Molecular Neurobiology

, Volume 54, Issue 1, pp 188–199 | Cite as

HNK-1 Carrier Glycoproteins Are Decreased in the Alzheimer’s Disease Brain

  • María-Salud García-AyllónEmail author
  • Arancha Botella-López
  • Inmaculada Cuchillo-Ibañez
  • Alberto Rábano
  • Niels Andreasen
  • Kaj Blennow
  • Jesús Ávila
  • Javier Sáez-ValeroEmail author


The human natural killer-1 (HNK-1), 3-sulfonated glucuronic acid, is a glycoepitope marker of cell adhesion that participates in cell-cell and cell-extracellular matrix interactions and in neurite growth. Very little is known about the regulation of the HNK-1 glycan in neurodegenerative disease, particularly in Alzheimer’s disease (AD). In this study, we investigate changes in the levels of HNK-1 carrier glycoproteins in AD. We demonstrate an overall decrease in HNK-1 immunoreactivity in glycoproteins extracted from the frontal cortex of AD subjects, compared with levels from non-demented controls (NDC). Immunoblotting of ventricular post-mortem and lumbar ante-mortem cerebrospinal fluid with HNK-1 antibodies indicate similar levels of carrier glycoproteins in AD and NDC samples. Decrease in HNK-1 carrier glycoproteins were not paralleled by changes in messenger RNA (mRNA) levels of the enzymes involved in the synthesis of the glycoepitope, β-1,4-galactosyltransferase (β4GalT), glucuronyltransferases GlcAT-P and GlcAT-S, or sulfotransferase HNK-1ST. Over-expression of amyloid precursor protein in Tg2576 transgenic mice and in vitro treatment of SH-SY5Y neuroblastoma cells with the amyloidogenic Aβ42 peptide resulted in a decrease in HNK-1 immunoreactivity levels in brain and cellular extracts, whereas the levels of soluble HNK-1 glycoproteins detected in culture media were not affected by Aβ treatment. HNK-1 levels remain unaffected in the brain extracts of Tg-VLW mice, a model of mutant hyperphosphorylated tau, and in SH-SY5Y cells over-expressing hyperphosphorylated wild-type tau. These results provide evidence that cellular levels of HNK-1 carrier glycoforms are decreased in the brain of AD subjects, probably influenced by the β-amyloid protein.


Alzheimer’s disease β-amyloid Glycoprotein Glycoform HNK-1 Cerebrospinal fluid 



This study was funded in part by Consejeria de Sanidad, Generalitat Valenciana (AP-091/08) and the Instituto de Salud Carlos III (ISCIII), Fondo de Investigaciones Sanitaria (grants PS09/00684 and PI11/03026 for JSV and CP11/00067 and PI14/00566 to MSGA); cofinanced by Fondo Europeo de Desarrollo Regional), the Torsten Söderberg Foundation at the Royal Swedish Academy of Sciences, and under the aegis of the EU BIOMARKAPD-Joint Programming on Neurodegenerative Diseases (JPND) project; and through CIBERNED, ISCIII, Spain.

Compliance with Ethical Standards

Conflict of Interest

MSGA and JSV are inventors of a patent submitted for the application of HNK-1 as an AD biomarker.

Supplementary material

12035_2015_9644_MOESM1_ESM.tif (359 kb)
Supplemental Figure 1 Immunoreactive HNK-1 carrier glycoforms in human brain extracts. New fresh aliquots of the protein extracts (40 μg/lane) from non-demented controls (NDC, n = 10), and Alzheimer’s (AD, n = 12) frontal cortex (same samples analyzed in Fig. 1), were blotted with an alternative anti-HNK-1 antibody (mouse Ab-2 antibody). Western blot was performed following the same protocols of the previous blots that were probed with the clone VC1.1 antibody. A representative blot is shown. (TIF 358 kb)
12035_2015_9644_MOESM2_ESM.tif (799 kb)
Supplemental Figure 2 HNK-1 glycoproteins in brain and cellular extracts of P-tau over-expressing mice and cellular models. (A) Representative blots from brain extracts (cortices) of Tg-VLW (n = 6 analyzed) and non-transgenic animals (n = 6, NTg) were probed with an anti-HNK-1 antibody (clone VC1.1). *Longer exposure of the bottom of the same gel, an area which display less intense HNK-1 immunoreactivity. Whether modulating P-tau affected HNK-1 levels was also evaluated in SH-SY5Y cells over-expressing P-tau. (B) Hyperphosphorylation of tau in SH-SY5Y cells co-transfected with human tau and GSK3β. The levels of GSK3β, total-tau (T-tau), and P-tau are illustrated in representative examples of transfected (P-tau) and control cells (Cont; empty vector). (C) Immunodetection of HNK-1 in the same cells is also shown in a representative blot. Tubulin was used as a loading control and it was assessed in the same blots (bottom panels). There were no statistically significant differences between NDC and AD groups. (TIF 799 kb)


