:quinone oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutat Res 555:149–171. doi: 10.1016/j.mrfmmm.2004.05.023 PubMedCrossRefGoogle Scholar
  39. 39.
    Morris G, Anderson G, Dean O, Berk M, Galecki P, Martin-Subero M, Maes M (2014) The glutathione system: a new drug target in neuroimmune disorders. Mol Neurobiol 50:1059–1084. doi: 10.1007/s12035-014-8705-x PubMedCrossRefGoogle Scholar
  40. 40.
    Abdul-Aziz A, MacEwan DJ, Bowles KM, Rushworth SA (2015) Oxidative stress responses and NRF2 in human leukaemia. Oxidative Med Cell Longev 2015:454659. doi: 10.1155/2015/454659 CrossRefGoogle Scholar
  41. 41.
    Sekhar KR, Rachakonda G, Freeman ML (2010) Cysteine-based regulation of the CUL3 adaptor protein Keap1. Toxicol Appl Pharmacol 244:21–26. doi: 10.1016/j.taap.2009.06.016 PubMedCrossRefGoogle Scholar
  42. 42.
    Nakaso K, Yano H, Fukuhara Y, Takeshima T, Wada-Isoe K, Nakashima K (2003) PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS Lett 546:181–184PubMedCrossRefGoogle Scholar
  43. 43.
    Li MH, Cha YN, Surh YJ (2006) Peroxynitrite induces HO-1 expression via PI3K/Akt-dependent activation of NF-E2-related factor 2 in PC12 cells. Free Radic Biol Med 41:1079–1091. doi: 10.1016/j.freeradbiomed.2006.06.010 PubMedCrossRefGoogle Scholar
  44. 44.
    Xu C, Yuan X, Pan Z, Shen G, Kim JH, Yu S, Khor TO, Li W et al (2006) Mechanism of action of isothiocyanates: the induction of ARE-regulated genes is associated with activation of ERK and JNK and the phosphorylation and nuclear translocation of Nrf2. Mol Cancer Ther 5:1918–1926. doi: 10.1158/1535-7163.MCT-05-0497 PubMedCrossRefGoogle Scholar
  45. 45.
    Rodriguez-Ramiro I, Ramos S, Bravo L, Goya L, Martin MA (2012) Procyanidin B2 induces Nrf2 translocation and glutathione S-transferase P1 expression via ERKs and p38-MAPK pathways and protect human colonic cells against oxidative stress. Eur J Nutr 51:881–892. doi: 10.1007/s00394-011-0269-1 PubMedCrossRefGoogle Scholar
  46. 46.
    Bloom DA, Jaiswal AK (2003) Phosphorylation of Nrf2 at Ser40 by protein kinase C in response to antioxidants leads to the release of Nrf2 from INrf2, but is not required for Nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated NAD(P)H:quinone oxidoreductase-1 gene expression. J Biol Chem 278:44675–44682. doi: 10.1074/jbc.M307633200 PubMedCrossRefGoogle Scholar
  47. 47.
    Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou YS, Ueno I et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223. doi: 10.1038/ncb2021 PubMedGoogle Scholar
  48. 48.
    Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, Jiang T, Sun Z, White E et al (2010) A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30:3275–3285. doi: 10.1128/mcb.00248-10 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bryan HK, Olayanju A, Goldring CE, Park BK (2013) The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol 85:705–717. doi: 10.1016/j.bcp.2012.11.016 PubMedCrossRefGoogle Scholar
  50. 50.
    Narasimhan M, Patel D, Vedpathak D, Rathinam M, Henderson G, Mahimainathan L (2012) Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells. PLoS One 7:e51111. doi: 10.1371/journal.pone.0051111 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Correa F, Mallard C, Nilsson M, Sandberg M (2011) Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant defence in astrocytes: restoring effects of inhibitors of HDACs, p38 MAPK and GSK3beta. Neurobiol Dis 44:142–151. doi: 10.1016/j.nbd.2011.06.016 PubMedPubMedCentralGoogle Scholar
  52. 52.
    Su ZY, Khor TO, Shu L, Lee JH, Saw CL, Wu TY, Huang Y, Suh N et al (2013) Epigenetic reactivation of Nrf2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and Radix angelica sinensis via promoter CpG demethylation. Chem Res Toxicol 26:477–485. doi: 10.1021/tx300524p PubMedCrossRefGoogle Scholar
  53. 53.
