Molecular Neurobiology

, Volume 53, Issue 10, pp 6698–6708 | Cite as

Induced Pluripotent Stem Cells in Huntington’s Disease: Disease Modeling and the Potential for Cell-Based Therapy

  • Ling Liu
  • Jin-Sha Huang
  • Chao Han
  • Guo-Xin Zhang
  • Xiao-Yun Xu
  • Yan Shen
  • Jie Li
  • Hai-Yang Jiang
  • Zhi-Cheng Lin
  • Nian Xiong
  • Tao Wang
Article

Abstract

Huntington’s disease (HD) is an incurable neurodegenerative disorder that is characterized by motor dysfunction, cognitive impairment, and behavioral abnormalities. It is an autosomal dominant disorder caused by a CAG repeat expansion in the huntingtin gene, resulting in progressive neuronal loss predominately in the striatum and cortex. Despite the discovery of the causative gene in 1993, the exact mechanisms underlying HD pathogenesis have yet to be elucidated. Treatments that slow or halt the disease process are currently unavailable. Recent advances in induced pluripotent stem cell (iPSC) technologies have transformed our ability to study disease in human neural cells. Here, we firstly review the progress made to model HD in vitro using patient-derived iPSCs, which reveal unique insights into illuminating molecular mechanisms and provide a novel human cell-based platform for drug discovery. We then highlight the promises and challenges for pluripotent stem cells that might be used as a therapeutic source for cell replacement therapy of the lost neurons in HD brains.

Keywords

Huntington’s disease Induced pluripotent stem cells Stem cell models Drug discovery Cell replacement therapy 

References

  1. 1.
    Walker FO (2007) Huntington's disease. Lancet 369(9557):218–228. doi:10.1016/s0140-6736(07)60111-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Rikani AA, Choudhry Z, Choudhry AM, Rizvi N, Ikram H, Mobassarah NJ, Tulli S (2014) The mechanism of degeneration of striatal neuronal subtypes in Huntington disease. Ann Neurosci 21(3):112–114. doi:10.5214/ans.0972.7531.210308 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ross CA, Tabrizi SJ (2011) Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10(1):83–98. doi:10.1016/S1474-4422(10)70245-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N (2012) The incidence and prevalence of Huntington's disease: a systematic review and meta-analysis. Mov Disord 27(9):1083–1091. doi:10.1002/mds.25075 CrossRefPubMedGoogle Scholar
  5. 5.
    Myers RH (2004) Huntington's disease genetics. NeuroRx 1(2):255–262. doi:10.1602/neurorx.1.2.255 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Shannon KM, Fraint A (2015) Therapeutic advances in Huntington's disease. Mov Disord. doi:10.1002/mds.26331 Google Scholar
  7. 7.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024 CrossRefPubMedGoogle Scholar
  8. 8.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019 CrossRefPubMedGoogle Scholar
  9. 9.
    Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y et al (2008) Generation of induced pluripotent stem cells without myc from mouse and human fibroblasts. Nat Biotechnol 26(1):101–106. doi:10.1038/nbt1374 CrossRefPubMedGoogle Scholar
  10. 10.
    Yamanaka S (2009) A fresh look at iPS cells. Cell 137(1):13–17. doi:10.1016/j.cell.2009.03.034 CrossRefPubMedGoogle Scholar
  11. 11.
    Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A et al (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9(6):625–635. doi:10.1038/ncb1589 CrossRefPubMedGoogle Scholar
  12. 12.
    Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39(5):749–765. doi:10.1016/S0896-6273(03)00497-5 CrossRefPubMedGoogle Scholar
  13. 13.
    Dametti S, Faravelli I, Ruggieri M, Ramirez A, Nizzardo M, Corti S (2015) Experimental advances towards neural regeneration from induced stem cells to direct in vivo reprogramming. Mol Neurobiol:1–8. doi:10.1007/s12035-015-9181-7
  14. 14.