  1. 1.
    Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913–4917CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736CrossRefPubMedGoogle Scholar
  3. 3.
    Nakagawa K, Kitazume S, Oka R, Maruyama K, Saido TC et al (2006) Sialylation enhances the secretion of neurotoxic amyloid-beta peptides. J Neurochem 96:924–933CrossRefPubMedGoogle Scholar
  4. 4.
    Chun YS, Park Y, Oh HG, Kim TW, Yang HO, Park MK, Chung S (2015) O-GlcNAcylation promotes non-amyloidogenic processing of amyloid-β protein precursor via inhibition of endocytosis from the plasma membrane. J Alzheimers Dis 44:261–275PubMedGoogle Scholar
  5. 5.
    Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci U S A 101:10804–10809CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Graham DL, Gray AJ, Joyce JA, Yu D, O’Moore J, Carlson GA, Shearman MS, Dellovade TL, Hering H (2014) Increased O-GlcNAcylation reduces pathological tau without affecting its normal phosphorylation in a mouse model of tauopathy. Neuropharmacology 79:307–313CrossRefPubMedGoogle Scholar
  7. 7.
    Halim A, Brinkmalm G, Rüetschi U, Westman-Brinkmalm A, Portelius E, Zetterberg H, Blennow K, Larson G, Nilsson J (2011) Site-specific characterization of threonine, serine and tyrosine glycosylations of amyloid precursor protein/amyloid β-peptides in human cerebrospinal fluid. Proc Natl Acad Sci U S A 108:11848–11853CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Schedin-Weiss S, Winblad B, Tjernberg LO (2014) The role of protein glycosylation in Alzheimer disease. FEBS J 281:46–62CrossRefPubMedGoogle Scholar
  9. 9.
    Voshol H, van Zuylen CW, Orberger G, Vliegenthart JF, Schachner M (1996) Structure of the HNK-1 carbohydrate epitope on bovine peripheral myelin glycoprotein P0. J Biol Chem 271:22957–22960CrossRefPubMedGoogle Scholar
  10. 10.
    Künemund V, Jungalwala FB, Fischer G, Chou DK, Keilhauer G, Schachner M (1988) The L2/HNK-1 carbohydrate of neural cell adhesion molecules is involved in cell interactions. J Cell Biol 106:213–223CrossRefPubMedGoogle Scholar
  11. 11.
    Schachner M, Martini R (1995) Glycans and the modulation of neural-recognition molecule function. Trends Neurosci 18:183–191CrossRefPubMedGoogle Scholar
  12. 12.
    Rose SP (1995) Cell-adhesion molecules, glucocorticoids and long-term-memory formation. Trends Neurosci 18:502–506CrossRefPubMedGoogle Scholar
  13. 13.
    Pradel G, Schachner M, Schmidt R (1999) Inhibition of memory consolidation by antibodies against cell adhesion molecules after active avoidance conditioning in zebrafish. J Neurobiol 39:197–206CrossRefPubMedGoogle Scholar
  14. 14.
    Terayama K, Oka S, Seiki T, Miki Y, Nakamura A, Kozutsumi Y, Takio K, Kawasaki T (1997) Cloning and functional expression of a novel glucuronyltransferase involved in the biosynthesis of the carbohydrate epitope HNK-1. Proc Natl Acad Sci U S A 94:6093–6098CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Thomas SN, Soreghan BA, Nistor M, Sarsoza F, Head E, Yang AJ (2005) Reduced neuronal expression of synaptic transmission modulator HNK-1/neural cell adhesion molecule as a potential consequence of amyloid beta-mediated oxidative stress: a proteomic approach. J Neurochem 92:705–717CrossRefPubMedGoogle Scholar
  16. 16.
    Mirra SS, Gearing M, McKeel DW Jr, Crain BJ, Hughes JP, van Belle G, Heyman A (1994) Interlaboratory comparison neuropathology assessments in Alzheimer’s disease: a study of the Consortium to Establish a Registry of Alzheimer’s Disease (CERAD). J Neuropath Exp Neurol 53:303–315CrossRefPubMedGoogle Scholar
  17. 17.
    Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259CrossRefPubMedGoogle Scholar