    Peters O, Back T, Lindauer U, Busch C, Megow D, Dreier J, Dirnagl U (1998) Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 18:196–205. doi: 10.1097/00004647-199802000-00011 PubMedCrossRefGoogle Scholar
  54. 54.
    Yang ZJ, Xie Y, Bosco GM, Chen C, Camporesi EM (2010) Hyperbaric oxygenation alleviates MCAO-induced brain injury and reduces hydroxyl radical formation and glutamate release. Eur J Appl Physiol 108:513–522. doi: 10.1007/s00421-009-1229-9 PubMedCrossRefGoogle Scholar
  55. 55.
    Olmez I, Ozyurt H (2012) Reactive oxygen species and ischemic cerebrovascular disease. Neurochem Int 60:208–212. doi: 10.1016/j.neuint.2011.11.009 PubMedCrossRefGoogle Scholar
  56. 56.
    Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623PubMedCrossRefGoogle Scholar
  57. 57.
    Abramov AY, Scorziello A, Duchen MR (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J Neurosci 27:1129–1138. doi: 10.1523/jneurosci.4468-06.2007 PubMedCrossRefGoogle Scholar
  58. 58.
    Rodrigo R, Fernandez-Gajardo R, Gutierrez R, Matamala JM, Carrasco R, Miranda-Merchak A, Feuerhake W (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets 12:698–714PubMedCrossRefGoogle Scholar
  59. 59.
    Kontos CD, Wei EP, Williams JI, Kontos HA, Povlishock JT (1992) Cytochemical detection of superoxide in cerebral inflammation and ischemia in vivo. Am J Phys 263:H1234–H1242Google Scholar
  60. 60.
    Pawate S, Shen Q, Fan F, Bhat NR (2004) Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res 77:540–551. doi: 10.1002/jnr.20180 PubMedCrossRefGoogle Scholar
  61. 61.
    Moro MA, Almeida A, Bolanos JP, Lizasoain I (2005) Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med 39:1291–1304. doi: 10.1016/j.freeradbiomed.2005.07.010 PubMedCrossRefGoogle Scholar
  62. 62.
    Kudin AP, Malinska D, Kunz WS (2008) Sites of generation of reactive oxygen species in homogenates of brain tissue determined with the use of respiratory substrates and inhibitors. Biochim Biophys Acta 1777:689–695. doi: 10.1016/j.bbabio.2008.05.010 PubMedCrossRefGoogle Scholar
  63. 63.
    Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, Kunz WS (2004) Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem 279:4127–4135. doi: 10.1074/jbc.M310341200 PubMedCrossRefGoogle Scholar
  64. 64.
    Kahles T, Brandes RP (2013) Which NADPH oxidase isoform is relevant for ischemic stroke? The case for nox 2. Antioxid Redox Signal 18:1400–1417. doi: 10.1089/ars.2012.4721 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Pun PB, Lu J, Moochhala S (2009) Involvement of ROS in BBB dysfunction. Free Radic Res 43:348–364. doi: 10.1080/10715760902751902 PubMedCrossRefGoogle Scholar
  66. 66.
    Zhang L, Wu J, Duan X, Tian X, Shen H, Sun Q, Chen G (2016) NADPH oxidase: a potential target for treatment of stroke. Oxidative Med Cell Longev 2016:5026984. doi: 10.1155/2016/5026984 Google Scholar
  67. 67.
    Nishino T, Okamoto K, Eger BT, Pai EF, Nishino T (2008) Mammalian xanthine oxidoreductase—mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 275:3278–3289. doi: 10.1111/j.1742-4658.2008.06489.x PubMedCrossRefGoogle Scholar
  68. 68.
    Ono T, Tsuruta R, Fujita M, Aki HS, Kutsuna S, Kawamura Y, Wakatsuki J, Aoki T et al (2009) Xanthine oxidase is one of the major sources of superoxide anion radicals in blood after reperfusion in rats with forebrain ischemia/reperfusion. Brain Res 1305:158–167. doi: 10.1016/j.brainres.2009.09.061 PubMedCrossRefGoogle Scholar
  69. 69.
    Kroller-Schon S, Steven S, Kossmann S, Scholz A, Daub S, Oelze M, Xia N, Hausding M et al (2014) Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models. Antioxid Redox Signal 20:247–266. doi: 10.1089/ars.2012.4953 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Daiber A, Di Lisa F, Oelze M, Kroller-Schon S, Steven S, Schulz E, Munzel T (2015) Crosstalk of mitochondria with NADPH oxidase via reactive oxygen and nitrogen species signalling and its role for vascular function. Br J Pharmacol. doi: 10.1111/bph.13403 Google Scholar
  71. 71.