    Ross CA, Akimov SS (2014) Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Hum Mol Genet 23(R1):R17–R26. doi:10.1093/hmg/ddu204 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Choi SS, Lee SR, Kim SU, Lee HJ (2014) Alzheimer's disease and stem cell therapy. Exp Neurobiol 23(1):45–52. doi:10.5607/en.2014.23.1.45 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cao L, Tan L, Jiang T, Zhu XC, Yu JT (2015) Induced pluripotent stem cells for disease modeling and drug discovery in neurodegenerative diseases. Mol Neurobiol 52(1):244–255. doi:10.1007/s12035-014-8867-6 CrossRefPubMedGoogle Scholar
  17. 17.
    Upadhyay G, Shankar S, Srivastava RK (2015) Stem cells in neurological disorders: emerging therapy with stunning hopes. Mol Neurobiol 52(1):610–625. doi:10.1007/s12035-014-8883-6 CrossRefPubMedGoogle Scholar
  18. 18.
    Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington's disease. Nat Rev Neurosci 6(12):919–930. doi:10.1038/nrn1806 CrossRefPubMedGoogle Scholar
  19. 19.
    Nasir J, Floresco SB, O'Kusky JR, Diewert VM, Richman JM, Zeisler J, Borowski A, Marth JD et al (1995) Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81(5):811–823CrossRefPubMedGoogle Scholar
  20. 20.
    Zuccato C, Cattaneo E (2014) Huntington's disease. Handb Exp Pharmacol 220:357–409. doi:10.1007/978-3-642-45106-5_14 CrossRefPubMedGoogle Scholar
  21. 21.
    Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol Rev 90(3):905–981. doi:10.1152/physrev.00041.2009 CrossRefPubMedGoogle Scholar
  22. 22.
    Vonsattel JP (2008) Huntington disease models and human neuropathology: similarities and differences. Acta Neuropathol 115(1):55–69. doi:10.1007/s00401-007-0306-6 CrossRefPubMedGoogle Scholar
  23. 23.
    Arrasate M, Finkbeiner S (2012) Protein aggregates in Huntington's disease. Exp Neurol 238(1):1–11. doi:10.1016/j.expneurol.2011.12.013 CrossRefPubMedGoogle Scholar
  24. 24.
    Gutekunst CA, Li SH, Yi H, Mulroy JS, Kuemmerle S, Jones R, Rye D, Ferrante RJ et al (1999) Nuclear and neuropil aggregates in Huntington's disease: relationship to neuropathology. J Neurosci 19(7):2522–2534PubMedGoogle Scholar
  25. 25.
    Cicchetti F, Lacroix S, Cisbani G, Vallieres N, Saint-Pierre M, St-Amour I, Tolouei R, Skepper JN et al (2014) Mutant huntingtin is present in neuronal grafts in Huntington disease patients. Ann Neurol 76(1):31–42. doi:10.1002/ana.24174 CrossRefPubMedGoogle Scholar
  26. 26.
    Brustovetsky N (2015) Mutant huntingtin and elusive defects in oxidative metabolism and mitochondrial calcium handling. Mol Neurobiol. doi:10.1007/s12035-015-9188-0 PubMedGoogle Scholar
  27. 27.
    Estrada Sanchez AM, Mejia-Toiber J, Massieu L (2008) Excitotoxic neuronal death and the pathogenesis of Huntington's disease. Arch Med Res 39(3):265–276. doi:10.1016/j.arcmed.2007.11.011 CrossRefPubMedGoogle Scholar
  28. 28.
    Sepers MD, Raymond LA (2014) Mechanisms of synaptic dysfunction and excitotoxicity in Huntington's disease. Drug Discov Today 19(7):990–996. doi:10.1016/j.drudis.2014.02.006 CrossRefPubMedGoogle Scholar
  29. 29.