  18. 18.
    Andreasen N, Gottfries J, Vanmechelen E, Vanderstichele H, Davidson P, Blennow K, Rosengren L, Blennow K (2001) Evaluation of CSF biomarkers for axonal and neuronal degeneration, gliosis, and beta-amyloid metabolism in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 71:557–558CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102CrossRefPubMedGoogle Scholar
  20. 20.
    Lim F, Hernández F, Lucas JJ, Gómez-Ramos P, Morán MA, Avila J (2001) FTDP-17 mutations in tau transgenic mice provoke lysosomal abnormalities and Tau filaments in forebrain. Mol Cell Neurosci 18:702–714CrossRefPubMedGoogle Scholar
  21. 21.
    Botella-López A, Burgaya F, Gavín R, García-Ayllón MS, Gómez-Tortosa E, Peña-Casanova J, Ureña JM, Del Río JA, Blesa R, Soriano E, Sáez-Valero J (2006) Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc Natl Acad Sci U S A 103:5573–5578CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Botella-López A, Cuchillo-Ibáñez I, Cotrufo T, Mok SS, Li QX, Barquero MS, Dierssen M, Soriano E, Sáez-Valero J (2010) Beta-amyloid controls altered Reelin expression and processing in Alzheimer’s disease. Neurobiol Dis 37:682–691CrossRefPubMedGoogle Scholar
  23. 23.
    Silveyra MX, García-Ayllón MS, de Barreda EG, Small DH, Martínez S, Avila J, Sáez-Valero J (2012) Altered expression of brain acetylcholinesterase in FTDP-17 human tau transgenic mice. Neurobiol Aging 33:624PubMedGoogle Scholar
  24. 24.
    Bakker H, Friedmann I, Oka S, Kawasaki T, Nifant’ev N, Schachner M, Mantei N (1997) Expression cloning of a cDNA encoding a sulfotransferase involved in the biosynthesis of the HNK-1 carbohydrate epitope. J Biol Chem 272:29942–29946CrossRefPubMedGoogle Scholar
  25. 25.
    Seiki T, Oka S, Terayama K, Imiya K, Kawasaki T (1999) Molecular cloning and expression of a second glucuronyltransferase involved in the biosynthesis of the HNK-1 carbohydrate epitope. Biochem Biophys Res Commun 255:182–187CrossRefPubMedGoogle Scholar
  26. 26.
    Yoshihara T, Sugihara K, Kizuka Y, Oka S, Asano M (2009) Learning/memory impairment and reduced expression of the HNK-1 carbohydrate in beta4-galactosyltransferase-II-deficient mice. J Biol Chem 284:12550–12561CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Engel T, Lucas JJ, Gómez-Ramos P, Moran MA, Avila J, Hernández F (2006) Cooexpression of FTDP-17 tau and GSK-3beta in transgenic mice induce tau polymerization and neurodegeneration. Neurobiol Aging 27:1258–1268CrossRefPubMedGoogle Scholar
  28. 28.
    Alonso A del C, Mederlyova A, Novak M, Grundke-Iqbal I, Iqbal K (2004) Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J Biol Chem 279:34873–34881CrossRefGoogle Scholar
  29. 29.
    Costa VM, Amorim MA, Quintanilha A, Moradas-Ferreira P (2002) Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7. Free Radic Biol Med 33:1507–1515CrossRefPubMedGoogle Scholar
  30. 30.
    Münch G, Schinzel R, Loske C, Wong A, Durany N, Li JJ, Vlassara H, Smith MA, Perry G, Riederer P (1998) Alzheimer’s disease—synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. J Neural Transm 105:439–461CrossRefPubMedGoogle Scholar
  31. 31.
    Zhu X, Su B, Wang X, Smith MA, Perry G (2007) Causes of oxidative stress in Alzheimer disease. Cell Mol Life Sci 64:2202–2210CrossRefPubMedGoogle Scholar
  32. 32.
    Zebrower M, Kieras FJ (1993) Are heparan sulphate (HS) sulphotransferases implicated in the pathogenesis of Alzheimer’s disease? Glycobiology 3:3–5CrossRefPubMedGoogle Scholar
  33. 33.
    Bongioanni P, Donato M, Castagna M, Gemignani F (1996) Platelet phenolsulphotransferase activity, monoamine oxidase activity and peripheral-type benzodiazepine binding in demented patients. J Neural Transm 103:491–501CrossRefPubMedGoogle Scholar