    Nanduri J, Vaddi DR, Khan SA, Wang N, Makarenko V, Semenza GL, Prabhakar NR (2015) HIF-1alpha activation by intermittent hypoxia requires NADPH oxidase stimulation by xanthine oxidase. PLoS One 10:e0119762. doi: 10.1371/journal.pone.0119762 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Guo J, Cheng C, Chen CS, Xing X, Xu G, Feng J, Qin X (2015) Overexpression of Fibulin-5 attenuates ischemia/reperfusion injury after middle cerebral artery occlusion in rats. Mol Neurobiol. doi: 10.1007/s12035-015-9222-2 Google Scholar
  73. 73.
    Ashabi G, Khalaj L, Khodagholi F, Goudarzvand M, Sarkaki A (2015) Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab Brain Dis 30:747–754. doi: 10.1007/s11011-014-9632-2 PubMedCrossRefGoogle Scholar
  74. 74.
    Ding Y, Chen M, Wang M, Li Y, Wen A (2015) Posttreatment with 11-keto-beta-boswellic acid ameliorates cerebral ischemia-reperfusion injury: Nrf2/HO-1 pathway as a potential mechanism. Mol Neurobiol 52:1430–1439. doi: 10.1007/s12035-014-8929-9 PubMedCrossRefGoogle Scholar
  75. 75.
    Kahles T, Luedike P, Endres M, Galla HJ, Steinmetz H, Busse R, Neumann-Haefelin T, Brandes RP (2007) NADPH oxidase plays a central role in blood-brain barrier damage in experimental stroke. Stroke 38:3000–3006. doi: 10.1161/STROKEAHA.107.489765 PubMedCrossRefGoogle Scholar
  76. 76.
    Ku JM, Taher M, Chin KY, Barsby T, Austin V, Wong CH, Andrews ZB, Spencer SJ et al (2016) Protective actions of des-acylated ghrelin on brain injury and blood-brain barrier disruption after stroke in mice. Clin Sci (Lond) 130:1545–1558. doi: 10.1042/cs20160077 CrossRefGoogle Scholar
  77. 77.
    Chen Z, Mao X, Liu A, Gao X, Chen X, Ye M, Ye J, Liu P et al (2015) Osthole, a natural coumarin improves cognitive impairments and BBB dysfunction after transient global brain ischemia in C57 BL/6J mice: involvement of Nrf2 pathway. Neurochem Res 40:186–194. doi: 10.1007/s11064-014-1483-z PubMedCrossRefGoogle Scholar
  78. 78.
    Huang CF, Hsu CJ, Liu SH, Lin-Shiau SY (2008) Neurotoxicological mechanism of methylmercury induced by low-dose and long-term exposure in mice: oxidative stress and down-regulated Na+/K(+)-ATPase involved. Toxicol Lett 176:188–197. doi: 10.1016/j.toxlet.2007.11.004 PubMedCrossRefGoogle Scholar
  79. 79.
    Smith SL, Scherch HM, Hall ED (1996) Protective effects of tirilazad mesylate and metabolite U-89678 against blood-brain barrier damage after subarachnoid hemorrhage and lipid peroxidative neuronal injury. J Neurosurg 84:229–233. doi: 10.3171/jns.1996.84.2.0229 PubMedCrossRefGoogle Scholar
  80. 80.
    Haorah J, Knipe B, Leibhart J, Ghorpade A, Persidsky Y (2005) Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction. J Leukoc Biol 78:1223–1232. doi: 10.1189/jlb.0605340 PubMedCrossRefGoogle Scholar
  81. 81.
    Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA et al (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21:3666–3676. doi: 10.1096/fj.07-8329com PubMedCrossRefGoogle Scholar
  82. 82.
    Lee HS, Namkoong K, Kim DH, Kim KJ, Cheong YH, Kim SS, Lee WB, Kim KY (2004) Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells. Microvasc Res 68:231–238. doi: 10.1016/j.mvr.2004.07.005 PubMedCrossRefGoogle Scholar
  83. 83.
    Hsieh HL, Lin CC, Shih RH, Hsiao LD, Yang CM (2012) NADPH oxidase-mediated redox signal contributes to lipoteichoic acid-induced MMP-9 upregulation in brain astrocytes. J Neuroinflammation 9:110. doi: 10.1186/1742-2094-9-110 PubMedPubMedCentralGoogle Scholar
  84. 84.