    Cha JH (2007) Transcriptional signatures in Huntington's disease. Prog Neurobiol 83(4):228–248. doi:10.1016/j.pneurobio.2007.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Valor L (2015) Transcription, epigenetics and ameliorative strategies in Huntington’s disease: a genome-wide perspective. Mol Neurobiol 51(1):406–423. doi:10.1007/s12035-014-8715-8 CrossRefPubMedGoogle Scholar
  31. 31.
    Li SH, Cheng AL, Zhou H, Lam S, Rao M, Li H, Li XJ (2002) Interaction of Huntington disease protein with transcriptional activator Sp1. Mol Cell Biol 22(5):1277–1287CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu YZ, Gohler H, Wanker EE, Bates GP et al (2000) The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A 97(12):6763–6768. doi:10.1073/pnas.100110097 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nucifora FC Jr, Sasaki M, Peters MF, Huang H, Cooper JK, Yamada M, Takahashi H, Tsuji S et al (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291(5512):2423–2428. doi:10.1126/science.1056784 CrossRefPubMedGoogle Scholar
  34. 34.
    Bennett EJ, Shaler TA, Woodman B, Ryu KY, Zaitseva TS, Becker CH, Bates GP, Schulman H et al (2007) Global changes to the ubiquitin system in Huntington's disease. Nature 448(7154):704–708. doi:10.1038/nature06022 CrossRefPubMedGoogle Scholar
  35. 35.
    Ortega Z, Lucas JJ (2014) Ubiquitin-proteasome system involvement in Huntington's disease. Front Mol Neurosci 7:77. doi:10.3389/fnmol.2014.00077 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sarkar S (2013) Chemical screening platforms for autophagy drug discovery to identify therapeutic candidates for Huntington's disease and other neurodegenerative disorders. Drug Discov Today Technol 10(1):e137–e144. doi:10.1016/j.ddtec.2012.09.010 CrossRefPubMedGoogle Scholar
  37. 37.
    Margulis J, Finkbeiner S (2014) Proteostasis in striatal cells and selective neurodegeneration in Huntington's disease. Front Cell Neurosci 8:218. doi:10.3389/fncel.2014.00218 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cortes CJ, La Spada AR (2014) The many faces of autophagy dysfunction in Huntington's disease: from mechanism to therapy. Drug Discov Today 19(7):963–971. doi:10.1016/j.drudis.2014.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Schapira AH, Olanow CW, Greenamyre JT, Bezard E (2014) Slowing of neurodegeneration in Parkinson's disease and Huntington's disease: future therapeutic perspectives. Lancet 384(9942):545–555. doi:10.1016/s0140-6736(14)61010-2 CrossRefPubMedGoogle Scholar
  40. 40.
    Killoran A, Biglan KM (2014) Current therapeutic options for Huntington's disease: good clinical practice versus evidence-based approaches? Mov Disord 29(11):1404–1413. doi:10.1002/mds.26014 CrossRefPubMedGoogle Scholar
  41. 41.
    Frank S (2014) Treatment of Huntington's disease. Neurotherapeutics 11(1):153–160. doi:10.1007/s13311-013-0244-z CrossRefPubMedGoogle Scholar
  42. 42.
    Sampaio C, Borowsky B, Reilmann R (2014) Clinical trials in Huntington's disease: interventions in early clinical development and newer methodological approaches. Mov Disord 29(11):1419–1428. doi:10.1002/mds.26021 CrossRefPubMedGoogle Scholar
  43. 43.
    Aronin N, DiFiglia M (2014) Huntingtin-lowering strategies in Huntington's disease: antisense oligonucleotides, small RNAs, and gene editing. Mov Disord 29(11):1455–1461. doi:10.1002/mds.26020 CrossRefPubMedGoogle Scholar
  44. 44.
