Advertisement

Molecular Neurobiology

, Volume 54, Issue 1, pp 101–114 | Cite as

Close Encounters of the First Kind: Innate Sensors and Multiple Sclerosis

  • Lidia Fernández-Paredes
  • Rebeca Pérez de Diego
  • Clara de Andrés
  • Silvia Sánchez-Ramón
Article

Abstract

Although autoimmune diseases by definition imply adaptive immune system pathologies, growing evidence points to the relevance of innate receptors in modulating the initiation and progression of the autoreactive response. Multiple sclerosis (MS) is a chronic autoimmune disease characterised by central nervous system (CNS) demyelination, inflammation and axonal damage, in which the role of several pathogens such as herpes viruses have long been described as potential triggers. Encounters of these pathogens with altered innate receptors in susceptible individuals might drive pathological autoreactivity and inflammation, overcoming tolerance and causing subsequent CNS damage. In particular, functional and genetic studies reveal that Toll-like receptor (TLR) 2 and the Nod-like receptor (NLR) P3 could be involved in MS pathogenesis, whereas TLR3, the triggering receptor expressed on myeloid cells (TREM)-2 and the C-type lectin receptors (CLRs) MBL and MASP-3 would have a putative protective role. A better understanding of these interactions will provide important insights into the aetiopathogenesis of MS and could help design potential targets for novel therapies.

Keywords

Multiple sclerosis Pattern recognition receptors (PRRs) Pathogen-associated molecular patterns (PAMPs) Innate immunity Infectious Dysregulation 

Notes

Acknowledgments

This study was supported by the FEDER-FIS, Fondo de Investigación Sanitaria of the Spanish Health, Social Services and Equality Ministry (FIS project #PI12/02759), the Ramon Areces Foundation, grant XVII Concurso Nacional de Ayudas a la Investigación and FIS grant Ref. PI14/00616; R.P.D. is supported by the “Ramon y Cajal” program (MINECO, Spain). We are grateful to Marina Lorne for her assistance with figure design.

Conflict of interest

The authors state no conflicts of interest.