    Sun HJ, Zhao MX, Ren XS, Liu TY, Chen Q, Li YH, Kang YM, Wang JJ et al (2016) Salusin-beta promotes vascular smooth muscle cell migration and intimal hyperplasia after vascular injury via ROS/NFkappaB/MMP-9 pathway. Antioxid Redox Signal 24:1045–1057. doi: 10.1089/ars.2015.6475 PubMedCrossRefGoogle Scholar
  85. 85.
    Nakashima MN, Yamashita K, Kataoka Y, Yamashita YS, Niwa M (1995) Time course of nitric oxide synthase activity in neuronal, glial, and endothelial cells of rat striatum following focal cerebral ischemia. Cell Mol Neurobiol 15:341–349PubMedCrossRefGoogle Scholar
  86. 86.
    Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8:57–69. doi: 10.1038/nrn2038 PubMedCrossRefGoogle Scholar
  87. 87.
    Rojo AI, McBean G, Cindric M, Egea J, Lopez MG, Rada P, Zarkovic N, Cuadrado A (2014) Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal 21:1766–1801. doi: 10.1089/ars.2013.5745 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Liu H, Wei X, Kong L, Liu X, Cheng L, Yan S, Zhang X, Chen L (2015) NOD2 is involved in the inflammatory response after cerebral ischemia-reperfusion injury and triggers NADPH oxidase 2-derived reactive oxygen species. Int J Biol Sci 11:525–535. doi: 10.7150/ijbs.10927 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Qian Y, Cao L, Guan T, Chen L, Xin H, Li Y, Zheng R, Yu D (2015) Protection by genistein on cortical neurons against oxidative stress injury via inhibition of NF-kappaB, JNK and ERK signaling pathway. Pharm Biol 53:1124–1132. doi: 10.3109/13880209.2014.962057 PubMedCrossRefGoogle Scholar
  90. 90.
    Duong TT, Chami B, McMahon AC, Fong GM, Dennis JM, Freedman SB, Witting PK (2014) Pre-treatment with the synthetic antioxidant T-butyl bisphenol protects cerebral tissues from experimental ischemia reperfusion injury. J Neurochem 130:733–747. doi: 10.1111/jnc.12747 PubMedCrossRefGoogle Scholar
  91. 91.
    Nagayama T, Lan J, Henshall DC, Chen D, O’Horo C, Simon RP, Chen J (2000) Induction of oxidative DNA damage in the peri-infarct region after permanent focal cerebral ischemia. J Neurochem 75:1716–1728PubMedCrossRefGoogle Scholar
  92. 92.
    Matsuda S, Umeda M, Uchida H, Kato H, Araki T (2009) Alterations of oxidative stress markers and apoptosis markers in the striatum after transient focal cerebral ischemia in rats. J Neural Transm (Vienna) 116:395–404. doi: 10.1007/s00702-009-0194-0 CrossRefGoogle Scholar
  93. 93.
    Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762. doi: 10.1016/j.freeradbiomed.2009.12.022 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Bolanos JP, Almeida A (1999) Roles of nitric oxide in brain hypoxia-ischemia. Biochim Biophys Acta 1411:415–436PubMedCrossRefGoogle Scholar
  95. 95.
    Kim SR, Bae YH, Bae SK, Choi KS, Yoon KH, Koo TH, Jang HO, Yun I et al (2008) Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kappaB activation in endothelial cells. Biochim Biophys Acta 1783:886–895. doi: 10.1016/j.bbamcr.2008.01.004 PubMedCrossRefGoogle Scholar
  96. 96.
    Etienne-Manneville S, Manneville JB, Adamson P, Wilbourn B, Greenwood J, Couraud PO (2000) ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J Immunol 165:3375–3383PubMedCrossRefGoogle Scholar
  97. 97.
    Na W, Lee JY, Kim WS, Yune TY, Ju BG (2015) 17beta-estradiol ameliorates tight junction disruption via repression of MMP transcription. Mol Endocrinol 29:1347–1361. doi: 10.1210/me.2015-1124 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    He F, Peng J, Deng XL, Yang LF, Wu LW, Zhang CL, Yin F (2011) RhoA and NF-kappaB are involved in lipopolysaccharide-induced brain microvascular cell line hyperpermeability. Neuroscience 188:35–47. doi: 10.1016/j.neuroscience.2011.04.025 PubMedCrossRefGoogle Scholar
  99. 99.