    Godinho BM, Malhotra M, O'Driscoll CM, Cryan JF (2015) Delivering a disease-modifying treatment for Huntington's disease. Drug Discov Today 20(1):50–64. doi:10.1016/j.drudis.2014.09.011 CrossRefPubMedGoogle Scholar
  45. 45.
    Ostergaard ME, Kumar P, Nichols J, Watt A, Sharma PK, Nielsen P, Seth PP (2015) Allele-selective inhibition of mutant huntingtin with 2-Thio- and C5- triazolylphenyl-deoxythymidine-modified antisense oligonucleotides. Nucleic Acid Ther. doi:10.1089/nat.2015.0547 PubMedGoogle Scholar
  46. 46.
    Carroll JB, Warby SC, Southwell AL, Doty CN, Greenlee S, Skotte N, Hung G, Bennett CF et al (2011) Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene / allele-specific silencing of mutant huntingtin. Mol Ther 19(12):2178–2185. doi:10.1038/mt.2011.201 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington's disease. Nat Rev Neurosci 14(10):708–721. doi:10.1038/nrn3570 CrossRefPubMedGoogle Scholar
  48. 48.
    Figiel M, Szlachcic W, Switonski P, Gabka A, Krzyzosiak W (2012) Mouse models of polyglutamine diseases: review and data table. Part I. Mol Neurobiol 46(2):393–429. doi:10.1007/s12035-012-8315-4 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Merkle Florian T, Eggan K (2013) Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell 12(6):656–668. doi:10.1016/j.stem.2013.05.016 CrossRefPubMedGoogle Scholar
  50. 50.
    Menalled L, Brunner D (2014) Animal models of Huntington's disease for translation to the clinic: best practices. Mov Disord 29(11):1375–1390. doi:10.1002/mds.26006 CrossRefPubMedGoogle Scholar
  51. 51.
    Zeng X, Hunsberger JG, Simeonov A, Malik N, Pei Y, Rao M (2014) Concise review: modeling central nervous system diseases using induced pluripotent stem cells. Stem Cells Transl Med 3(12):1418–1428. doi:10.5966/sctm.2014-0102 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Nicoleau C, Viegas P, Peschanski M, Perrier AL (2011) Human pluripotent stem cell therapy for Huntington's disease: technical, immunological, and safety challenges human pluripotent stem cell therapy for Huntington's disease: technical, immunological, and safety challenges. Neurotherapeutics 8(4):562–576. doi:10.1007/s13311-011-0079-4 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kaye JA, Finkbeiner S (2013) Modeling Huntington's disease with induced pluripotent stem cells. Mol Cell Neurosci 56:50–64. doi:10.1016/j.mcn.2013.02.005 CrossRefPubMedGoogle Scholar
  54. 54.
    Becanovic K, Norremolle A, Neal SJ, Kay C, Collins JA, Arenillas D, Lilja T, Gaudenzi G et al (2015) A SNP in the HTT promoter alters NF-kappaB binding and is a bidirectional genetic modifier of Huntington disease. Nat Nuerosci 18(6):807–816. doi:10.1038/nn.4014 CrossRefGoogle Scholar
  55. 55.
    An MC, Zhang N, Scott G, Montoro D, Wittkop T, Mooney S, Melov S, Ellerby LM (2012) Genetic correction of Huntington's disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11(2):253–263. doi:10.1016/j.stem.2012.04.026 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Crane AT, Rossignol J, Dunbar GL (2014) Use of genetically altered stem cells for the treatment of Huntington's disease. Brain Sci 4(1):202–219. doi:10.3390/brainsci4010202 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C et al (2008) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886. doi:10.1016/j.cell.2008.07.041 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhang N, An MC, Montoro D, Ellerby LM (2010) Characterization of human Huntington's disease cell model from induced pluripotent stem cells. PLoS Currents 2:Rrn1193. doi:10.1371/currents.RRN1193 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Chae JI, Kim DW, Lee N, Jeon YJ, Jeon I, Kwon J, Kim J, Soh Y et al (2012) Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient. Biochem J 446(3):359–371. doi:10.1042/bj20111495 CrossRefPubMedGoogle Scholar
  60. 60.
