Advertisement

Molecular Neurobiology

, Volume 53, Issue 9, pp 6407–6412 | Cite as

Loss of Heterozygosity of 9p Is Associated with Poorer Survival in Patients with Gliomas

  • Tingfen Huang
  • Shufa Li
  • Zhen Yang
  • Jicheng Liu
  • Yunwei HanEmail author
Article

Abstract

The prognostic factors associated with the survival of glioma patients have not been well established. Loss of heterozygosity (LOH) of 9p was known to be a typical molecular signature of gliomas, but it was still unclear whether LOH of 9p was associated with poorer survival in patients with gliomas. We searched PubMed and Embase databases from the earliest records to May 2015 to identify studies that met the inclusion criteria. Either a fixed- or a random-effects model was used to calculate the pooled hazard ratio (HR) according to the between-study heterogeneity. Thirteen eligible studies involving 1465 cases of gliomas were included in the meta-analysis. There was little between-study heterogeneity (I 2 = 15 %), and the fixed-effects model was used to calculate the pooled HR. Meta-analysis of total 13 studies showed that LOH of 9p was significantly associated with poorer prognosis of glioma patients (HR = 1.39, 95%CI 1.17–1.64, P = 0.0002). Meta-analysis of eight studies reporting adjusted estimates showed that LOH of 9p was independently associated with poorer prognosis of glioma patients (HR = 1.40, 95%CI 1.14–1.72, P = 0.001). Subgroup analysis by types of gliomas showed that LOH of 9p was significantly associated with poorer prognosis in patients with glioblastoma (HR = 1.34, 95%CI 1.01–1.78, P = 0.04). There was no obvious risk of publication bias shown in the funnel plot. LOH of 9p is significantly associated with poorer prognosis of glioma patients, which is a useful biomarker in predicting patients’ survival.

Keywords

Loss of heterozygosity 9p Glioma 

Notes

Compliance with Ethical Standards

Conflict of Interest

None declared.

Funding

None declared.