References

  1. 1.
    Piccinini AM, Midwood KS (2011) DAMPening inflammation by modulating TLR signalling. Mediators Inflamm 2010Google Scholar
  2. 2.
    Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857):732–738PubMedCrossRefGoogle Scholar
  3. 3.
    Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745PubMedCrossRefGoogle Scholar
  4. 4.
    Takeuchi O, Kawai T, Sanjo H, Copeland NG, Gilbert DJ, Jenkins NA, Takeda K, Akira S (1999) TLR6: a novel member of an expanding toll-like receptor family. Gene 231(1–2):59–65PubMedCrossRefGoogle Scholar
  5. 5.
    Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10(12):1366–1373PubMedCrossRefGoogle Scholar
  6. 6.
    Akira S, Sato S (2003) Toll-like receptors and their signaling mechanisms. Scand J Infect Dis 35(9):555–562PubMedCrossRefGoogle Scholar
  7. 7.
    Galdiero M, Galdiero M, Finamore E, Rossano F, Gambuzza M, Catania MR, Teti G, Midiri A et al (2004) Haemophilus influenzae porin induces Toll-like receptor 2-mediated cytokine production in human monocytes and mouse macrophages. Infect Immun 72(2):1204–1209PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    WHO (2008) Atlas: multiple sclerosis resources in the world 2008Google Scholar
  9. 9.
    Milo R, Kahana E (2010) Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmun Rev 9(5):A387–A394PubMedCrossRefGoogle Scholar
  10. 10.
    Schmidt H, Williamson D, Ashley-Koch A (2007) HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am J Epidemiol 165(10):1097–1109PubMedCrossRefGoogle Scholar
  11. 11.
    Ascherio A (2013) Environmental factors in multiple sclerosis. Expert Rev Neurother 13(12 Suppl):3–9PubMedCrossRefGoogle Scholar
  12. 12.
    Rahal EA, Hajjar H, Rajeh M, Yamout B, Abdelnoor AM (2015) Epstein-Barr virus and human herpes virus 6 type a DNA enhance IL-17 production in mice. Viral Immunol 28(5):297–302PubMedCrossRefGoogle Scholar
  13. 13.
    Sharma S, Rajasagi NK, Veiga-Parga T, Rouse BT (2014) Herpes virus entry mediator (HVEM) modulates proliferation and activation of regulatory T cells following HSV-1 infection. Microbes Infect 16(8):648–660PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ascherio A, Munger KL, Lennette ET, Spiegelman D, Hernan MA, Olek MJ, Hankinson SE, Hunter DJ (2001) Epstein-Barr virus antibodies and risk of multiple sclerosis: a prospective study. JAMA 286(24):3083–3088PubMedCrossRefGoogle Scholar
  15. 15.
    Levin LI, Munger KL, Rubertone MV, Peck CA, Lennette ET, Spiegelman D, Ascherio A (2005) Temporal relationship between elevation of Epstein-Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA 293(20):2496–2500PubMedCrossRefGoogle Scholar
  16. 16.
    Lunemann JD, Edwards N, Muraro PA, Hayashi S, Cohen JI, Munz C, Martin R (2006) Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 129(Pt 6):1493–1506PubMedCrossRefGoogle Scholar
  17. 17.
    Ablashi DV, Balachandran N, Josephs SF, Hung CL, Krueger GR, Kramarsky B, Salahuddin SZ, Gallo RC (1991) Genomic polymorphism, growth properties, and immunologic variations in human herpesvirus-6 isolates. Virology 184(2):545–552PubMedCrossRefGoogle Scholar
  18. 18.
    Ablashi DV, Lapps W, Kaplan M, Whitman JE, Richert JR, Pearson GR (1998) Human Herpesvirus-6 (HHV-6) infection in multiple sclerosis: a preliminary report. Mult Scler 4(6):490–496PubMedCrossRefGoogle Scholar
  19. 19.
    Ablashi DV, Marsh S, Kaplan M, Whitman JE Jr, Pearson GR (1998) HHV-6 infection in HIV-infected asymptomatic and AIDS patients. Intervirology 41(1):1–9PubMedCrossRefGoogle Scholar
  20. 20.
    Braun DK, Dominguez G, Pellett PE (1997) Human herpesvirus 6. Clin Microbiol Rev 10(3):521–567PubMedPubMedCentralGoogle Scholar
  21. 21.
    Challoner PB, Smith KT, Parker JD, MacLeod DL, Coulter SN, Rose TM, Schultz ER, Bennett JL et al (1995) Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci U S A 92(16):7440–7444PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Yamanishi K (1992) Human herpesvirus 6. Microbiol Immunol 36(6):551–561PubMedCrossRefGoogle Scholar
  23. 23.
    Alvarez-Lafuente R, De las Heras V, Bartolome M, Picazo JJ, Arroyo R (2004) Relapsing-remitting multiple sclerosis and human herpesvirus 6 active infection. Arch Neurol 61(10):1523–1527PubMedCrossRefGoogle Scholar