    Szlachcic WJ, Switonski PM, Krzyzosiak WJ, Figlerowicz M, Figiel M (2015) Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway. Dis Model Mech. doi:10.1242/dmm.019406 PubMedPubMedCentralGoogle Scholar
  61. 61.
    Camnasio S, Delli Carri A, Lombardo A, Grad I, Mariotti C, Castucci A, Rozell B, Lo Riso P et al (2012) The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington's disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiol Dis 46(1):41–51. doi:10.1016/j.nbd.2011.12.042 CrossRefPubMedGoogle Scholar
  62. 62.
    Consortium THi (2012) Induced pluripotent stem cells from patients with Huntington's disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11(2):264–278. doi:10.1016/j.stem.2012.04.027 CrossRefGoogle Scholar
  63. 63.
    Mattis VB, Tom C, Akimov S, Saeedian J, Ostergaard ME, Southwell AL, Doty CN, Ornelas L et al (2015) HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity. Hum Mol Genet. doi:10.1093/hmg/ddv080 PubMedPubMedCentralGoogle Scholar
  64. 64.
    Juopperi TA, Kim WR, Chiang CH, Yu H, Margolis RL, Ross CA, Ming GL, Song H (2012) Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington's disease patient cells. Mol Brain 5:17. doi:10.1186/1756-6606-5-17 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nagata E, Sawa A, Ross CA, Snyder SH (2004) Autophagosome-like vacuole formation in Huntington's disease lymphoblasts. Neuroreport 15(8):1325–1328CrossRefPubMedGoogle Scholar
  66. 66.
    Jeon I, Lee N, Li JY, Park IH, Park KS, Moon J, Shim SH, Choi C et al (2012) Neuronal properties, in vivo effects, and pathology of a Huntington's disease patient-derived induced pluripotent stem cells. Stem Cells 30(9):2054–2062. doi:10.1002/stem.1135 CrossRefPubMedGoogle Scholar
  67. 67.
    An MC, O'Brien RN, Zhang N, Patra BN, De La Cruz M, Ray A, Ellerby LM (2014) Polyglutamine disease modeling: epitope based screen for homologous recombination using CRISPR/Cas9 System. PLoS Curr 6. doi:10.1371/currents.hd.0242d2e7ad72225efa72f6964589369a
  68. 68.
    Yu DX, Marchetto MC, Gage FH (2013) Therapeutic translation of iPSCs for treating neurological disease. Cell Stem Cell 12(6):678–688. doi:10.1016/j.stem.2013.05.018 CrossRefPubMedGoogle Scholar
  69. 69.
    Peng J, Liu Q, Rao MS, Zeng X (2013) Using human pluripotent stem cell-derived dopaminergic neurons to evaluate candidate Parkinson's disease therapeutic agents in MPP+ and rotenone models. J Biomol Screen 18(5):522–533. doi:10.1177/1087057112474468 CrossRefPubMedGoogle Scholar
  70. 70.
    Fecke W, Gianfriddo M, Gaviraghi G, Terstappen GC, Heitz F (2009) Small molecule drug discovery for Huntington's disease. Drug Discov Today 14(9–10):453–464. doi:10.1016/j.drudis.2009.02.006 CrossRefPubMedGoogle Scholar
  71. 71.
    Perrier A, Peschanski M (2012) How can human pluripotent stem cells help decipher and cure Huntington’s disease? Cell Stem Cell 11(2):153–161. doi:10.1016/j.stem.2012.07.015 CrossRefPubMedGoogle Scholar
  72. 72.
    Gunaseeli I, Doss MX, Antzelevitch C, Hescheler J, Sachinidis A (2010) Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery. Curr Med Chem 17(8):759–766CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Engle SJ, Puppala D (2013) Integrating human pluripotent stem cells into drug development. Cell Stem Cell 12(6):669–677. doi:10.1016/j.stem.2013.05.011 CrossRefPubMedGoogle Scholar
  74. 74.