References

  1. 1.
    Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA 310(17):1842–1850CrossRefPubMedGoogle Scholar
  2. 2.
    Chen J, McKay RM, Parada LF (2012) Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149(1):36–47CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Liu Y, Shete S, Hosking F, Robertson L, Houlston R, Bondy M (2010) Genetic advances in glioma: susceptibility genes and networks. Curr Opin Genet Dev 20(3):239–244CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Viaccoz A, Lekoubou A, Ducray F (2012) Chemotherapy in low-grade gliomas. Curr Opin Oncol 24(6):694–701CrossRefPubMedGoogle Scholar
  5. 5.
    Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY (2012) Primary brain tumours in adults. Lancet 379(9830):1984–1996CrossRefPubMedGoogle Scholar
  6. 6.
    Turkalp Z, Karamchandani J, Das S (2014) IDH mutation in glioma: new insights and promises for the future. JAMA Neurol 71(10):1319–1325CrossRefPubMedGoogle Scholar
  7. 7.
    Kloosterhof NK, Bralten LB, Dubbink HJ, French PJ, van den Bent MJ (2011) Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol 12(1):83–91CrossRefPubMedGoogle Scholar
  8. 8.
    Maruno M, Yoshimine T, Muhammad AK, Tokiyoshi K, Hayakawa T (1996) Loss of heterozygosity of microsatellite loci on chromosome 9p in astrocytic tumors and its prognostic implications. J Neurooncol 30(1):19–24CrossRefPubMedGoogle Scholar
  9. 9.
    Kunwar S, Mohapatra G, Bollen A, Lamborn KR, Prados M, Feuerstein BG (2001) Genetic subgroups of anaplastic astrocytomas correlate with patient age and survival. Cancer Res 61(20):7683–7688PubMedGoogle Scholar
  10. 10.
    Rasheed A, Herndon JE, Stenzel TT, Raetz JG, Kendelhardt J, Friedman HS, Friedman AH, Bigner DD et al (2002) Molecular markers of prognosis in astrocytic tumors. Cancer 94(10):2688–2697CrossRefPubMedGoogle Scholar
  11. 11.
    Brat DJ, Seiferheld WF, Perry A, Hammond EH, Murray KJ, Schulsinger AR, Mehta MP, Curran WJ (2004) Analysis of 1p, 19q, 9p, and 10q as prognostic markers for high-grade astrocytomas using fluorescence in situ hybridization on tissue microarrays from Radiation Therapy Oncology Group trials. Neurol Oncol 6(2):96–103CrossRefGoogle Scholar
  12. 12.
    Kujas M, Lejeune J, Benouaich-Amiel A, Criniere E, Laigle-Donadey F, Marie Y, Mokhtari K, Polivka M et al (2005) Chromosome 1p loss: a favorable prognostic factor in low-grade gliomas. Ann Neurol 58(2):322–326CrossRefPubMedGoogle Scholar
  13. 13.
    Dehais C, Laigle-Donadey F, Marie Y, Kujas M, Lejeune J, Benouaich-Amiel A, Pedretti M, Polivka M et al (2006) Prognostic stratification of patients with anaplastic gliomas according to genetic profile. Cancer 107(8):1891–1897CrossRefPubMedGoogle Scholar
  14. 14.
    Trost D, Ehrler M, Fimmers R, Felsberg J, Sabel MC, Kirsch L, Schramm J, Wiestler OD et al (2007) Identification of genomic aberrations associated with shorter overall survival in patients with oligodendroglial tumors. Int J Cancer 120(11):2368–2376CrossRefPubMedGoogle Scholar
  15. 15.
    Kuo LT, Kuo KT, Lee MJ, Wei CC, Scaravilli F, Tsai JC, Tseng HM, Kuo MF et al (2009) Correlation among pathology, genetic and epigenetic profiles, and clinical outcome in oligodendroglial tumors. Int J Cancer 124(12):2872–2879CrossRefPubMedGoogle Scholar
  16. 16.
    Houillier C, Mokhtari K, Carpentier C, Criniere E, Marie Y, Rousseau A, Kaloshi G, Dehais C et al (2010) Chromosome 9p and 10q losses predict unfavorable outcome in low-grade gliomas. Neurol Oncol 12(1):2–6CrossRefGoogle Scholar
  17. 17.
    Shibahara I, Sonoda Y, Kanamori M, Saito R, Yamashita Y, Kumabe T, Watanabe M, Suzuki H et al (2012) IDH1/2 gene status defines the prognosis and molecular profiles in patients with grade III gliomas. Int J Clin Oncol 17(6):551–561CrossRefPubMedGoogle Scholar
  18. 18.
    Jesionek-Kupnicka D, Szybka M, Potemski P, Kulczycka-Wojdala D, Jaskolski D, Bienkowski M, Skowronski W, Papierz W et al (2013) Association of loss of heterozygosity with shorter survival in primary glioblastoma patients. Pol J Pathol 64(4):268–275CrossRefPubMedGoogle Scholar
  19. 19.
    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151(4):W65–94CrossRefPubMedGoogle Scholar
  20. 20.
    Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605CrossRefPubMedGoogle Scholar
  21. 21.
    Fallon KB, Palmer CA, Roth KA, Nabors LB, Wang W, Carpenter M, Banerjee R, Forsyth P et al (2004) Prognostic value of 1p, 19q, 9p, 10q, and EGFR-FISH analyses in recurrent oligodendrogliomas. J Neuropathol Exp Neurol 63(4):314–322CrossRefPubMedGoogle Scholar
  22. 22.
    Wiltshire RN, Herndon JE 2nd, Lloyd A, Friedman HS, Bigner DD, Bigner SH, McLendon RE (2004) Comparative genomic hybridization analysis of astrocytomas: prognostic and diagnostic implications. J Mol Diagn 6(3):166–179CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Weller M, Felsberg J, Hartmann C, Berger H, Steinbach JP, Schramm J, Westphal M, Schackert G et al (2009) Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J Clin Oncol 27(34):5743–5750CrossRefPubMedGoogle Scholar