  24. 24.
    Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R et al (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192(3):393–404PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Jacobsen M, Cepok S, Quak E, Happel M, Gaber R, Ziegler A, Schock S, Oertel WH et al (2002) Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 125(Pt 3):538–550PubMedCrossRefGoogle Scholar
  26. 26.
    Simpson S Jr, Taylor B, Dwyer DE, Taylor J, Blizzard L, Ponsonby AL, Pittas F, Dwyer T et al (2012) Anti-HHV-6 IgG titer significantly predicts subsequent relapse risk in multiple sclerosis. Mult Scler 18(6):799–806PubMedCrossRefGoogle Scholar
  27. 27.
    Soldan SS, Berti R, Salem N, Secchiero P, Flamand L, Calabresi PA, Brennan MB, Maloni HW et al (1997) Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nat Med 3(12):1394–1397PubMedCrossRefGoogle Scholar
  28. 28.
    Murakami Y, Tanimoto K, Fujiwara H, An J, Suemori K, Ochi T, Hasegawa H, Yasukawa M (2010) Human herpesvirus 6 infection impairs Toll-like receptor signaling. Virol J 7:91PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sotelo J, Corona T (2011) Varicella zoster virus and relapsing remitting multiple sclerosis. Mult Scler Int 2011:214763PubMedPubMedCentralGoogle Scholar
  30. 30.
    Ordonez G, Martinez-Palomo A, Corona T, Pineda B, Flores-Rivera J, Gonzalez A, Chavez-Munguia B, Sotelo J (2010) Varicella zoster virus in progressive forms of multiple sclerosis. Clin Neurol Neurosurg 112(8):653–657PubMedCrossRefGoogle Scholar
  31. 31.
    Pucci E, Taus C, Cartechini E, Morelli M, Giuliani G, Clementi M, Menzo S (2000) Lack of Chlamydia infection of the central nervous system in multiple sclerosis. Ann Neurol 48(3):399–400PubMedCrossRefGoogle Scholar
  32. 32.
    Sriram S, Stratton CW, Yao S, Tharp A, Ding L, Bannan JD, Mitchell WM (1999) Chlamydia pneumoniae infection of the central nervous system in multiple sclerosis. Ann Neurol 46(1):6–14PubMedCrossRefGoogle Scholar
  33. 33.
    Correale J, Farez M (2007) Monocyte-derived dendritic cells in multiple sclerosis: the effect of bacterial infection. J Neuroimmunol 190(1–2):177–189PubMedCrossRefGoogle Scholar
  34. 34.
    Herrmann I, Kellert M, Spreer A, Gerber J, Eiffert H, Prinz M, Nau R (2007) Minocycline delays but does not attenuate the course of experimental autoimmune encephalomyelitis in Streptococcus pneumoniae-infected mice. J Antimicrob Chemother 59(1):74–79PubMedCrossRefGoogle Scholar
  35. 35.
    Smits HH, Everts B, Hartgers FC, Yazdanbakhsh M (2010) Chronic helminth infections protect against allergic diseases by active regulatory processes. Curr Allergy Asthma Rep 10(1):3–12PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lunemann JD, Jelcic I, Roberts S, Lutterotti A, Tackenberg B, Martin R, Munz C (2008) EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J Exp Med 205(8):1763–1773PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Serafini B, Rosicarelli B, Franciotta D, Magliozzi R, Reynolds R, Cinque P, Andreoni L, Trivedi P et al (2007) Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med 204(12):2899–2912PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Blander JM, Torchinsky MB, Campisi L (2012) Revisiting the old link between infection and autoimmune disease with commensals and T helper 17 cells. Immunol Res 54(1–3):50–68PubMedCrossRefGoogle Scholar
  39. 39.
    Fujinami RS, Oldstone MB, Wroblewska Z, Frankel ME, Koprowski H (1983) Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments. Proc Natl Acad Sci U S A 80(8):2346–2350PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Fujinami RS, von Herrath MG, Christen U, Whitton JL (2006) Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev 19(1):80–94PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Oldstone MB (1987) Molecular mimicry and autoimmune disease. Cell 50(6):819–820PubMedCrossRefGoogle Scholar
  42. 42.
    Vanderlugt CJ, Miller SD (1996) Epitope spreading. Curr Opin Immunol 8(6):831–836PubMedCrossRefGoogle Scholar
  43. 43.