    Rosser A, Svendsen CN (2014) Stem cells for cell replacement therapy: a therapeutic strategy for HD? Mov Disord 29(11):1446–1454. doi:10.1002/mds.26026 CrossRefPubMedGoogle Scholar
  75. 75.
    Chen Y, Carter RL, Cho IK, Chan AW (2014) Cell-based therapies for Huntington's disease. Drug Discov Today 19(7):980–984. doi:10.1016/j.drudis.2014.02.012 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bachoud-Levi A, Bourdet C, Brugieres P, Nguyen JP, Grandmougin T, Haddad B, Jeny R, Bartolomeo P et al (2000) Safety and tolerability assessment of intrastriatal neural allografts in five patients with Huntington's disease. Exp Neurol 161(1):194–202. doi:10.1006/exnr.1999.7239 CrossRefPubMedGoogle Scholar
  77. 77.
    Bachoud-Levi AC, Remy P, Nguyen JP, Brugieres P, Lefaucheur JP, Bourdet C, Baudic S, Gaura V et al (2000) Motor and cognitive improvements in patients with Huntington's disease after neural transplantation. Lancet 356(9246):1975–1979CrossRefPubMedGoogle Scholar
  78. 78.
    Philpott LM, Kopyov OV, Lee AJ, Jacques S, Duma CM, Caine S, Yang M, Eagle KS (1997) Neuropsychological functioning following fetal striatal transplantation in Huntington's chorea: three case presentations. Cell Transplant 6(3):203–212CrossRefPubMedGoogle Scholar
  79. 79.
    Antoniades CA, Watts C (2013) Huntington's disease and cell therapies: past, present, and future. Methods Mol Biol 1010:19–32. doi:10.1007/978-1-62703-411-1_2 CrossRefPubMedGoogle Scholar
  80. 80.
    Aubry L, Bugi A, Lefort N, Rousseau F, Peschanski M, Perrier AL (2008) Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc Natl Acad Sci U S A 105(43):16707–16712. doi:10.1073/pnas.0808488105 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Ma L, Hu B, Liu Y, Vermilyea SC, Liu H, Gao L, Sun Y, Zhang X et al (2012) Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 10(4):455–464. doi:10.1016/j.stem.2012.01.021 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Delli Carri A, Onorati M, Lelos MJ, Castiglioni V, Faedo A, Menon R, Camnasio S, Vuono R et al (2013) Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development 140(2):301–312. doi:10.1242/dev.084608 CrossRefPubMedGoogle Scholar
  83. 83.
    Fink KD, Crane AT, Leveque X, Dues DJ, Huffman LD, Moore AC, Story DT, Dejonge RE et al (2014) Intrastriatal transplantation of adenovirus-generated induced pluripotent stem cells for treating neuropathological and functional deficits in a rodent model of Huntington's disease. Stem Cells Transl Med 3(5):620–631. doi:10.5966/sctm.2013-0151 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Mu S, Wang J, Zhou G, Peng W, He Z, Zhao Z, Mo C, Qu J et al (2014) Transplantation of induced pluripotent stem cells improves functional recovery in Huntington's disease rat model. PLoS One 9(7):e101185. doi:10.1371/journal.pone.0101185 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Im W, Kim M (2014) Cell therapy strategies vs. paracrine effect in Huntington's disease. J Mov Disord 7(1):1–6. doi:10.14802/jmd.14001 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Olson SD, Pollock K, Kambal A, Cary W, Mitchell GM, Tempkin J, Stewart H, McGee J et al (2012) Genetically engineered mesenchymal stem cells as a proposed therapeutic for Huntington's disease. Mol Neurobiol 45(1):87–98. doi:10.1007/s12035-011-8219-8 CrossRefPubMedGoogle Scholar
  87. 87.