    Yang C, Zhang X, Fan H, Liu Y (2009) Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 1282:133–141. doi: 10.1016/j.brainres.2009.05.009 PubMedCrossRefGoogle Scholar
  100. 100.
    Tanaka N, Ikeda Y, Ohta Y, Deguchi K, Tian F, Shang J, Matsuura T, Abe K (2011) Expression of Keap1-Nrf2 system and antioxidative proteins in mouse brain after transient middle cerebral artery occlusion. Brain Res 1370:246–253. doi: 10.1016/j.brainres.2010.11.010 PubMedCrossRefGoogle Scholar
  101. 101.
    Dang J, Brandenburg LO, Rosen C, Fragoulis A, Kipp M, Pufe T, Beyer C, Wruck CJ (2012) Nrf2 expression by neurons, astroglia, and microglia in the cerebral cortical penumbra of ischemic rats. J Mol Neurosci 46:578–584. doi: 10.1007/s12031-011-9645-9 PubMedCrossRefGoogle Scholar
  102. 102.
    Srivastava S, Alfieri A, Siow RC, Mann GE, Fraser PA (2013) Temporal and spatial distribution of Nrf2 in rat brain following stroke: quantification of nuclear to cytoplasmic Nrf2 content using a novel immunohistochemical technique. J Physiol 591:3525–3538. doi: 10.1113/jphysiol.2013.257964 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Chang CY, Kao TK, Chen WY, Ou YC, Li JR, Liao SL, Raung SL, Chen CJ (2015) Tetramethylpyrazine inhibits neutrophil activation following permanent cerebral ischemia in rats. Biochem Biophys Res Commun 463:421–427. doi: 10.1016/j.bbrc.2015.05.088 PubMedCrossRefGoogle Scholar
  104. 104.
    Fukuyama N, Takizawa S, Ishida H, Hoshiai K, Shinohara Y, Nakazawa H (1998) Peroxynitrite formation in focal cerebral ischemia-reperfusion in rats occurs predominantly in the peri-infarct region. J Cereb Blood Flow Metab 18:123–129. doi: 10.1097/00004647-199802000-00001 PubMedCrossRefGoogle Scholar
  105. 105.
    Wang B, Zhu X, Kim Y, Li J, Huang S, Saleem S, Li RC, Xu Y et al (2012) Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic Biol Med 52:928–936. doi: 10.1016/j.freeradbiomed.2011.12.006 PubMedCrossRefGoogle Scholar
  106. 106.
    Li L, Zhang X, Cui L, Wang L, Liu H, Ji H, Du Y (2013) Ursolic acid promotes the neuroprotection by activating Nrf2 pathway after cerebral ischemia in mice. Brain Res 1497:32–39. doi: 10.1016/j.brainres.2012.12.032 PubMedCrossRefGoogle Scholar
  107. 107.
    Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406PubMedGoogle Scholar
  108. 108.
    Bellezza I, Mierla AL, Minelli A (2010) Nrf2 and NF-kappaB and their concerted modulation in cancer pathogenesis and progression. Cancers (Basel) 2:483–497. doi: 10.3390/cancers2020483 CrossRefGoogle Scholar
  109. 109.
    Li B, Sun J, Lv G, Yu Y, Wang G, Xie K, Jiao Y, Yu Y (2014) Sevoflurane postconditioning attenuates cerebral ischemia-reperfusion injury via protein kinase B/nuclear factor-erythroid 2-related factor 2 pathway activation. Int J Dev Neurosci 38:79–86. doi: 10.1016/j.ijdevneu.2014.08.005 PubMedCrossRefGoogle Scholar
  110. 110.
    Wu S, Yue Y, Li J, Li Z, Li X, Niu Y, Xiang J, Ding H (2015) Procyanidin B2 attenuates neurological deficits and blood-brain barrier disruption in a rat model of cerebral ischemia. Mol Nutr Food Res 59:1930–1941. doi: 10.1002/mnfr.201500181 PubMedCrossRefGoogle Scholar
  111. 111.