    Pender MP (2003) Infection of autoreactive B lymphocytes with EBV, causing chronic autoimmune diseases. Trends Immunol 24(11):584–588PubMedCrossRefGoogle Scholar
  44. 44.
    Peltier DC, Simms A, Farmer JR, Miller DJ (2010) Human neuronal cells possess functional cytoplasmic and TLR-mediated innate immune pathways influenced by phosphatidylinositol-3 kinase signaling. J Immunol 184(12):7010–7021PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bsibsi M, Persoon-Deen C, Verwer RW, Meeuwsen S, Ravid R, Van Noort JM (2006) Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 53(7):688–695PubMedCrossRefGoogle Scholar
  46. 46.
    Kim H, Yang E, Lee J, Kim SH, Shin JS, Park JY, Choi SJ, Kim SJ et al (2008) Double-stranded RNA mediates interferon regulatory factor 3 activation and interleukin-6 production by engaging Toll-like receptor 3 in human brain astrocytes. Immunology 124(4):480–488PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    McCarthy DP, Richards MH, Miller SD (2012) Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler’s virus-induced demyelinating disease. Methods Mol Biol 900:381–401PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Cook SD, Dowling PC (1980) Multiple sclerosis and viruses: an overview. Neurology 30(7 Pt 2):80–91PubMedCrossRefGoogle Scholar
  49. 49.
    Touil T, Fitzgerald D, Zhang GX, Rostami A, Gran B (2006) Cutting Edge: TLR3 stimulation suppresses experimental autoimmune encephalomyelitis by inducing endogenous IFN-beta. J Immunol 177(11):7505–7509PubMedCrossRefGoogle Scholar
  50. 50.
    Ellestad KK, Tsutsui S, Noorbakhsh F, Warren KG, Yong VW, Pittman QJ, Power C (2009) Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells. J Immunol 183(1):298–309PubMedCrossRefGoogle Scholar
  51. 51.
    Marta M, Andersson A, Isaksson M, Kampe O, Lobell A (2008) Unexpected regulatory roles of TLR4 and TLR9 in experimental autoimmune encephalomyelitis. Eur J Immunol 38(2):565–575PubMedCrossRefGoogle Scholar
  52. 52.
    Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL (2006) Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol 177(4):2051–2055PubMedCrossRefGoogle Scholar
  53. 53.
    Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P (2007) Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol 37(5):1290–1301PubMedCrossRefGoogle Scholar
  54. 54.
    Takahashi K, Rochford CD, Neumann H (2005) Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 201(4):647–657PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Turnbull IR, Gilfillan S, Cella M, Aoshi T, Miller M, Piccio L, Hernandez M, Colonna M (2006) Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 177(6):3520–3524PubMedCrossRefGoogle Scholar
  56. 56.
    Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, Luo NL, Banine F et al (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11(9):966–972PubMedGoogle Scholar
  57. 57.
    Hanafy KA, Sloane JA (2011) Regulation of remyelination in multiple sclerosis. FEBS Lett 585(23):3821–3828PubMedCrossRefGoogle Scholar
  58. 58.
    Sloane JA, Batt C, Ma Y, Harris ZM, Trapp B, Vartanian T (2010) Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci U S A 107(25):11555–11560PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Soulika AM, Lee E, McCauley E, Miers L, Bannerman P, Pleasure D (2009) Initiation and progression of axonopathy in experimental autoimmune encephalomyelitis. J Neurosci 29(47):14965–14979PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173(6):3916–3924PubMedCrossRefGoogle Scholar
  61. 61.
    Clatch RJ, Miller SD, Metzner R, Dal Canto MC, Lipton HL (1990) Monocytes/macrophages isolated from the mouse central nervous system contain infectious Theiler’s murine encephalomyelitis virus (TMEV). Virology 176(1):244–254PubMedCrossRefGoogle Scholar
  62. 62.
    Dal Canto MC, Lipton HL (1975) Primary demyelination in Theiler’s virus infection. An ultrastructural study. Lab Invest 33(6):626–637PubMedGoogle Scholar
  63. 63.
    Olson JK (2014) Effect of the innate immune response on development of Theiler’s murine encephalomyelitis virus-induced demyelinating disease. J Neurovirol 20(5):427–436PubMedCrossRefGoogle Scholar
  64. 64.
