Advertisement

Molecular Neurobiology

, Volume 53, Issue 9, pp 6057–6068 | Cite as

Preconditioning with VEGF Enhances Angiogenic and Neuroprotective Effects of Bone Marrow Mononuclear Cell Transplantation in a Rat Model of Chronic Cerebral Hypoperfusion

  • Jianping WangEmail author
  • Xiaojie Fu
  • Lie Yu
  • Nan Li
  • Menghan Wang
  • Xi Liu
  • Di Zhang
  • Wei Han
  • Chenguang Zhou
  • Jian WangEmail author
Article

Abstract

Bone marrow mononuclear cell (BMMNC) transplantation is a promising therapy for brain ischemia. However, BMMNCs are few in number, and a limited time window is available during which they can penetrate the blood–brain barrier (BBB) and migrate to the brain. We investigated whether vascular endothelial growth factor (VEGF) can facilitate BMMNC migration into the ischemic brain and enhance their therapeutic effect in a rat model of chronic cerebral hypoperfusion. First, we assessed the impact of VEGF on the BBB of rats that had undergone permanent bilateral occlusion of the common carotid arteries (2VO). Then, we transplanted BMMNCs into 2VO rats pretreated with intracerebroventricular VEGF or vehicle. We examined cognitive function with the Morris water maze test, BMMNC migration by immunofluorescence analysis, and cytokine levels in the peripheral blood by enzyme-linked immunosorbent assay (ELISA). Angiogenesis and neural degeneration were evaluated by staining tissue with Ki67/lectin or Fluoro-Jade B. We found that at a dose of 0.2 μg/rat, VEGF significantly increased BBB permeability without causing brain edema in 2VO rats. VEGF + BMMNC-treated rats had more BMMNC migration in the ischemic brain, better learning and memory, greater proliferation of vessels, and fewer degenerating neurons than did BMMNC-treated rats. Pretreatment with VEGF receptor inhibitor SU5416 significantly decreased BMMNC migration and abolished the therapeutic effect of BMMNC transplantation. We conclude that preconditioning with an appropriate dose of VEGF can enhance the therapeutic efficacy of BMMNC transplantation in 2VO rats, possibly by facilitating BMMNC migration into the ischemic brain.

Keywords

Bone marrow mononuclear cells Blood brain barrier Cell transplantation Chronic cerebral hypoperfusion VEGF 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81271284, 81571137), The American Heart Association (13GRNT15730001), and the National Institutes of Health (R01NS078026, R01AT007317). We thank Yoyo Wang, Jiarui Wang, and Claire Levine for assistance with this manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Liu J, Wang LN, Tan JP (2013) Dementia in China: current status. Neurology 81(12):1077–1078. doi: 10.1212/WNL.0b013e3182a4a3cb CrossRefPubMedGoogle Scholar
  2. 2.
    Jia J, Wang F, Wei C, Zhou A, Jia X, Li F, Tang M, Chu L et al (2014) The prevalence of dementia in urban and rural areas of China. Alzheimer Dement: J Alzheimer Assoc 10(1):1–9CrossRefGoogle Scholar
  3. 3.
    Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, Luchsinger JA, Ogunniyi A et al (2008) Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol 7(9):812–826CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Brown WR, Thore CR (2011) Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol 37(1):56–74. doi: 10.1111/j.1365-2990.2010.01139.x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Baskys A, Cheng JX (2012) Pharmacological prevention and treatment of vascular dementia: approaches and perspectives. Exp Gerontol 47(11):887–891. doi: 10.1016/j.exger.2012.07.002 CrossRefPubMedGoogle Scholar
  6. 6.
    Giraldi-Guimaraes A, de Freitas HT, Coelho Bde P, Macedo-Ramos H, Mendez-Otero R, Cavalcante LA, Baetas-da-Cruz W (2012) Bone marrow mononuclear cells and mannose receptor expression in focal cortical ischemia. Brain Res 1452:173–184. doi: 10.1016/j.brainres.2012.03.002 CrossRefPubMedGoogle Scholar
  7. 7.
    Wang J, Yu L, Jiang C, Chen M, Ou C, Wang J (2013) Bone marrow mononuclear cells exert long-term neuroprotection in a rat model of ischemic stroke by promoting arteriogenesis and angiogenesis. Brain Behav Immun 34:56–66. doi: 10.1016/j.bbi.2013.07.010 CrossRefPubMedGoogle Scholar
  8. 8.
    Wang J, Liu X, Lu H, Jiang C, Cui X, Yu L, Fu X, Li Q, Wang J (2015) CXCR4(+)CD45(−) BMMNC subpopulation is superior to unfractionated BMMNCs for protection after ischemic stroke in mice. Brain Behav Immun 45:98–108. doi: 10.1016/j.bbi.2014.12.015 CrossRefPubMedGoogle Scholar
  9. 9.
    Brenneman M, Sharma S, Harting M, Strong R, Cox CS Jr, Aronowski J, Grotta JC, Savitz SI (2010) Autologous bone marrow mononuclear cells enhance recovery after acute ischemic stroke in young and middle-aged rats. J Cereb Blood Flow Metab 30(1):140–149. doi: 10.1038/jcbfm.2009.198 CrossRefPubMedGoogle Scholar
  10. 10.
    Sharma S, Yang B, Strong R, Xi X, Brenneman M, Grotta JC, Aronowski J, Savitz SI (2010) Bone marrow mononuclear cells protect neurons and modulate microglia in cell culture models of ischemic stroke. J Neurosci Res 88(13):2869–2876. doi: 10.1002/jnr.22452 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Savitz SI, Misra V, Kasam M, Juneja H, Cox CS Jr, Alderman S, Aisiku I, Kar S et al (2011) