Skip to main content

Advertisement

Log in

Identification of a Bipolar Disorder Vulnerable Gene CHDH at 3p21.1

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Genome-wide analysis (GWA) is an effective strategy to discover extreme effects surpassing genome-wide significant levels in studying complex disorders; however, when sample size is limited, the true effects may fail to achieve genome-wide significance. In such case, there may be authentic results among the pools of nominal candidates, and an alternative approach is to consider nominal candidates but are replicable across different samples. Here, we found that mRNA expression of the choline dehydrogenase gene (CHDH) was uniformly upregulated in the brains of bipolar disorder (BPD) patients compared with healthy controls across different studies. Follow-up genetic analyses of CHDH variants in multiple independent clinical datasets (including 11,564 cases and 17,686 controls) identified a risk SNP rs9836592 showing consistent associations with BPD (P meta = 5.72 × 10−4), and the risk allele indicated an increased CHDH expression in multiple neuronal tissues (lowest P = 6.70 × 10−16). These converging results may identify a nominal but true BPD susceptibility gene CHDH. Further exploratory analysis revealed suggestive associations of rs9836592 with childhood intelligence (P = 0.044) and educational attainment (P = 0.0039), a “proxy phenotype” of general cognitive abilities. Intriguingly, the CHDH gene is located at chromosome 3p21.1, a risk region implicated in previous BPD genome-wide association studies (GWAS), but CHDH is lying outside of the core GWAS linkage disequilibrium (LD) region, and our studied SNP rs9836592 is ∼1.2 Mb 3′ downstream of the previous GWAS loci (e.g., rs2251219) with no LD between them; thus, the association observed here is unlikely a reflection of previous GWAS signals. In summary, our results imply that CHDH may play a previously unknown role in the etiology of BPD and also highlight the informative value of integrating gene expression and genetic code in advancing our understanding of its biological basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Craddock N, Jones I (1999) Genetics of bipolar disorder. J Med Genet 36:585–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smoller JW, Finn CT (2003) Family, twin, and adoption studies of bipolar disorder. Am J Med Genet C: Semin Med Genet 123C:48–58

    Article  Google Scholar 

  3. Serretti A, Mandelli L (2008) The genetics of bipolar disorder: genome ‘hot regions’, genes, new potential candidates and future directions. Mol Psychiatry 13:742–771

    Article  CAS  PubMed  Google Scholar 

  4. Chen DT, Jiang X, Akula N, Shugart YY, Wendland JR et al (2013) Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol Psychiatry 18:195–205

    Article  CAS  PubMed  Google Scholar 

  5. Cichon S, Muhleisen TW, Degenhardt FA, Mattheisen M, Miro X et al (2011) Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet 88:372–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM et al (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muhleisen TW, Leber M, Schulze TG, Strohmaier J, Degenhardt F et al (2014) Genome-wide association study reveals two new risk loci for bipolar disorder. Nat Commun 5:3339

    Article  PubMed  Google Scholar 

  8. Psychiatric Genomics Consortium Bipolar Disorder Working Group (2011) Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 43:977–983

    Article  Google Scholar 

  9. McMahon FJ, Akula N, Schulze TG, Muglia P, Tozzi F et al (2010) Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1. Nat Genet 42:128–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baum AE, Akula N, Cabanero M, Cardona I, Corona W et al (2008) A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 13:197–207

    Article  CAS  PubMed  Google Scholar 

  11. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  12. Li M, Luo XJ, Landen M, Bergen SE, Hultman CM et al (2015) Impact of a cis-associated gene expression SNP on chromosome 20q11.22 on bipolar disorder susceptibility, hippocampal structure and cognitive performance. Br J Psychiatry 208:128–137. doi:10.1192/bjp.bp.114.156976

    Article  PubMed  PubMed Central  Google Scholar 

  13. Akula N, Barb J, Jiang X, Wendland JR, Choi KH et al (2014) RNA-sequencing of the brain transcriptome implicates dysregulation of neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder. Mol Psychiatry 19:1179–1185

    Article  CAS  PubMed  Google Scholar 

  14. Choi KH, Higgs BW, Wendland JR, Song J, McMahon FJ et al (2011) Gene expression and genetic variation data implicate PCLO in bipolar disorder. Biol Psychiatry 69:353–359

    Article  CAS  PubMed  Google Scholar 

  15. Elashoff M, Higgs BW, Yolken RH, Knable MB, Weis S et al (2007) Meta-analysis of 12 genomic studies in bipolar disorder. J Mol Neurosci 31:221–243