    Parada E, Egea J, Buendia I, Negredo P, Cunha AC, Cardoso S, Soares MP, Lopez MG (2013) The microglial alpha7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxid Redox Signal 19:1135–1148. doi: 10.1089/ars.2012.4671 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Shah ZA, Li RC, Ahmad AS, Kensler TW, Yamamoto M, Biswal S, Dore S (2010) The flavanol (−)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. J Cereb Blood Flow Metab 30:1951–1961. doi: 10.1038/jcbfm.2010.53 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Chan PH, Kawase M, Murakami K, Chen SF, Li Y, Calagui B, Reola L, Carlson E et al (1998) Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci 18:8292–8299PubMedGoogle Scholar
  114. 114.
    Kondo T, Reaume AG, Huang TT, Carlson E, Murakami K, Chen SF, Hoffman EK, Scott RW et al (1997) Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 17:4180–4189PubMedGoogle Scholar
  115. 115.
    Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ et al (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697PubMedGoogle Scholar
  116. 116.
    Yabuki Y, Fukunaga K (2013) Oral administration of glutathione improves memory deficits following transient brain ischemia by reducing brain oxidative stress. Neuroscience 250:394–407. doi: 10.1016/j.neuroscience.2013.07.017 PubMedCrossRefGoogle Scholar
  117. 117.
    Anderson MF, Nilsson M, Sims NR (2004) Glutathione monoethylester prevents mitochondrial glutathione depletion during focal cerebral ischemia. Neurochem Int 44:153–159PubMedCrossRefGoogle Scholar
  118. 118.
    Sekhon B, Sekhon C, Khan M, Patel SJ, Singh I, Singh AK (2003) N-Acetyl cysteine protects against injury in a rat model of focal cerebral ischemia. Brain Res 971:1–8PubMedCrossRefGoogle Scholar
  119. 119.
    Chen L, Wang L, Zhang X, Cui L, Xing Y, Dong L, Liu Z, Li Y et al (2012) The protection by octreotide against experimental ischemic stroke: up-regulated transcription factor Nrf2, HO-1 and down-regulated NF-kappaB expression. Brain Res 1475:80–87. doi: 10.1016/j.brainres.2012.07.052 PubMedCrossRefGoogle Scholar
  120. 120.
    Leonardo CC, Agrawal M, Singh N, Moore JR, Biswal S, Dore S (2013) Oral administration of the flavanol (−)-epicatechin bolsters endogenous protection against focal ischemia through the Nrf2 cytoprotective pathway. Eur J Neurosci 38:3659–3668. doi: 10.1111/ejn.12362 PubMedCrossRefGoogle Scholar
  121. 121.
    Wang B, Cao W, Biswal S, Dore S (2011) Carbon monoxide-activated Nrf2 pathway leads to protection against permanent focal cerebral ischemia. Stroke 42:2605–2610. doi: 10.1161/STROKEAHA.110.607101 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Han J, Wang M, Jing X, Shi H, Ren M, Lou H (2014) (−)-Epigallocatechin gallate protects against cerebral ischemia-induced oxidative stress via Nrf2/ARE signaling. Neurochem Res 39:1292–1299. doi: 10.1007/s11064-014-1311-5 PubMedCrossRefGoogle Scholar
  123. 123.
    Zhang C, Zhang Z, Zhao Q, Wang X, Ji H, Zhang Y (2014) (S)-ZJM-289 preconditioning induces a late phase protection against nervous injury induced by transient cerebral ischemia and oxygen-glucose deprivation. Neurotox Res 26:16–31. doi: 10.1007/s12640-013-9444-x PubMedCrossRefGoogle Scholar
  124. 124.
    Zhang J, Fu B, Zhang X, Zhang L, Bai X, Zhao X, Chen L, Cui L et al (2014) Bicyclol upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res Bull 100:38–43. doi: 10.1016/j.brainresbull.2013.11.001 PubMedCrossRefGoogle Scholar
  125. 125.
    Wu J, Li Q, Wang X, Yu S, Li L, Wu X, Chen Y, Zhao J et al (2013) Neuroprotection by curcumin in ischemic brain injury involves the Akt/Nrf2 pathway. PLoS One 8:e59843. doi: 10.1371/journal.pone.0059843 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Chang CY, Kuan YH, Li JR, Chen WY, Ou YC, Pan HC, Liao SL, Raung SL et al (2013) Docosahexaenoic acid reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. J Nutr Biochem 24:2127–2137. doi: 10.1016/j.jnutbio.2013.08.004 PubMedCrossRefGoogle Scholar
  127. 127.
