Molecular Neurobiology

, Volume 54, Issue 1, pp 115–124 | Cite as

Autophagy Promotes Microglia Activation Through Beclin-1-Atg5 Pathway in Intracerebral Hemorrhage

  • Bangqing Yuan
  • Hanchao Shen
  • Li Lin
  • Tonggang Su
  • Lina Zhong
  • Zhao YangEmail author


Previous study demonstrates that intracerebral hemorrhage (ICH) promotes microglia activation and inflammation. However, the exact mechanism of microglia activation induced by ICH is not clear. In this experiment, microglia autophagy was examined using electron microscopy, conversion of light chain 3(LC3), and monodansylcadaverine (MDC) staining to detect autophagic vacuoles. We found that ICH induced microglia autophagy and activation. The suppression of autophagy using either pharmacologic inhibitors (3-methyladenine, bafilomycin A1) or RNA interference in essential autophagy genes (BECN1 and ATG5) decreased the microglia activation and inflammation in ICH. Moreover, autophagy inhibitors reduced brain damage in ICH. In conclusion, these data indicate that ICH contributes to microglia autophagic activation through BECN1 and ATG5 and provide the therapeutical strategy for ICH.


Autophagy Microglia Beclin-1 Atg5 ICH 



This work was supported by the National Natural Science Foundation of China (NSFC No. 81571179) and China Postdoctoral Science Foundation (No. 2015M580776).


