Skip to main content

Advertisement

Log in

Fasudil Enhances Therapeutic Efficacy of Neural Stem Cells in the Mouse Model of MPTP-Induced Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Bone marrow-derived neural stem cells (NSCs) are ideal cells for cellular therapy because of their therapeutic potential for repairing and regenerating damaged neurons. However, the optimization of implanted cells and the improvement of microenvironment in the central nervous system (CNS) are still two critical elements for enhancing therapeutic effect. In the current study, we observed the combined therapeutic effect of NSCs with fasudil in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease (PD) mouse model and explored the possible cellular and molecular mechanisms. The results clearly show that combined treatment of NSCs with fasudil further improves motor capacity of PD mice, thus exerting double effect in treating MPTP-PD. The combined intervention more effectively protected dopaminergic (DA) neurons from loss in the substantia nigra pars compacta (SNpc), which may be associated with the increased number and survival of transplanted NSCs in the brain. Compared with the treatment of fasudil or NSCs alone, the combined intervention more effectively inhibited the activation and aggregation of microglia and astrocytes, displayed stronger anti-inflammatory and antioxidant effects, induced more neurotrophic factor NT-3, and affected the dynamic homeostasis of NMDA and AMPA receptors in MPTP-PD mice. Our study demonstrates that intranasal administration of NSCs, followed by fasudil administration, is a promising cell-based therapy for neuronal lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  CAS  PubMed  Google Scholar 

  2. Strickland D, Bertoni JM (2004) Parkinson’s prevalence estimated by a state registry. Mov Disord 19(3):318–323

    Article  PubMed  Google Scholar 

  3. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM et al (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68(5):384–386

    Article  CAS  PubMed  Google Scholar 

  4. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington Clinical, morphological and neurochemical correlations. J Neurol Sci 20(4):415–455

    Article  CAS  PubMed  Google Scholar 

  5. Liu Y, Liu K, Qin W, Liu C, Zheng X, Deng Y, Qing H (2016) Effects of stem cell therapy on protein profile of parkinsonian rats using an (18) O-labeling quantitative proteomic approach. Proteomics 16(6):1023–1032

  6. Ma J, Gao J, Hou B, Liu J, Chen S, Yan G, Ren H (2015) Neural stem cell transplantation promotes behavioral recovery in a photothrombosis stroke model. Int J Clin Exp Pathol 8(7):7838–7848

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shin ES, Hwang O, Hwang YS, Suh JK, Chun YI, Jeon SR (2014) Enhanced efficacy of human brain-derived neural stem cells by transplantation of cell aggregates in a rat model of Parkinson’s disease. J Korean Neurosurg Soc 56(5):383–389

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xiao JJ, Yin M, Wang ZJ, Wang XP (2015) Transplanted Neural Stem Cells: Playing a Neuroprotective Role by Ceruloplasmin in the Substantia Nigra of PD Model Rats? Oxid Med Cell Longev 2015:618631

    PubMed  PubMed Central  Google Scholar 

  9. Zhang W, Gu GJ, Shen X, Zhang Q, Wang GM, Wang PJ (2015) Neural stem cell transplantation enhances mitochondrial biogenesis in a transgenic mouse model of Alzheimer’s disease-like pathology. Neurobiol Aging 36(3):1282–1292

    Article  CAS  PubMed  Google Scholar 

  10. Zuo FX, Bao XJ, Sun XC, Wu J, Bai QR, Chen G, Li XY, Zhou QY et al (2015) Transplantation of Human Neural Stem Cells in a Parkinsonian Model Exerts Neuroprotection via Regulation of the Host Microenvironment. Int J Mol Sci 16(11):26473–26492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bang OY (2016) Clinical Trials of Adult Stem Cell Therapy in Patients with Ischemic Stroke. J Clin Neurol 12(1):14–20

    Article  PubMed  Google Scholar 

  12. Hou B, Ma J, Guo X, Ju F, Gao J, Wang D, Liu J, Li X, Zhang S, Ren H (2016) Exogenous Neural Stem Cells Transplantation as a Potential Therapy for Photothrombotic Ischemia Stroke in Kunming Mice Model. Mol Neurobiol. doi:10.1007/s12035-016-9740-6

  13. Salewski RP, Mitchell RA, Shen C, Fehlings MG (2015) Transplantation of neural stem cells clonally derived from embryonic stem cells promotes recovery after murine spinal cord injury. Stem Cells Dev 24(1):36–50