    Liu G, Rustom N, Litteljohn D, Bobyn J, Rudyk C, Anisman H, Hayley S (2014) Use of induced pluripotent stem cell derived neurons engineered to express BDNF for modulation of stressor related pathology. Front Cell Neurosci 8:316. doi:10.3389/fncel.2014.00316 PubMedPubMedCentralGoogle Scholar
  88. 88.
    Bachoud-Levi AC, Gaura V, Brugieres P, Lefaucheur JP, Boisse MF, Maison P, Baudic S, Ribeiro MJ et al (2006) Effect of fetal neural transplants in patients with Huntington's disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 5(4):303–309. doi:10.1016/s1474-4422(06)70381-7 CrossRefPubMedGoogle Scholar
  89. 89.
    Barker RA, Mason SL, Harrower TP, Swain RA, Ho AK, Sahakian BJ, Mathur R, Elneil S et al (2013) The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington's disease. J Neurol Neurosurg Psychiatry 84(6):657–665. doi:10.1136/jnnp-2012-302441 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Cicchetti F, Saporta S, Hauser RA, Parent M, Saint-Pierre M, Sanberg PR, Li XJ, Parker JR et al (2009) Neural transplants in patients with Huntington's disease undergo disease-like neuronal degeneration. Proc Natl Acad Sci U S A 106(30):12483–12488. doi:10.1073/pnas.0904239106 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Jeon I, Choi C, Lee N, Im W, Kim M, Oh SH, Park IH, Kim HS et al (2014) In vivo roles of a patient-derived induced pluripotent stem cell Line (HD72-iPSC) in the YAC128 model of Huntington's disease. Int J Stem Cells 7(1):43–47. doi:10.15283/ijsc.2014.7.1.43 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Yang W, Dunlap JR, Andrews RB, Wetzel R (2002) Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum Mol Genet 11(23):2905–2917CrossRefPubMedGoogle Scholar
  93. 93.
    Ren PH, Lauckner JE, Kachirskaia I, Heuser JE, Melki R, Kopito RR (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine aggregates. Nat Cell Biol 11(2):219–225. doi:10.1038/ncb1830 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Herrera F, Tenreiro S, Miller-Fleming L, Outeiro TF (2011) Visualization of cell-to-cell transmission of mutant huntingtin oligomers. PLoS Curr 3:Rrn1210. doi:10.1371/currents.RRN1210 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Costanzo M, Abounit S, Marzo L, Danckaert A, Chamoun Z, Roux P, Zurzolo C (2013) Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J Cell Sci 126(Pt 16):3678–3685. doi:10.1242/jcs.126086 CrossRefPubMedGoogle Scholar
  96. 96.
    Pecho-Vrieseling E, Rieker C, Fuchs S, Bleckmann D, Esposito MS, Botta P, Goldstein C, Bernhard M et al (2014) Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. Nat Neurosci 17(8):1064–1072. doi:10.1038/nn.3761 CrossRefPubMedGoogle Scholar
  97. 97.
    Pearce MM, Spartz EJ, Hong W, Luo L, Kopito RR (2015) Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the drosophila brain. Nat Commun 6:6768. doi:10.1038/ncomms7768 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ling Liu
    • 1
  • Jin-Sha Huang
    • 1
  • Chao Han
    • 1
  • Guo-Xin Zhang
    • 1
  • Xiao-Yun Xu
    • 1
  • Yan Shen
    • 1
  • Jie Li
    • 1
  • Hai-Yang Jiang
    • 1
  • Zhi-Cheng Lin
    • 2
  • Nian Xiong
    • 1
  • Tao Wang
    • 1
  1. 1.Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Psychiatry, Harvard Medical School; Division of Alcohol and Drug Abuse, and Mailman Neuroscience Research Center, McLean HospitalBelmontUSA

Personalised recommendations