  1. 1.
    Mokin M, Kan P, Kass-Hout T, Abla AA, Dumont TM, Snyder KV, Hopkins LN, Siddiqui AH, Levy EI (2012) Intracerebral hemorrhage secondary to intravenous and endovascular intraarterial revascularization therapies in acute ischemic stroke: an update on risk factors, predictors, and management. Neurosurg Focus 32:E2Google Scholar
  2. 2.
    Appelboom G, Hwang BY, Bruce SS, Piazza MA, Kellner CP, Meyers PM, Connolly ES (2012) Predicting outcome after arteriovenous malformation-associated intracerebral hemorrhage with the original ICH score. World Neurosurg 78:646–50Google Scholar
  3. 3.
    Moussouttas M (2012) Challenges and controversies in the medical management of primary and antithrombotic-related intracerebral hemorrhage. Ther Adv Neurol Disord 5:43–56Google Scholar
  4. 4.
    Gob E, Reymann S, Langhauser F, Schuhmann MK, Kraft P, Thielmann I, Gobel K, Brede M, Homola G, Solymosi L, Stoll G, Geis C, Meuth SG, Nieswandt B, Kleinschnitz C (2015) Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation. Ann Neurol 77:784–803Google Scholar
  5. 5.
    Wu H, Wu T, Hua W, Dong X, Gao Y, Zhao X, Chen W, Cao W, Yang Q, Qi J, Zhou J, Wang J (2015) PGE2 receptor agonist misoprostol protects brain against intracerebral hemorrhage in mice. Neurobiol Aging 36:1439–50Google Scholar
  6. 6.
    Hammond MD, Ambler WG, Ai Y, Sansing LH (2014) alpha4 integrin is a regulator of leukocyte recruitment after experimental intracerebral hemorrhage. Stroke 45:2485–7Google Scholar
  7. 7.
    Fullgrabe J, Klionsky DJ, Joseph B (2013) Histone post-translational modifications regulate autophagy flux and outcome. Autophagy 9:1621–3Google Scholar
  8. 8.
    Kim YJ, Baek E, Lee JS, Lee GM (2013) Autophagy and its implication in Chinese hamster ovary cell culture. Biotechnol Lett 35:1753–63Google Scholar
  9. 9.
    Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–20Google Scholar
  10. 10.
    Puri R, Ganesh S (2012) Autophagy defects in Lafora disease: cause or consequence? Autophagy 8:289–90Google Scholar
  11. 11.
    Baek KH, Park J, Shin I (2012) Autophagy-regulating small molecules and their therapeutic applications. Chem Soc Rev 41:3245–63Google Scholar
  12. 12.
    Pyo JO, Nah J, Jung YK (2012) Molecules and their functions in autophagy. Exp Mol Med 44:73–80Google Scholar
  13. 13.
    Stranks AJ, Hansen AL, Panse I, Mortensen M, Ferguson DJ, Puleston DJ, Shenderov K, Watson AS, Veldhoen M, Phadwal K, Cerundolo V, Simon AK (2015) Autophagy Controls Acquisition of Aging Features in Macrophages. J Innate Immun 7:375–91Google Scholar
  14. 14.
    Hooper LV (2015) Epithelial cell contributions to intestinal immunity. Adv Immunol 126:129–72Google Scholar
  15. 15.
    Hu B, Zhang Y, Jia L, Wu H, Fan C, Sun Y, Ye C, Liao M, Zhou J (2015) Binding of the pathogen receptor HSP90AA1 to avibirnavirus VP2 induces autophagy by inactivating the AKT-MTOR pathway. Autophagy 11:503–15Google Scholar
  16. 16.
    Hu S, Xi G, Jin H, He Y, Keep RF, Hua Y (2011) Thrombin-induced autophagy: a potential role in intracerebral hemorrhage. Brain Res 1424:60–6Google Scholar
  17. 17.
    Tsuyuki S, Takabayashi M, Kawazu M, Kudo K, Watanabe A, Nagata Y, Kusama Y, Yoshida K (2014) Detection of WIPI1 mRNA as an indicator of autophagosome formation. Autophagy 10:497–513Google Scholar
  18. 18.
    Hammond MD, Taylor RA, Mullen MT, Ai Y, Aguila HL, Mack M, Kasner SE, McCullough LD, Sansing LH (2014) CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J Neurosci 34:3901–9Google Scholar
  19. 19.
    Too LK, Ball HJ, McGregor IS, Hunt NH (2014) The pro-inflammatory cytokine interferon-gamma is an important driver of neuropathology and behavioural sequelae in experimental pneumococcal meningitis. Brain Behav Immun 40:252–68Google Scholar
  20. 20.
    Rodriguez-Yanez M, Brea D, Arias S, Blanco M, Pumar JM, Castillo J, Sobrino T (2012) Increased expression of Toll-like receptors 2 and 4 is associated with poor outcome in intracerebral hemorrhage. J Neuroimmunol 247:75–80Google Scholar
  21. 21.
    Sansing LH, Harris TH, Welsh FA, Kasner SE, Hunter CA, Kariko K (2011) Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann Neurol 70:646–56Google Scholar
  22. 22.
    Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J (2014) NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol 75:209–19Google Scholar
  23. 23.
    Xu C, Wang T, Cheng S, Liu Y (2013) Increased expression of T cell immunoglobulin and mucin domain 3 aggravates brain inflammation via regulation of the function of microglia/macrophages after intracerebral hemorrhage in mice. J Neuroinflammation 10:141Google Scholar
  24. 24.
    Ziai WC (2013) Hematology and inflammatory signaling of intracerebral hemorrhage. Stroke 44:S74-8Google Scholar
  25. 25.
    Fan X, Lo EH, Wang X (2013) Effects of minocycline plus tissue plasminogen activator combination therapy after focal embolic stroke in type 1 diabetic rats. Stroke 44:745–52Google Scholar
  26. 26.
    Hammond MD, Ai Y, Sansing LH (2012) Gr1+ Macrophages and Dendritic Cells Dominate the Inflammatory Infiltrate 12 Hours After Experimental Intracerebral Hemorrhage. Transl Stroke Res 3:s125-s31Google Scholar
  27. 27.
    Yao Y, Tsirka SE (2012) The CCL2-CCR2 system affects the progression and clearance of intracerebral hemorrhage. Glia 60:908–18Google Scholar
  28. 28.
    Loftspring MC, Johnson HL, Feng R, Johnson AJ, Clark JF (2011) Unconjugated bilirubin contributes to early inflammation and edema after intracerebral hemorrhage. J Cereb Blood Flow Metab 31:1133–42Google Scholar
  29. 29.
    Wu H, Wu T, Xu X, Wang J, Wang J (2011) Iron toxicity in mice with collagenase-induced intracerebral hemorrhage. J Cereb Blood Flow Metab 31:1243–50Google Scholar
  30. 30.
    Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–59Google Scholar
  31. 31.
    Marcuzzi A, Bianco AM, Girardelli M, Tommasini A, Martelossi S, Monasta L, Crovella S (2013) Genetic and functional profiling of Crohn's disease: autophagy mechanism and susceptibility to infectious diseases. Biomed Res Int 2013:297501Google Scholar
  32. 32.
    Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–73Google Scholar
  33. 33.
    Ryter SW, Cloonan SM, Choi AM (2013) Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells 36:7–16Google Scholar
  34. 34.
    Niedzwiedzka-Rystwej P, Tokarz-Deptula B, Deptula W (2013) Autophagy in physiological and pathological processes--selected aspects. Pol J Vet Sci 16:173–80Google Scholar
  35. 35.
    Guan JL, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, Wang C, Wolvetang E, Vazquez-Martin A, Zhang J (2013) Autophagy in stem cells. Autophagy 9:830–49Google Scholar
  36. 36.
    Yang Z, Zhong L, Zhong S, Xian R, Yuan B (2015) Hypoxia induces microglia autophagy and neural inflammation injury in focal cerebral ischemia model. Exp Mol Pathol 98:219–24Google Scholar
  37. 37.
    Babu R, Bagley JH, Di C, Friedman AH, Adamson C (2012) Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus 32:E8Google Scholar
  38. 38.
    Lei C, Zhang S, Cao T, Tao W, Liu M, Wu B (2015) HMGB1 may act via RAGE to promote angiogenesis in the later phase after intracerebral hemorrhage. Neuroscience 295:39–47Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bangqing Yuan
    • 2
  • Hanchao Shen
    • 2
  • Li Lin
    • 2
  • Tonggang Su
    • 2
  • Lina Zhong
    • 1
  • Zhao Yang
    • 1
    Email author
  1. 1.Department of Neurology, Yongchuan HospitalChongqing Medical UniversityChongqingChina
  2. 2.Department of NeurosurgeryThe 476th Hospital of PLAFuzhouChina

Personalised recommendations