    Article  CAS  PubMed  Google Scholar 

  14. Wang D, Zhang J (2015) Effects of hypothermia combined with neural stem cell transplantation on recovery of neurological function in rats with spinal cord injury. Mol Med Rep 11(3):1759–1767

    CAS  PubMed  Google Scholar 

  15. Chandra P, Lee SJ (2015) Synthetic Extracellular Microenvironment for Modulating Stem Cell Behaviors. Biomark Insights 10(Suppl 1):105–116

    PubMed  PubMed Central  Google Scholar 

  16. Claassen DA, Desler MM, Rizzino A (2009) ROCK Inhibition Enhances the Recovery and Growth of Cryopreserved Human Embryonic Stem Cells and Human Induced Pluripotent Stem Cells. Mol Reprod Dev. Author manuscript; available in PMC 2012 January 13. Published in final edited form as. Mol Reprod Dev 76(8):722–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Croze RH, Buchholz DE, Radeke MJ, Thi WJ, Hu Q, Coffey PJ, Clegg DO (2014) ROCK Inhibition Extends Passage of Pluripotent Stem Cell-Derived Retinal Pigmented Epithelium. Stem Cells Transl Med 3(9):1066–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rizzino A (2010) Stimulating progress in regenerative medicine: improving the cloning and recovery of cryopreserved human pluripotent stem cells with ROCK inhibitors. Regen Med 5(5):799–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chiba Y, Kuroda S, Shichinohe H, Hokari M, Osanai T, Maruichi K, Yano S, Hida K et al (2010) Synergistic effects of bone marrow stromal cells and a Rho kinase (ROCK) inhibitor, fasudil on axon regeneration in rat spinal cord injury. Neuropathology 30(3):241–250

    Article  PubMed  Google Scholar 

  20. Furuya T, Hashimoto M, Koda M, Okawa A, Murata A, Takahashi K, Yamashita T, Yamazaki M (2009) Treatment of rat spinal cord injury with a Rho-kinase inhibitor and bone marrow stromal cell transplantation. Brain Res 1295:192–202

    Article  CAS  PubMed  Google Scholar 

  21. Biro M, Munoz MA, Weninger W (2014) Targeting Rho-GTPases in immune cell migration and inflammation. Br J Pharmacol 171(24):5491–5506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Satoh S, Kobayashi T, Hitomi A, Ikegaki I, Suzuki Y, Shibuya M, Yoshida J, Asano T (1999) Inhibition of neutrophil migration by a protein kinase inhibitor for the treatment of ischemic brain infarction. Jpn J Pharmaco 80:41–48

    Article  CAS  Google Scholar 

  23. He Y, Xu H, Liang L, Zhan Z, Yang X, Yu X, Ye Y, Sun L (2008) Antiinflammatory effect of Rho kinase blockade via inhibition of NF-kappaB activation in rheumatoid arthritis. Arthritis Rheum 58:3366–3376

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Peng W, Jian W, Li Y, Li Q, Li W, Xu Y (2012) ROCK inhibitor fasudil attenuated high glucose-induced MCP-1 and VCAM-1 expression and monocyte-endothelial cell adhesion. Cardiovasc Diabetol 11:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hou SW, Liu CY, Li YH, Yu JZ, Feng L, Liu YT, Guo MF, Xie Y et al (2012) Fasudil ameliorates disease progression in experimental autoimmune encephalomyelitis, acting possibly through antiinflammatory effect. CNS Neurosci Ther 18:909–917

    Article  CAS  PubMed  Google Scholar 

  26. Li YH, Yu JZ, Liu CY, Zhang H, Zhang HF, Yang WF, Li JL, Feng QJ et al (2014) Intranasal delivery of FSD-C10, a novel Rho kinase inhibitor, exhibits therapeutic potential in experimental autoimmune encephalomyelitis. Immunology 143(2):219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li YH, Yu JZ, Xin YL, Feng L, Chai Z, Liu JC, Zhang HZ, Zhang GX et al (2015) Protective effect of a novel Rho kinase inhibitor WAR-5 in experimental autoimmune encephalomyelitis by modulating inflammatory response and neurotrophic factors. Exp Mol Pathol 99(2):220–228