    Singh MK, Scott TF, LaFramboise WA, Hu FZ, Post JC, Ehrlich GD (2007) Gene expression changes in peripheral blood mononuclear cells from multiple sclerosis patients undergoing beta-interferon therapy. J Neurol Sci 258(1–2):52–59PubMedCrossRefGoogle Scholar
  65. 65.
    Wolf NA, Amouzegar TK, Swanborg RH (2007) Synergistic interaction between Toll-like receptor agonists is required for induction of experimental autoimmune encephalomyelitis in Lewis rats. J Neuroimmunol 185(1–2):115–122PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61(11):1013–1021PubMedCrossRefGoogle Scholar
  67. 67.
    Saresella M, Gatti A, Tortorella P, Marventano I, Piancone F, La Rosa F, Caputo D, Rovaris M et al (2014) Toll-like receptor 3 differently modulates inflammation in progressive or benign multiple sclerosis. Clin Immunol 150(1):109–120PubMedCrossRefGoogle Scholar
  68. 68.
    Derkow K, Bauer JM, Hecker M, Paap BK, Thamilarasan M, Koczan D, Schott E, Deuschle K et al (2013) Multiple sclerosis: modulation of toll-like receptor (TLR) expression by interferon-beta includes upregulation of TLR7 in plasmacytoid dendritic cells. PLoS One 8(8), e70626PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Johnson TP, Tyagi R, Patel K, Schiess N, Calabresi PA, Nath A (2013) Impaired toll-like receptor 8 signaling in multiple sclerosis. J Neuroinflammation 10:74PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wandstrat A, Wakeland E (2001) The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nat Immunol 2(9):802–809PubMedCrossRefGoogle Scholar
  71. 71.
    Christensen T, Petersen T, Thiel S, Brudek T, Ellermann-Eriksen S, Moller-Larsen A (2007) Gene-environment interactions in multiple sclerosis: innate and adaptive immune responses to human endogenous retrovirus and herpesvirus antigens and the lectin complement activation pathway. J Neuroimmunol 183(1–2):175–188PubMedCrossRefGoogle Scholar
  72. 72.
    Piccio L, Buonsanti C, Cella M, Tassi I, Schmidt RE, Fenoglio C, Rinker J 2nd, Naismith RT et al (2008) Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain 131(Pt 11):3081–3091PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Blasius AL, Cella M, Maldonado J, Takai T, Colonna M (2006) Siglec-H is an IPC-specific receptor that modulates type I IFN secretion through DAP12. Blood 107(6):2474–2476PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Watarai H, Sekine E, Inoue S, Nakagawa R, Kaisho T, Taniguchi M (2008) PDC-TREM, a plasmacytoid dendritic cell-specific receptor, is responsible for augmented production of type I interferon. Proc Natl Acad Sci U S A 105(8):2993–2998PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Hayward JH, Lee SJ (2014) A decade of research on TLR2 discovering its pivotal role in glial activation and neuroinflammation in neurodegenerative diseases. Exp Neurobiol 23(2):138–147PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rajbhandari L, Tegenge MA, Shrestha S, Ganesh Kumar N, Malik A, Mithal A, Hosmane S, Venkatesan A (2014) Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons. Glia 62(12):1982–1991PubMedCrossRefGoogle Scholar
  77. 77.
    Andersson A, Covacu R, Sunnemark D, Danilov AI, Dal Bianco A, Khademi M, Wallstrom E, Lobell A et al (2008) Pivotal advance: HMGB1 expression in active lesions of human and experimental multiple sclerosis. J Leukoc Biol 84(5):1248–1255PubMedCrossRefGoogle Scholar
  78. 78.
    Swanberg M, Lidman O, Padyukov L, Eriksson P, Akesson E, Jagodic M, Lobell A, Khademi M et al (2005) MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet 37(5):486–494PubMedCrossRefGoogle Scholar
  79. 79.
    Martinez A, Sanchez-Lopez M, Varade J, Mas A, Martin MC, de Las Heras V, Arroyo R, Mendoza JL et al (2007) Role of the MHC2TA gene in autoimmune diseases. Ann Rheum Dis 66(3):325–329PubMedCrossRefGoogle Scholar
  80. 80.
    Willingham SB, Allen IC, Bergstralh DT, Brickey WJ, Huang MT, Taxman DJ, Duncan JA, Ting JP (2009) NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol 183(3):2008–2015PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Guo B, Chang EY, Cheng G (2008) The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J Clin Invest 118(5):1680–1690PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Dann A, Poeck H, Croxford AL, Gaupp S, Kierdorf K, Knust M, Pfeifer D, Maihoefer C et al (2011) Cytosolic RIG-I-like helicases act as negative regulators of sterile inflammation in the CNS. Nat Neurosci 15(1):98–106PubMedCrossRefGoogle Scholar