  34. 34.
    Akasaka-Manya K, Manya H, Kizuka Y, Oka S, Endo T (2014) α-Klotho mice demonstrate increased expression of the non-sulfated N-glycan form of the HNK-1 glyco-epitope in kidney tissue. J Biochem 156:107–113CrossRefPubMedGoogle Scholar
  35. 35.
    McGeer EG, McGeer PL, Akiyama H, Harrop R (1989) Cortical glutaminase, beta-glucuronidase and glucose utilization in Alzheimer’s disease. Can J Neurol Sci 16:511–515CrossRefPubMedGoogle Scholar
  36. 36.
    Breen KC, Coughlan CM, Hayes FD (1998) The role of glycoproteins in neural development function, and disease. Mol Neurobiol 16:163–220CrossRefPubMedGoogle Scholar
  37. 37.
    Kruse J, Mailhammer R, Wernecke H, Faissner A, Sommer I, Goridis C, Schachner M (1984) Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature 311:153–155CrossRefPubMedGoogle Scholar
  38. 38.
    Kruse J, Keilhauer G, Faissner A, Timpl R, Schachner M (1985) The J1 glycoprotein—a novel nervous system cell adhesion molecule of the L2/HNK-1 family. Nature 316:146–148CrossRefPubMedGoogle Scholar
  39. 39.
    Xiao ZC, Bartsch U, Margolis RK, Rougon G, Montag D, Schachner M (1997) Isolation of a tenascin-R binding protein from mouse brain membranes. A phosphacan-related chondroitin sulfate proteoglycan. J Biol Chem 272:32092–32101CrossRefPubMedGoogle Scholar
  40. 40.
    Oka S (1998) Molecular biological approach to functions of telencephalin, a cell adhesion molecule and HNK-1 carbohydrate epitope, which is commonly expressed on cell adhesion molecules in the nervous system. Yakugaku Zasshi 118:431–446PubMedGoogle Scholar
  41. 41.
    Lieberoth A, Splittstoesser F, Katagihallimath N, Jakovcevski I, Loers G, Ranscht B, Karagogeos D, Schachner M, Kleene R (2009) Lewis(x) and alpha2,3-sialyl glycans and their receptors TAG-1, Contactin, and L1 mediate CD24-dependent neurite outgrowth. J Neurosci 29:6677–6690CrossRefPubMedGoogle Scholar
  42. 42.
    Dodd J, Morton SB, Karagogeos D, Yamamoto M, Jessell TM (1988) Spatial regulation of axonal glycoprotein expression on subsets of embryonic spinal neurons. Neuron 1:105–116CrossRefPubMedGoogle Scholar
  43. 43.
    Rathjen FG, Wolff JM, Frank R, Bonhoeffer F, Rutishauser U (1987) Membrane glycoproteins involved in neurite fasciculation. J Cell Biol 104:343–353CrossRefPubMedGoogle Scholar
  44. 44.
    Yanagisawa K, Quarles RH, Johnson D, Brady RO, Whitaker JN (1985) A derivative of myelin-associated glycoprotein in cerebrospinal fluid of normal subjects and patients with neurological disease. Ann Neurol 18:464–469CrossRefPubMedGoogle Scholar
  45. 45.
    Bollensen E, Schachner M (1987) The peripheral myelin glycoprotein P0 expresses the L2/HNK-1 and L3 carbohydrate structures shared by neural adhesion molecules. Neurosci Lett 82:77–82CrossRefPubMedGoogle Scholar
  46. 46.
    Chen S, Mangé A, Dong L, Lehmann S, Schachner M (2003) Prion protein as trans-interacting partner for neurons is involved in neurite outgrowth and neuronal survival. Mol Cell Neurosci 22:227–233CrossRefPubMedGoogle Scholar
  47. 47.
    Abbott KL, Matthews RT, Pierce M (2008) Receptor tyrosine phosphatase beta (RPTPbeta) activity and signaling are attenuated by glycosylation and subsequent cell surface galectin-1 binding. J Biol Chem 283:33026–33035CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Morita I, Kakuda S, Takeuchi Y, Itoh S, Kawasaki N, Kizuka Y, Kawasaki T, Oka S (2009) HNK-1 glyco-epitope regulates the stability of the glutamate receptor subunit GluR2 on the neuronal cell surface. J Biol Chem 284:30209–30217CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Vogel M, Zimmermann H, Singer W (1993) Transient association of the HNK-1 epitope with 5'-nucleotidase during development of the cat visual cortex. Eur J Neurosci 5:1423–1425CrossRefPubMedGoogle Scholar