    Article  CAS  PubMed  Google Scholar 

  28. Liu C, Li Y, Yu J, Feng L, Hou S, Liu Y, Guo M, Xie Y et al (2013) Targeting the shift from M1 to M2 macrophages in experimental autoimmune encephalomyelitis mice treated with fasudil. PLoS One 8, e54841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun X, Minohara M, Kikuchi H, Ishizu T, Tanaka M, Piao H, Osoegawa M, Ohyagi Y et al (2006) The selective Rho-kinase inhibitor Fasudil is protective and therapeutic in experimental autoimmune encephalomyelitis. J Neuroimmunol 180:126–134

    Article  CAS  PubMed  Google Scholar 

  30. Yang J, Yan Y, Ciric B, Yu S, Guan Y, Xu H, Rostami A, Zhang GX (2010) Evaluation of Bone Marrow- and Brain-Derived Neural Stem Cells in Therapy of Central Nervous System Autoimmunity. Am J Pathol 177(4):1989–2001

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li YH, He Q, Yu JZ, Liu CY, Feng L, Chai Z, Wang Q, Zhang HZ et al (2015) Lipoic acid protects dopaminergic neurons in LPS-induced Parkinson’s disease model. Metab Brain Dis 30(5):1217–1226

    Article  CAS  PubMed  Google Scholar 

  32. Rabbani M, Ghannadi A, Malekian N (2014) Evaluation of the effect of Cyperus rotundus L. in scopolamine-induced learning deficit in mice. Adv Biomed Res 3:217

    PubMed  PubMed Central  Google Scholar 

  33. Najmi AK, Pillai KK, Pal SN, Akhtar M, Mujeeb M, Aftab A (2010) Neuropharmacological safety evaluation of jigrine: A polyherbal hepatoprotective formulation. J Pharm Bio Sci 2(4):329–332

    Article  CAS  Google Scholar 

  34. Navarro E, Alonso SJ, Navarro R (2011) Toxicity and Neuropharmacological Effects of Elenine. Evid Based Complement Alternat Med 2011:312524

  35. Fagone P, Mangano K, Quattrocchi C, Motterlini R, Di Marco R, Magro G, Penacho N, Romao CC et al (2011) Prevention of clinical and histological signs of proteolipid protein (PLP)-induced experimental allergic encephalomyelitis (EAE) in mice by the water-soluble carbon monoxide-releasing molecule (CORM)-A1. Clin Exp Immunol 163(3):368–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20(16):6309–6316

    CAS  PubMed  Google Scholar 

  37. Wang Q, Oyarzabal E, Wilson B, Qian L, Hong JS (2015) Substance P enhances microglial density in the substantia nigra through neurokinin-1 receptor/NADPH oxidase-mediated chemotaxis in mice. Clin Sci (Lond) 129(8):757–767

    Article  CAS  Google Scholar 

  38. Rappold PM, Tieu K (2010) Astrocytes and therapeutics for Parkinson’s disease. Neurotherapeutics 7(4):413–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alabed YZ, Grados-Munro E, Ferraro GB, Hsieh SH, Fournier AE (2006) Neuronal responsesto myelin are mediated by rho kinase. J Neurochem 96(6):1616–1625

    Article  CAS  PubMed  Google Scholar 

  40. Yang J, Yan Y, Xia Y, Kang T, Li X, Ciric B, Xu H, Rostami A et al (2014) Neurotrophin 3 transduction augments remyelinating and immunomodulatory capacity of neural stem cells. Mol Ther 22(2):440–50

    Article  CAS  PubMed  Google Scholar 

  41. Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L, Kilic E, Kilic U, Salani G, Brambilla E, West MJ et al (2009) Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain 132:2239–2251

    Article  PubMed  Google Scholar 

  42. Vishwakarma SK, Bardia A, Tiwari SK, Paspala SA, Khan AA (2014) Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: A review. J Adv Res 5(3):277–294

    Article  PubMed  Google Scholar 

  43. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY (2010) A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28(6):1099–1106

    Article  PubMed  Google Scholar 

  44. Li YH, Feng L, Zhang GX, Ma CG (2015) Intranasal delivery of stem cells as therapy for central nervous system disease. Exp Mol Pathol 98(2):145–151

    Article  CAS  PubMed  Google Scholar 

  45. Martínez-Morales PL, Revilla A, Ocaña I, González C, Sainz P, McGuire D, Liste I (2013) Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev 9(5):685–699

    Article  PubMed  Google Scholar 

  46. Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T, Burkhardt U, Proksch B et al (2009) Intranasal delivery of cells to the brain. Eur J Cell Biol 88:315–324