    CAS  PubMed  Google Scholar 

  16. Matigian N, Windus L, Smith H, Filippich C, Pantelis C et al (2007) Expression profiling in monozygotic twins discordant for bipolar disorder reveals dysregulation of the WNT signalling pathway. Mol Psychiatry 12:815–825

    Article  CAS  PubMed  Google Scholar 

  17. Seifuddin F, Pirooznia M, Judy JT, Goes FS, Potash JB et al (2013) Systematic review of genome-wide gene expression studies of bipolar disorder. BMC Psychiatry 13:213

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shao L, Vawter MP (2008) Shared gene expression alterations in schizophrenia and bipolar disorder. Biol Psychiatry 64:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao Z, Xu J, Chen J, Kim S, Reimers M et al (2015) Transcriptome sequencing and genome-wide association analyses reveal lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar disorder. Mol Psychiatry 20:563–572

    Article  CAS  PubMed  Google Scholar 

  20. Niculescu AB (2013) Convergent functional genomics of psychiatric disorders. Am J Med Genet B Neuropsychiatr Genet 162B:587–594

    Article  PubMed  Google Scholar 

  21. Le-Niculescu H, Kurian SM, Yehyawi N, Dike C, Patel SD et al (2009) Identifying blood biomarkers for mood disorders using convergent functional genomics. Mol Psychiatry 14:156–174

    Article  CAS  PubMed  Google Scholar 

  22. Le-Niculescu H, McFarland MJ, Mamidipalli S, Ogden CA, Kuczenski R et al (2007) Convergent functional genomics of bipolar disorder: from animal model pharmacogenomics to human genetics and biomarkers. Neurosci Biobehav Rev 31:897–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 7:818–827

    Article  CAS  PubMed  Google Scholar 

  24. Robinson LJ, Ferrier IN (2006) Evolution of cognitive impairment in bipolar disorder: a systematic review of cross-sectional evidence. Bipolar Disord 8:103–116

    Article  PubMed  Google Scholar 

  25. Li M, Luo XJ, Rietschel M, Lewis CM, Mattheisen M et al (2014) Allelic differences between Europeans and Chinese for CREB1 SNPs and their implications in gene expression regulation, hippocampal structure and function, and bipolar disorder susceptibility. Mol Psychiatry 19:452–461

    Article  CAS  PubMed  Google Scholar 

  26. GTEx Consortium (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45:580–585

    Article  Google Scholar 

  27. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R et al (2011) Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478:519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rietveld CA, Medland SE, Derringer J, Yang J, Esko T et al (2013) GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340:1467–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deary IJ (2012) Intelligence. Annu Rev Psychol 63:453–482

    Article  PubMed  Google Scholar 

  30. Koenen KC, Moffitt TE, Roberts AL, Martin LT, Kubzansky L et al (2009) Childhood IQ and adult mental disorders: a test of the cognitive reserve hypothesis. Am J Psychiatry 166:50–57

    Article  PubMed  Google Scholar 

  31. Batty GD, Mortensen EL, Osler M (2005) Childhood IQ in relation to later psychiatric disorder: evidence from a Danish birth cohort study. Br J Psychiatry 187:180–181

    Article  PubMed  Google Scholar 

  32. Deary IJ, Johnson W, Houlihan LM (2009) Genetic foundations of human intelligence. Hum Genet 126:215–232

    Article  PubMed  Google Scholar 

  33. Benyamin B, Pourcain B, Davis OS, Davies G, Hansell NK et al (2014) Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Mol Psychiatry 19:253–258

    Article  CAS  PubMed  Google Scholar 

  34. Luna A, Nicodemus KK (2007) snp.plotter: an R-based SNP/haplotype association and linkage disequilibrium plotting package. Bioinformatics 23:774–776

    Article  CAS  PubMed  Google Scholar 

  35. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427

    Article  PubMed Central  Google Scholar 

  36. Glatt SJ, Faraone SV, Tsuang MT (2003) Meta-analysis identifies an association between the dopamine D2 receptor gene and schizophrenia. Mol Psychiatry 8:911–915

    Article  CAS  PubMed  Google Scholar 

  37. Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W et al (2009) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18:3227–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH et al (2004) Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci U S A 101:12604–12609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret GB, Munroe PB, Rice KM, Bochud M et al (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478:103–109