    Nada SE, Shah ZA (2012) Preconditioning with Ginkgo biloba (EGb 761(R)) provides neuroprotection through HO1 and CRMP2. Neurobiol Dis 46:180–189. doi: 10.1016/j.nbd.2012.01.006 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Jing X, Ren D, Wei X, Shi H, Zhang X, Perez RG, Lou H, Lou H (2013) Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury. Toxicol Appl Pharmacol 273:672–679PubMedCrossRefGoogle Scholar
  129. 129.
    Peng Z, Wang S, Chen G, Cai M, Liu R, Deng J, Liu J, Zhang T et al (2015) Gastrodin alleviates cerebral ischemic damage in mice by improving anti-oxidant and anti-inflammation activities and inhibiting apoptosis pathway. Neurochem Res 40:661–673. doi: 10.1007/s11064-015-1513-5 PubMedCrossRefGoogle Scholar
  130. 130.
    Zhai X, Chen X, Shi J, Shi D, Ye Z, Liu W, Li M, Wang Q et al (2013) Lactulose ameliorates cerebral ischemia-reperfusion injury in rats by inducing hydrogen by activating Nrf2 expression. Free Radic Biol Med 65:731–741. doi: 10.1016/j.freeradbiomed.2013.08.004 PubMedCrossRefGoogle Scholar
  131. 131.
    Wu L, Liu ZJ, Miao S, Zou LB, Cai L, Wu P, Ye du Y, Wu Q et al (2013) Lipoxin A4 ameliorates cerebral ischaemia/reperfusion injury through upregulation of nuclear factor erythroid 2-related factor 2. Neurol Res 35:968–975. doi: 10.1179/1743132813Y.0000000242 PubMedCrossRefGoogle Scholar
  132. 132.
    Parada E, Buendia I, Leon R, Negredo P, Romero A, Cuadrado A, Lopez MG, Egea J (2014) Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. J Pineal Res 56:204–212. doi: 10.1111/jpi.12113 PubMedCrossRefGoogle Scholar
  133. 133.
    Meng X, Wang M, Wang X, Sun G, Ye J, Xu H, Sun X (2014) Suppression of NADPH oxidase- and mitochondrion-derived superoxide by notoginsenoside R1 protects against cerebral ischemia-reperfusion injury through estrogen receptor-dependent activation of Akt/Nrf2 pathways. Free Radic Res 48:823–838. doi: 10.3109/10715762.2014.911853 PubMedCrossRefGoogle Scholar
  134. 134.
    Li M, Zhang X, Cui L, Yang R, Wang L, Liu L, Du W (2011) The neuroprotection of oxymatrine in cerebral ischemia/reperfusion is related to nuclear factor erythroid 2-related factor 2 (nrf2)-mediated antioxidant response: role of nrf2 and hemeoxygenase-1 expression. Biol Pharm Bull 34:595–601PubMedCrossRefGoogle Scholar
  135. 135.
    Kam KY, Yu SJ, Jeong N, Hong JH, Jalin AM, Lee S, Choi YW, Lee CK et al (2011) p-Hydroxybenzyl alcohol prevents brain injury and behavioral impairment by activating Nrf2, PDI, and neurotrophic factor genes in a rat model of brain ischemia. Mol Cells 31:209–215. doi: 10.1007/s10059-011-0028-4 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Zhao Y, Fu B, Zhang X, Zhao T, Chen L, Zhang J, Wang X (2014) Paeonol pretreatment attenuates cerebral ischemic injury via upregulating expression of pAkt, Nrf2, HO-1 and ameliorating BBB permeability in mice. Brain Res Bull 109:61–67. doi: 10.1016/j.brainresbull.2014.09.008 PubMedCrossRefGoogle Scholar
  137. 137.
    Son TG, Camandola S, Arumugam TV, Cutler RG, Telljohann RS, Mughal MR, Moore TA, Luo W et al (2010) Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia. J Neurochem 112:1316–1326. doi: 10.1111/j.1471-4159.2009.06552.x PubMedCrossRefGoogle Scholar
  138. 138.
    Meng H, Guo J, Wang H, Yan P, Niu X, Zhang J (2014) Erythropoietin activates Keap1-Nrf2/ARE pathway in rat brain after ischemia. Int J Neurosci 124:362–368. doi: 10.3109/00207454.2013.848439 PubMedCrossRefGoogle Scholar
  139. 139.
    Ren J, Fan C, Chen N, Huang J, Yang Q (2011) Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in rats. Neurochem Res 36:2352–2362. doi: 10.1007/s11064-011-0561-8 PubMedCrossRefGoogle Scholar
  140. 140.