    Article  CAS  PubMed  Google Scholar 

  47. Danielyan L, Beer-Hammer S, Stolzing A, Schäfer R, Siegel G, Fabian C, Kahle P, Biedermann T et al (2014) Intranasal delivery of bone marrow derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer’s and Parkinson’s disease. Cell Transplant 23(Supp 1):123–139

    Article  Google Scholar 

  48. Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Bernhard F, Verleysdonk S, Buadze M, Lourhmati A, Klopfer T et al (2011) Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res 14:3–16

    Article  CAS  PubMed  Google Scholar 

  49. Wu S, Li K, Yan Y, Gran B, Han Y, Zhou F, Guan YT, Rostami A, Zhang GX (2013) Intranasal delivery of neural stem cells: a CNS-specific, non-invasive cell-based therapy for experimental autoimmune encephalomyelitis. J Clin Cell Immunol 4(3). doi:10.4172/2155-9899.1000142

  50. Gu S, Huang H, Bi J, Yao Y, Wen T (2009) Combined treatment of neurotrophin-3 gene and neural stem cells is ameliorative to behavior recovery of Parkinson’s disease rat model. Brain Res 1257:1–9

    Article  CAS  PubMed  Google Scholar 

  51. Srijaya TC, Ramasamy TS, Kasim NH (2014) Advancing stem cell therapy from bench to bedside: lessons from drug therapies. J Transl Med 12:243

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang L, Wei FX, Cen JS, Ping SN, Li ZQ, Chen NN, Cui SB, Wan Y et al (2014) Early administration of tumor necrosis factor-alpha antagonist promotes survival of transplanted neural stem cells and axon myelination after spinal cord injury in rats. Brain Res 1575:87–100

    Article  CAS  PubMed  Google Scholar 

  53. Tönges L, Frank T, Tatenhorst L, Saal KA, Koch JC, Szego ÉM, Bähr M, Weishaupt JH et al (2012) Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson’s disease. Brain 135(Pt 11):3355–3370

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhao YF, Zhang Q, Xi JY, Li YH, Ma CG, Xiao BG (2015) Multitarget intervention of Fasudil in the neuroprotection ofdopaminergic neurons in MPTP-mouse model of Parkinson’s disease. J Neurol Sci 353(1–2):28–37

    Article  CAS  PubMed  Google Scholar 

  55. Borrajo A, Rodriguez-Perez AI, Villar-Cheda B, Guerra MJ, Labandeira-Garcia JL (2014) Inhibition of the microglial response is essential for the neuroprotective effects of Rho-Kinase inhibitors on MPTP-induced dopaminergic cell death. Neuropharmacology 85:1–8

    Article  CAS  PubMed  Google Scholar 

  56. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  CAS  PubMed  Google Scholar 

  57. Neher JJ, Neniskyte U, Zhao JW, Bal-Price A, Tolkovsky AM, Brown GC (2012) Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 186:4973–4983

    Article  Google Scholar 

  58. McAllister AK, van de Water J (2009) Breaking boundaries in neural-immune interactions. Neuron 64:9–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma K, Wu HY, Zhang B, He X, Li BX (2015) Neurotoxicity effects of atrazine-induced SH-SY5Y human dopaminergic neuroblastoma cells via microglial activation. Mol Biosyst 11(11):2915–2924

    Article  CAS  PubMed  Google Scholar 

  60. Zhang B, Ma K, Li B (2015) Inflammatory reaction regulated by microglia plays a role in atrazine-induced dopaminergic neuron degeneration in thesubstantia nigra. J Toxicol Sci 40:437–50

    Article  CAS  PubMed  Google Scholar 

  61. Bai L, Zhang X, Li X, Liu N, Lou F, Ma H, Luo X, Ren Y (2015) Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia. Mol Med Rep 12(1):1002–1008

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cui Q, Li X, Zhu H (2016) Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway. Mol Med Rep 13(2):1381–1388

  63. Jing X, Wei X, Ren M, Wang L, Zhang X, Lou H (2016) Neuroprotective Effects of Tanshinone I Against 6-OHDA-Induced Oxidative Stress in Cellular and Mouse Model of Parkinson’s Disease Through Upregulating Nrf2. Neurochem Res 41(4):779–786

  64. Tsou YH, Shih CT, Ching CH, Huang JY, Jen CJ, Yu L, Kuo YM, Wu FS et al (2015) Treadmill exercise activates Nrf2 antioxidant system to protect the nigrostriatal dopaminergic neurons from MPP+ toxicity. Exp Neurol 263:50–62