    Article  Google Scholar 

  41. International Schizophrenia Consortium, Purcell SM, Wray NR, Stone JL, Visscher PM et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752

    PubMed Central  Google Scholar 

  42. Chen X, Lee G, Maher BS, Fanous AH, Chen J et al (2011) GWA study data mining and independent replication identify cardiomyopathy-associated 5 (CMYA5) as a risk gene for schizophrenia. Mol Psychiatry 16:1117–1129

    Article  CAS  PubMed  Google Scholar 

  43. O’Donovan MC, Norton N, Williams H, Peirce T, Moskvina V et al (2009) Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2. Mol Psychiatry 14:30–36

    Article  PubMed  Google Scholar 

  44. Luo XJ, Li M, Huang L, Steinberg S, Mattheisen M et al (2014) Convergent lines of evidence support CAMKK2 as a schizophrenia susceptibility gene. Mol Psychiatry 19:774–783

    Article  CAS  PubMed  Google Scholar 

  45. Breen G, Lewis CM, Vassos E, Pergadia ML, Blackwood DH et al (2011) Replication of association of 3p21.1 with susceptibility to bipolar disorder but not major depression. Nat Genet 43:3–5, author reply 5

    Article  CAS  PubMed  Google Scholar 

  46. Vassos E, Steinberg S, Cichon S, Breen G, Sigurdsson E et al (2012) Replication study and meta-analysis in European samples supports association of the 3p21.1 locus with bipolar disorder. Biol Psychiatry 72:645–650

    Article  CAS  PubMed  Google Scholar 

  47. Kondo K, Ikeda M, Kajio Y, Saito T, Iwayama Y et al (2013) Genetic variants on 3q21 and in the Sp8 transcription factor gene (SP8) as susceptibility loci for psychotic disorders: a genetic association study. PLoS One 8:e70964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gamazon ER, Badner JA, Cheng L, Zhang C, Zhang D et al (2013) Enrichment of cis-regulatory gene expression SNPs and methylation quantitative trait loci among bipolar disorder susceptibility variants. Mol Psychiatry 18:340–346

    Article  CAS  PubMed  Google Scholar 

  49. UNESCO (1997) International Standard Classification of Education—ISCED 1997. November 1997, UNESCO, Paris

  50. Bourne VJ, Fox HC, Deary IJ, Whalley LJ (2007) Does childhood intelligence predict variation in cognitive change in later life? Personal Individ Differ 42:1551–1559

    Article  Google Scholar 

  51. Johnson AR, Craciunescu CN, Guo Z, Teng YW, Thresher RJ et al (2010) Deletion of murine choline dehydrogenase results in diminished sperm motility. FASEB J 24:2752–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the efforts of the Psychiatric Genomics Consortium Bipolar Disorder Working Group for their contributions to this study. We are grateful to Andrew Willden (Kunming Institute of Zoology) for language editing of the manuscript. This work was supported by CAS Pioneer Hundred Talents Program (to M.L.). This work was also supported by the German Federal Ministry of Education and Research (BMBF) through the Integrated Genome Research Network (IG) MooDS (Systematic Investigation of the Molecular Causes of Major Mood Disorders and Schizophrenia; grant 01GS08144 to SC and MMN and grant 01GS08147 to MR), under the auspices of the National Genome Research Network plus (NGFNplus), and through the Integrated Network IntegraMent (Integrated Understanding of Causes and Mechanisms in Mental Disorders), under the auspices of the e:Med Programme (grant 01ZX1314A to SC and MMN and grant 01ZX1314G to MR). MMN is a member of the DFG-funded Excellence-Cluster ImmunoSensation. The Romanian sample recruitment and genotyping was funded by UEFISCDI, Bucharest, Romania, grant no. 89/2012 to M.G.S., and by the German Federal Ministry of Education and Research (BMBF), MooDS Project, grant no. 01GS08144 to S.C. and M.M.N. Funding for the Swedish collection was provided by the Stanley Center for Psychiatric Research, Broad Institute, from a grant from Stanley Medical Research Institute. We also wish to thank the BBMRI.se and KI Biobank at Karolinska Institutet for the professional biobank service.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to Xiao Xiao or Ming Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Hong Chang, Lingyi Li and Tao Peng contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1047 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, H., Li, L., Peng, T. et al. Identification of a Bipolar Disorder Vulnerable Gene CHDH at 3p21.1. Mol Neurobiol 54, 5166–5176 (2017). https://doi.org/10.1007/s12035-016-0041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0041-x

Keywords

Navigation