  50. 50.
    Bon S, Méflah K, Musset F, Grassi J, Massoulié J (1987) An immunoglobulin M monoclonal antibody, recognizing a subset of acetylcholinesterase molecules from electric organs of Electrophorus and Torpedo, belongs to the HNK-1 anti-carbohydrate family. J Neurochem 49:1720–1731CrossRefPubMedGoogle Scholar
  51. 51.
    Weikert T, Layer PG (1994) The carbohydrate epitope HNK-1 is present on all inactive, but not on all active forms of chicken butyrylcholinesterase. Neurosci Lett 176:9–12CrossRefPubMedGoogle Scholar
  52. 52.
    Paraoanu LE, Layer PG (2008) Acetylcholinesterase in cell adhesion, neurite growth and network formation. FEBS J 275:618–624CrossRefPubMedGoogle Scholar
  53. 53.
    Kovács Z, Dobolyi A, Kékesi KA, Juhász G (2013) 5'-nucleotidases, nucleosides and their distribution in the brain: pathological and therapeutic implications. Curr Med Chem 20:4217–4240CrossRefPubMedGoogle Scholar
  54. 54.
    Sasaki T, Endo T (1999) Evidence for the presence of N-CAM 180 on astrocytes from rat cerebellum and differences in glycan structures between N-CAM 120 and N-CAM 140. Glia 28:236–243CrossRefPubMedGoogle Scholar
  55. 55.
    Johnson G, Moore SW (2001) Association of the HNK-1 epitope with the detergent-soluble G4 isoform of acetylcholinesterase from human neuroblastoma cells. Int J Dev Neurosci 19:439–445CrossRefPubMedGoogle Scholar
  56. 56.
    Kizuka Y, Oka S (2012) Regulated expression and neural functions of human natural killer-1 (HNK-1) carbohydrate. Cell Mol Life Sci 69:4135–4147CrossRefPubMedGoogle Scholar
  57. 57.
    Senn C, Kutsche M, Saghatelyan A, Bösl MR, Löhler J, Bartsch U, Morellini F, Schachner M (2002) Mice deficient for the HNK-1 sulfotransferase show alterations in synaptic efficacy and spatial learning and memory. Mol Cell Neurosci 20:712–729CrossRefPubMedGoogle Scholar
  58. 58.
    Syková E, Vorísek I, Mazel T, Antonova T, Schachner M (2005) Reduced extracellular space in the brain of tenascin-R- and HNK-1-sulphotransferase deficient mice. Eur J Neurosci 22:1873–1880CrossRefPubMedGoogle Scholar
  59. 59.
    Gurevicius K, Gureviciene I, Sivukhina E, Irintchev A, Schachner M, Tanila H (2007) Increased hippocampal and cortical beta oscillations in mice deficient for the HNK-1 sulfotransferase. Mol Cell Neurosci 34:189–198CrossRefPubMedGoogle Scholar
  60. 60.
    Sáez-Valero J, Sberna G, McLean CA, Masters CL, Small DH (1997) Glycosylation of acetylcholinesterase as diagnostic marker for Alzheimer’s disease. Lancet 350:929CrossRefPubMedGoogle Scholar
  61. 61.
    Guevara J, Espinosa B, Zenteno E, Vázguez L, Luna J, Perry G, Mena R (1998) Altered glycosylation pattern of proteins in Alzheimer disease. J Neuropathol Exp Neurol 57:905–914CrossRefPubMedGoogle Scholar
  62. 62.
    Fodero LR, Sáez-Valero J, Barquero MS, Marcos A, McLean CA, Small DH (2001) Wheat germ agglutinin-binding glycoproteins are decreased in Alzheimer’s disease cerebrospinal fluid. J Neurochem 79:1022–1026CrossRefPubMedGoogle Scholar
  63. 63.
    Sáez-Valero J, Small DH (2001) Altered glycosylation of cerebrospinal fluid butyrylcholinesterase in Alzheimer’s disease. Brain Res 889:247–250CrossRefPubMedGoogle Scholar
  64. 64.
    Kanninen K, Goldsteins G, Auriola S, Alafuzoff I, Koistinaho J (2004) Glycosylation changes in Alzheimer’s disease as revealed by a proteomic approach. Neurosci Lett 367:235–240CrossRefPubMedGoogle Scholar
  65. 65.