  83. 83.
    Kalinke U, Prinz M (2012) Endogenous, or therapeutically induced, type I interferon responses differentially modulate Th1/Th17-mediated autoimmunity in the CNS. Immunol Cell Biol 90(5):505–509PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Yan Y, Zhang GX, Gran B, Fallarino F, Yu S, Li H, Cullimore ML, Rostami A et al (2010) IDO upregulates regulatory T cells via tryptophan catabolite and suppresses encephalitogenic T cell responses in experimental autoimmune encephalomyelitis. J Immunol 185(10):5953–5961PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Herrmann I, Kellert M, Schmidt H, Mildner A, Hanisch UK, Bruck W, Prinz M, Nau R (2006) Streptococcus pneumoniae Infection aggravates experimental autoimmune encephalomyelitis via Toll-like receptor 2. Infect Immun 74(8):4841–4848PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Visser L, Jan de Heer H, Boven LA, van Riel D, van Meurs M, Melief MJ, Zahringer U, van Strijp J et al (2005) Proinflammatory bacterial peptidoglycan as a cofactor for the development of central nervous system autoimmune disease. J Immunol 174(2):808–816PubMedCrossRefGoogle Scholar
  87. 87.
    Aloisi F, Serafini B, Magliozzi R, Howell OW, Reynolds R (2010) Detection of Epstein-Barr virus and B-cell follicles in the multiple sclerosis brain: what you find depends on how and where you look. Brain 133(Pt 12), e157PubMedCrossRefGoogle Scholar
  88. 88.
    Reynolds JM, Pappu BP, Peng J, Martinez GJ, Zhang Y, Chung Y, Ma L, Yang XO et al (2010) Toll-like receptor 2 signaling in CD4(+) T lymphocytes promotes T helper 17 responses and regulates the pathogenesis of autoimmune disease. Immunity 32(5):692–702PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Reynolds JM, Martinez GJ, Chung Y, Dong C (2012) Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc Natl Acad Sci U S A 109(32):13064–13069PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Mellanby RJ, Cambrook H, Turner DG, O’Connor RA, Leech MD, Kurschus FC, MacDonald AS, Arnold B et al (2012) TLR-4 ligation of dendritic cells is sufficient to drive pathogenic T cell function in experimental autoimmune encephalomyelitis. J Neuroinflammation 9:248PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Prinz M, Garbe F, Schmidt H, Mildner A, Gutcher I, Wolter K, Piesche M, Schroers R et al (2006) Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J Clin Invest 116(2):456–464PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Gris D, Ye Z, Iocca HA, Wen H, Craven RR, Gris P, Huang M, Schneider M et al (2010) NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J Immunol 185(2):974–981PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Inoue M, Williams KL, Gunn MD, Shinohara ML (2012) NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 109(26):10480–10485PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Furlan R, Martino G, Galbiati F, Poliani PL, Smiroldo S, Bergami A, Desina G, Comi G et al (1999) Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. J Immunol 163(5):2403–2409PubMedGoogle Scholar
  95. 95.
    Jacobs CA, Baker PE, Roux ER, Picha KS, Toivola B, Waugh S, Kennedy MK (1991) Experimental autoimmune encephalomyelitis is exacerbated by IL-1 alpha and suppressed by soluble IL-1 receptor. J Immunol 146(9):2983–2989PubMedGoogle Scholar
  96. 96.
    Lampropoulou V, Hoehlig K, Roch T, Neves P, Calderon Gomez E, Sweenie CH, Hao Y, Freitas AA et al (2008) TLR-activated B cells suppress T cell-mediated autoimmunity. J Immunol 180(7):4763–4773PubMedCrossRefGoogle Scholar
  97. 97.
    Bar-Or A, Fawaz L, Fan B, Darlington PJ, Rieger A, Ghorayeb C, Calabresi PA, Waubant E et al (2010) Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol 67(4):452–461PubMedCrossRefGoogle Scholar
  98. 98.
    Hirotani M, Niino M, Fukazawa T, Kikuchi S, Yabe I, Hamada S, Tajima Y, Sasaki H (2010) Decreased IL-10 production mediated by Toll-like receptor 9 in B cells in multiple sclerosis. J Neuroimmunol 221(1–2):95–100PubMedCrossRefGoogle Scholar