  24. 24.
    Shibahara I, Sonoda Y, Saito R, Kanamori M, Yamashita Y, Kumabe T, Watanabe M, Suzuki H et al (2013) The expression status of CD133 is associated with the pattern and timing of primary glioblastoma recurrence. Neurol Oncol 15(9):1151–1159CrossRefGoogle Scholar
  25. 25.
    Houillier C, Lejeune J, Benouaich-Amiel A, Laigle-Donadey F, Criniere E, Mokhtari K, Thillet J, Delattre JY et al (2006) Prognostic impact of molecular markers in a series of 220 primary glioblastomas. Cancer 106(10):2218–2223CrossRefPubMedGoogle Scholar
  26. 26.
    Yakut T, Gutenberg A, Bekar A, Egeli U, Gunawan B, Ercan I, Tolunay S, Doygun M et al (2007) Correlation of chromosomal imbalances by comparative genomic hybridization and expression of EGFR, PTEN, p53, and MIB-1 in diffuse gliomas. Oncol Rep 17(5):1037–1043PubMedGoogle Scholar
  27. 27.
    Campbell BA, Horsman DE, Maguire J, Young S, Curman D, Ma R, Thiessen B (2008) Chromosomal alterations in oligodendroglial tumours over multiple surgeries: is tumour progression associated with change in 1p/19q status? J Neurooncol 89(1):37–45CrossRefPubMedGoogle Scholar
  28. 28.
    Idbaih A, Marie Y, Lucchesi C, Pierron G, Manie E, Raynal V, Mosseri V, Hoang-Xuan K et al (2008) BAC array CGH distinguishes mutually exclusive alterations that define clinicogenetic subtypes of gliomas. Int J Cancer 122(8):1778–1786CrossRefPubMedGoogle Scholar
  29. 29.
    Bredel M, Scholtens DM, Harsh GR, Bredel C, Chandler JP, Renfrow JJ, Yadav AK, Vogel H et al (2009) A network model of a cooperative genetic landscape in brain tumors. JAMA 302(3):261–275CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Taillibert S, Vincent LA, Granger B, Marie Y, Carpentier C, Guillevin R, Bellanger A, Mokhtari K et al (2009) Bevacizumab and irinotecan for recurrent oligodendroglial tumors. Neurology 72(18):1601–1606CrossRefPubMedGoogle Scholar
  31. 31.
    Horbinski C, Hamilton RL, Nikiforov Y, Pollack IF (2010) Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 119(5):641–649CrossRefPubMedGoogle Scholar
  32. 32.
    Vital AL, Tabernero MD, Crespo I, Rebelo O, Tao H, Gomes F, Lopes MC, Orfao A (2010) Intratumoral patterns of clonal evolution in gliomas. Neurogenetics 11(2):227–239CrossRefPubMedGoogle Scholar
  33. 33.
    Collins VP, Ichimura K, Di Y, Pearson D, Chan R, Thompson LC, Gabe R, Brada M, Stenning SP (2014) Prognostic and predictive markers in recurrent high grade glioma; results from the BR12 randomised trial. Acta Neuropathol Commun 268Google Scholar
  34. 34.
    Esmaeili M, Hamans BC, Navis AC, van Horssen R, Bathen TF, Gribbestad IS, Leenders WP, Heerschap A (2014) IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma. Cancer Res 74(17):4898–4907CrossRefPubMedGoogle Scholar
  35. 35.
    Killela PJ, Pirozzi CJ, Healy P, Reitman ZJ, Lipp E, Rasheed BA, Yang R, Diplas BH et al (2014) Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget 5(6):1515–1525CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Minniti G, Scaringi C, Arcella A, Lanzetta G, Di Stefano D, Scarpino S, Bozzao A, Pace A et al (2014) IDH1 mutation and MGMT methylation status predict survival in patients with anaplastic astrocytoma treated with temozolomide-based chemoradiotherapy. J Neurooncol 118(2):377–383CrossRefPubMedGoogle Scholar
  37. 37.
    Waqar M, Hanif S, Rathi N, Das K, Zakaria R, Brodbelt AR, Walker C, Jenkinson MD (2014) Diagnostic challenges, management and outcomes of midline low-grade gliomas. J Neurooncol 120(2):389–398CrossRefPubMedGoogle Scholar
  38. 38.
    Ogura R, Tsukamoto Y, Natsumeda M, Isogawa M, Aoki H, Kobayashi T, Yoshida S, Okamoto K, Takahashi H, Fujii Y, Kakita A (2015) Immunohistochemical profiles of IDH1, MGMT and P53: practical significance for prognostication of patients with diffuse gliomas. NeuropathologyGoogle Scholar
  39. 39.
    Chang IW, Hsu CT, Lin JW, Hung CH (2013) The prognostic impact of MGMT expression on low-grade gangliogliomas: a clinicopathological and immunohistochemical study. Folia Neuropathol 51(4):275–282CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tingfen Huang
    • 1
  • Shufa Li
    • 2
  • Zhen Yang
    • 3
  • Jicheng Liu
    • 4
  • Yunwei Han
    • 5
    Email author
  1. 1.Emergency DepartmentLinyi People’s HospitalLinyiChina
  2. 2.Department of Endocrinology and MetabolismLinyi People’s HospitalLinyiChina
  3. 3.Department of NeurosurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
  4. 4.Cancer Hospital of Shanghai CityShanghaiChina
  5. 5.Department of OncologyAffiliated Hospital of Sichuan Medical UniversityLuzhouChina

Personalised recommendations