    Hu Y, Duan M, Liang S, Wang Y, Feng Y (2015) Senkyunolide I protects rat brain against focal cerebral ischemia-reperfusion injury by up-regulating p-Erk1/2, Nrf2/HO-1 and inhibiting caspase 3. Brain Res 1605:39–48. doi: 10.1016/j.brainres.2015.02.015 PubMedCrossRefGoogle Scholar
  141. 141.
    Alfieri A, Srivastava S, Siow RC, Cash D, Modo M, Duchen MR, Fraser PA, Williams SC et al (2013) Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood-brain barrier disruption and neurological deficits in stroke. Free Radic Biol Med 65:1012–1022. doi: 10.1016/j.freeradbiomed.2013.08.190 PubMedCrossRefGoogle Scholar
  142. 142.
    Zhao J, Kobori N, Aronowski J, Dash PK (2006) Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci Lett 393:108–112. doi: 10.1016/j.neulet.2005.09.065 PubMedCrossRefGoogle Scholar
  143. 143.
    Kao TK, Chang CY, Ou YC, Chen WY, Kuan YH, Pan HC, Liao SL, Li GZ et al (2013) Tetramethylpyrazine reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. Exp Neurol 247:188–201. doi: 10.1016/j.expneurol.2013.04.010 PubMedCrossRefGoogle Scholar
  144. 144.
    Gao Y, Xu X, Chang S, Wang Y, Xu Y, Ran S, Huang Z, Li P et al (2015) Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: potential roles of Akt activation and HO-1 induction. Toxicol Appl Pharmacol 289:142–154. doi: 10.1016/j.taap.2015.10.001 PubMedCrossRefGoogle Scholar
  145. 145.
    Sun J, Ren X, Simpkins JW (2015) Sequential upregulation of superoxide dismutase 2 and heme oxygenase 1 by tert-butylhydroquinone protects mitochondria during oxidative stress. Mol Pharmacol 88:437–449. doi: 10.1124/mol.115.098269 PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Zeynalov E, Dore S (2009) Low doses of carbon monoxide protect against experimental focal brain ischemia. Neurotox Res 15:133–137. doi: 10.1007/s12640-009-9014-4 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kim HV, Kim HY, Ehrlich HY, Choi SY, Kim DJ, Kim Y (2013) Amelioration of Alzheimer’s disease by neuroprotective effect of sulforaphane in animal model. Amyloid 20:7–12. doi: 10.3109/13506129.2012.751367 PubMedCrossRefGoogle Scholar
  148. 148.
    Yoon HY, Kang NI, Lee HK, Jang KY, Park JW, Park BH (2008) Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme. Biochem Pharmacol 75:2214–2223. doi: 10.1016/j.bcp.2008.02.029 PubMedCrossRefGoogle Scholar
  149. 149.
    Piao CS, Gao S, Lee GH, Kim do S, Park BH, Chae SW, Chae HJ, Kim SH (2010) Sulforaphane protects ischemic injury of hearts through antioxidant pathway and mitochondrial K(ATP) channels. Pharmacol Res 61:342–348. doi: 10.1016/j.phrs.2009.11.009 PubMedCrossRefGoogle Scholar
  150. 150.
    Porritt MJ, Andersson HC, Hou L, Nilsson A, Pekna M, Pekny M, Nilsson M (2012) Photothrombosis-induced infarction of the mouse cerebral cortex is not affected by the Nrf2-activator sulforaphane. PLoS One 7:e41090. doi: 10.1371/journal.pone.0041090 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Leonardo CC, Mendes M, Ahmad AS, Dore S (2015) Efficacy of prophylactic flavan-3-ol in permanent focal ischemia in 12-mo-old mice. Am J Physiol Heart Circ Physiol 308:H583–H591. doi: 10.1152/ajpheart.00239.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Zhang H, Davies KJ, Forman HJ (2015) Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 88:314–336. doi: 10.1016/j.freeradbiomed.2015.05.036 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rongrong Zhang
    • 1
  • Mengxue Xu
    • 2
  • Yu Wang
    • 1
  • Fei Xie
    • 1
  • Gang Zhang
    • 1
  • Xinyue Qin
    • 1
    Email author
  1. 1.Department of NeurologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
  2. 2.Department of NeurologyThe Ninth People’s Hospital of ChongqingChongqingChina

Personalised recommendations