  99. 99.
    Ayyoub M, Deknuydt F, Raimbaud I, Dousset C, Leveque L, Bioley G, Valmori D (2009) Human memory FOXP3+ Tregs secrete IL-17 ex vivo and constitutively express the T(H)17 lineage-specific transcription factor RORgamma t. Proc Natl Acad Sci U S A 106(21):8635–8640PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Bach JF (2005) Infections and autoimmune diseases. J Autoimmun 25(Suppl):74–80PubMedCrossRefGoogle Scholar
  101. 101.
    Beriou G, Costantino CM, Ashley CW, Yang L, Kuchroo VK, Baecher-Allan C, Hafler DA (2009) IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113(18):4240–4249PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Liu H, Komai-Koma M, Xu D, Liew FY (2006) Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc Natl Acad Sci U S A 103(18):7048–7053PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, Parizot C, Taflin C et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30(6):899–911PubMedCrossRefGoogle Scholar
  104. 104.
    Nyirenda MH, Sanvito L, Darlington PJ, O’Brien K, Zhang GX, Constantinescu CS, Bar-Or A, Gran B (2011) TLR2 stimulation drives human naive and effector regulatory T cells into a Th17-like phenotype with reduced suppressive function. J Immunol 187(5):2278–2290PubMedCrossRefGoogle Scholar
  105. 105.
    Sutmuller RP, den Brok MH, Kramer M, Bennink EJ, Toonen LW, Kullberg BJ, Joosten LA, Akira S et al (2006) Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116(2):485–494PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Sutmuller RP, Morgan ME, Netea MG, Grauer O, Adema GJ (2006) Toll-like receptors on regulatory T cells: expanding immune regulation. Trends Immunol 27(8):387–393PubMedCrossRefGoogle Scholar
  107. 107.
    Mercier BC, Cottalorda A, Coupet CA, Marvel J, Bonnefoy-Berard N (2009) TLR2 engagement on CD8 T cells enables generation of functional memory cells in response to a suboptimal TCR signal. J Immunol 182(4):1860–1867PubMedCrossRefGoogle Scholar
  108. 108.
    Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175(7):4320–4330PubMedCrossRefGoogle Scholar
  109. 109.
    Li Y, Chu N, Hu A, Gran B, Rostami A, Zhang GX (2007) Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain 130(Pt 2):490–501PubMedCrossRefGoogle Scholar
  110. 110.
    de Jong BA, Huizinga TW, Bollen EL, Uitdehaag BM, Bosma GP, van Buchem MA, Remarque EJ, Burgmans AC et al (2002) Production of IL-1beta and IL-1Ra as risk factors for susceptibility and progression of relapse-onset multiple sclerosis. J Neuroimmunol 126(1–2):172–179PubMedCrossRefGoogle Scholar
  111. 111.
    Huang WX, Huang P, Hillert J (2004) Increased expression of caspase-1 and interleukin-18 in peripheral blood mononuclear cells in patients with multiple sclerosis. Mult Scler 10(5):482–487PubMedCrossRefGoogle Scholar
  112. 112.
    Schrijver HM, Crusius JB, Uitdehaag BM, Garcia Gonzalez MA, Kostense PJ, Polman CH, Pena AS (1999) Association of interleukin-1beta and interleukin-1 receptor antagonist genes with disease severity in MS. Neurology 52(3):595–599PubMedCrossRefGoogle Scholar
  113. 113.
    Zhang X, Jin J, Tang Y, Speer D, Sujkowska D, Markovic-Plese S (2009) IFN-beta1a inhibits the secretion of Th17-polarizing cytokines in human dendritic cells via TLR7 up-regulation. J Immunol 182(6):3928–3936PubMedCrossRefGoogle Scholar
  114. 114.
    Fernald GH, Knott S, Pachner A, Caillier SJ, Narayan K, Oksenberg JR, Mousavi P, Baranzini SE (2007) Genome-wide network analysis reveals the global properties of IFN-beta immediate transcriptional effects in humans. J Immunol 178(8):5076–5085PubMedCrossRefGoogle Scholar
  115. 115.
    Bustamante MF, Fissolo N, Rio J, Espejo C, Costa C, Mansilla MJ, Lizasoain I, Moro MA et al (2011) Implication of the Toll-like receptor 4 pathway in the response to interferon-beta in multiple sclerosis. Ann Neurol 70(4):634–645PubMedCrossRefGoogle Scholar
  116. 116.