    Korolainen MA, Auriola S, Nyman TA, Alafuzoff I, Pirttilä T (2005) Proteomic analysis of glial fibrillary acidic protein in Alzheimer’s disease and aging brain. Neurobiol Dis 20:858–870CrossRefPubMedGoogle Scholar
  66. 66.
    Sihlbom C, Davidsson P, Sjögren M, Wahlund LO, Nilsson CL (2008) Structural and quantitative comparison of cerebrospinal fluid glycoproteins in Alzheimer’s disease patients and healthy individuals. Neurochem Res 33:1332–1340CrossRefPubMedGoogle Scholar
  67. 67.
    Taniguchi M, Okayama Y, Hashimoto Y, Kitaura M, Jimbo D, Wakutani Y, Wada-Isoe K, Nakashima K, Akatsu H, Furukawa K, Arai H, Urakami K (2008) Sugar chains of cerebrospinal fluid transferrin as a new biological marker of Alzheimer’s disease. Dement Geriatr Cogn Disord 26:117–122CrossRefPubMedGoogle Scholar
  68. 68.
    Owen JB, Di Domenico F, Sultana R, Perluigi M, Cini C, Pierce WM, Butterfield DA (2009) Proteomics-determined differences in the concanavalin-A-fractionated proteome of hippocampus and inferior parietal lobule in subjects with Alzheimer’s disease and mild cognitive impairment: implications for progression of AD. J Proteome Res 8:471–482CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Di Domenico F, Owen JB, Sultana R, Sowell RA, Perluigi M, Cini C, Cai J, Pierce WM, Butterfield DA (2010) The wheat germ agglutinin-fractionated proteome of subjects with Alzheimer’s disease and mild cognitive impairment hippocampus and inferior parietal lobule: implications for disease pathogenesis and progression. J Neurosci Res 88:3566–3577CrossRefPubMedGoogle Scholar
  70. 70.
    Palmigiano A, Barone R, Sturiale L, Sanfilippo C, Bua RO, Romeo DA, Messina A, Capuana ML, Maci T, Le Pira F, Zappia M, Garozzo D (2016) CSF N-glycoproteomics for early diagnosis in Alzheimer’s disease. J Proteomics 131:29–37CrossRefPubMedGoogle Scholar
  71. 71.
    Simon-Haldi M, Mantei N, Franke J, Voshol H, Schachner M (2002) Identification of a peptide mimic of the L2/HNK-1 carbohydrate epitope. J Neurochem 83:1380–1388CrossRefPubMedGoogle Scholar
  72. 72.
    Simova O, Irintchev A, Mehanna A, Liu J, Dihné M, Bächle D, Sewald N, Loers G, Schachner M (2006) Carbohydrate mimics promote functional recovery after peripheral nerve repair. Ann Neurol 60:430–437CrossRefPubMedGoogle Scholar
  73. 73.
    Irintchev A, Wu MM, Lee HJ, Zhu H, Feng YP, Liu YS, Bernreuther C, Loers G, You SW, Schachner M (2011) Glycomimetic improves recovery after femoral injury in a non-human primate. J Neurotrauma 28:1295–1306CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • María-Salud García-Ayllón
    • 1
    • 2
    • 3
    Email author
  • Arancha Botella-López
    • 1
    • 2
  • Inmaculada Cuchillo-Ibañez
    • 1
    • 2
  • Alberto Rábano
    • 2
    • 4
  • Niels Andreasen
    • 5
  • Kaj Blennow
    • 6
  • Jesús Ávila
    • 2
    • 7
  • Javier Sáez-Valero
    • 1
    • 2
    Email author
  1. 1.Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández-CSICSant Joan d’AlacantSpain
  2. 2.Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Sant Joan d’AlacantSpain
  3. 3.Unidad de Investigación, Hospital General Universitario de Elche, FISABIOElcheSpain
  4. 4.Banco de Tejidos de la Fundación CIEN, CIEN Foundation, Carlos III Institute of HealthAlzheimer Center Reina Sofia FoundationMadridSpain
  5. 5.Karolinska Institute-Alzheimer Disease Research centerStockholmSweden
  6. 6.Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologySahlgrenska Academy at University of GothenburgMölndalSweden
  7. 7.Centro de Biología Molecular “Severo Ochoa”, UniversidadAutónoma de Madrid, Consejo Superior de Investigaciones CientíficasMadridSpain

Personalised recommendations