    Article  CAS  PubMed  Google Scholar 

  65. Xu X, Song N, Wang R, Jiang H, Xie J (2015) Preferential Heme Oxygenase-1 Activation in Striatal Astrocytes Antagonizes Dopaminergic Neuron Degeneration in MPTP-Intoxicated Mice. Mol Neurobiol. doi:10.1007/s12035-015-9437-2

  66. Bae J, Lee D, Kim YK, Gil M, Lee JY, Lee KJ (2013) Berberine protects 6-hydroxydopamine-induced humandopaminergic neuronal cell death through the induction ofheme oxygenase-1. Mol Cells 35(2):151–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Youn JK, Kim DW, Kim ST, Park SY, Yeo EJ, Choi YJ, Lee HR, Kim DS et al (2014) PEP-1-HO-1 prevents MPTP-induced degeneration ofdopaminergic neurons in a Parkinson’s disease mouse model. BMB Rep 47(10):569–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang N, Shu HY, Huang T, Zhang QL, Li D, Zhang GQ, Peng XY, Liu CF et al (2014) Nrf2 signaling contributes to the neuroprotective effects of urate against 6-OHDA toxicity. PLoS One 9(6), e100286

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wild AR, Bollands M, Morris PG, Jones S (2015) Mechanisms regulating spill-over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigradopaminergic neurons. Eur J Neurosci 42(9):2633–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Standaert DG, Testa CM, Young AB, Penney JB (1994) Organization of N-methyl-D-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J Comp Neurol 343(1):1–16

    Article  CAS  PubMed  Google Scholar 

  71. Nandhu MS, Paul J, Kuruvilla KP, Malat A, Romeo C, Paulose CS (2011) Enhanced glutamate, IP3 and cAMP activity in the cerebral cortex of unilateral 6-hydroxydopamine induced Parkinson’s rats: effect of 5-HT, GABA and bone marrow cell supplementation. J Biomed Sci 18:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rao VL, Bowen KK, Dempsey RJ (2001) Transient focal cerebral ischemia down-regulates glutamate transporters GLT-1 and EAAC1 expression in rat brain. Neurochem Res 26(5):497–502

    Article  CAS  PubMed  Google Scholar 

  73. Truong L, Allbutt HN, Coster MJ, Kassiou M, Henderson JM (2009) Behavioural effects of a selective NMDA NR1A/2B receptor antagonist in rats with unilateral 6-OHDA+parafascicular lesions. Brain Res Bull 78(2–3):91–96

    Article  CAS  PubMed  Google Scholar 

  74. Schroeter A, Wen S, Mölders A, Erlenhardt N, Stein V, Klöcker N (2015) Depletion of the AMPAR reserve pool impairs synaptic plasticityin a model of hepatic encephalopathy. Mol Cell Neurosci 68:331–339

    Article  CAS  PubMed  Google Scholar 

  75. Lee CY, Lee CH, Shih CC, Liou HH (2008) Paraquat inhibits postsynaptic AMPA receptors ondopaminergic neurons in the substantia nigra pars compacta. Biochem Pharmacol 76(9):1155–1164

    Article  CAS  PubMed  Google Scholar 

  76. He Y, Lee T, Leong SK (1998) Effect of 6-OHDA injection on the AMPA glutamate receptorsubunits in the substantia nigra of Sprague–Dawley rats. Neurosci Lett 241(1):1–4

    Article  CAS  PubMed  Google Scholar 

  77. Huie JR, Stuck ED, Lee KH, Irvine KA, Beattie MS, Bresnahan JC, Grau JW, Ferguson AR (2015) AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury. eNeuro 2(5). doi:10.1523/ENEURO.0091-15.2015

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81501198, No. 81371414, No. 81272163) and by grants from the Department of Science and Technology, Shanxi Province of China (No. 2013081058). We thank Katherine Regan for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bao-Guo Xiao or Cun-gen Ma.

Ethics declarations

Conflict of Interest

None of the authors have any potential financial conflict of interest related to this manuscript.

Additional information

Yan-Hua Li and Jing-Wen Yu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YH., Yu, JW., Xi, JY. et al. Fasudil Enhances Therapeutic Efficacy of Neural Stem Cells in the Mouse Model of MPTP-Induced Parkinson’s Disease. Mol Neurobiol 54, 5400–5413 (2017). https://doi.org/10.1007/s12035-016-0027-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0027-8

Keywords

Navigation