    Aung LL, Fitzgerald-Bocarsly P, Dhib-Jalbut S, Balashov K (2010) Plasmacytoid dendritic cells in multiple sclerosis: chemokine and chemokine receptor modulation by interferon-beta. J Neuroimmunol 226(1–2):158–164PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Balashov KE, Aung LL, Vaknin-Dembinsky A, Dhib-Jalbut S, Weiner HL (2010) Interferon-beta inhibits toll-like receptor 9 processing in multiple sclerosis. Ann Neurol 68(6):899–906PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Coccia EM, Severa M, Giacomini E, Monneron D, Remoli ME, Julkunen I, Cella M, Lande R et al (2004) Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol 34(3):796–805PubMedCrossRefGoogle Scholar
  119. 119.
    Hundeshagen A, Hecker M, Paap BK, Angerstein C, Kandulski O, Fatum C, Hartmann C, Koczan D et al (2012) Elevated type I interferon-like activity in a subset of multiple sclerosis patients: molecular basis and clinical relevance. J Neuroinflammation 9:140PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306PubMedCrossRefGoogle Scholar
  121. 121.
    Inoue M, Shinohara ML (2013) The role of interferon-beta in the treatment of multiple sclerosis and experimental autoimmune encephalomyelitis - in the perspective of inflammasomes. Immunology 139(1):11–18PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Enevold C, Oturai AB, Sorensen PS, Ryder LP, Koch-Henriksen N, Bendtzen K (2010) Polymorphisms of innate pattern recognition receptors, response to interferon-beta and development of neutralizing antibodies in multiple sclerosis patients. Mult Scler 16(8):942–949PubMedCrossRefGoogle Scholar
  123. 123.
    Hayashi T, Gray CS, Chan M, Tawatao RI, Ronacher L, McGargill MA, Datta SK, Carson DA et al (2009) Prevention of autoimmune disease by induction of tolerance to Toll-like receptor 7. Proc Natl Acad Sci U S A 106(8):2764–2769PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    O’Brien K, Fitzgerald D, Rostami A, Gran B (2010) The TLR7 agonist, imiquimod, increases IFN-beta production and reduces the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 221(1–2):107–111PubMedCrossRefGoogle Scholar
  125. 125.
    Al-Katib A, Arnold AA, Aboukameel A, Sosin A, Smith P, Mohamed AN, Beck FW, Mohammad RM (2010) I-kappa-kinase-2 (IKK-2) inhibition potentiates vincristine cytotoxicity in non-Hodgkin’s lymphoma. Mol Cancer 9:228PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Connolly DJ, O’Neill LA (2012) New developments in Toll-like receptor targeted therapeutics. Curr Opin Pharmacol 12(4):510–518PubMedCrossRefGoogle Scholar
  127. 127.
    O’Neill LA, Bryant CE, Doyle SL (2009) Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev 61(2):177–197PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791PubMedCrossRefGoogle Scholar
  129. 129.
    Smith CM, Wilson NS, Waithman J, Villadangos JA, Carbone FR, Heath WR, Belz GT (2004) Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 5(11):1143–1148PubMedCrossRefGoogle Scholar
  130. 130.
    Cameron JS, Alexopoulou L, Sloane JA, DiBernardo AB, Ma Y, Kosaras B, Flavell R, Strittmatter SM et al (2007) Toll-like receptor 3 is a potent negative regulator of axonal growth in mammals. J Neurosci 27(47):13033–13041PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK, Choi SY, Park K et al (2007) A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 282(20):14975–14983PubMedCrossRefGoogle Scholar
  132. 132.
    Lafon M, Megret F, Lafage M, Prehaud C (2006) The innate immune facet of brain: human neurons express TLR-3 and sense viral dsRNA. J Mol Neurosci 29(3):185–194PubMedCrossRefGoogle Scholar
  133. 133.
    Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD, Siler DA et al (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A 104(34):13798–13803PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lidia Fernández-Paredes
    • 1
  • Rebeca Pérez de Diego
    • 2
  • Clara de Andrés
    • 3
  • Silvia Sánchez-Ramón
    • 1
    • 4
  1. 1.Department of Clinical Immunology and IdISSCHospital Universitario Clínico San CarlosMadridSpain
  2. 2.Laboratory of Immunogenetics of Diseases, IdiPAZ Institute for Health ResearchLa Paz University HospitalMadridSpain
  3. 3.Department of NeurologyUniversity General Hospital Gregorio MarañónMadridSpain
  4. 4.Department of Microbiology IComplutense University School of MedicineMadridSpain

Personalised recommendations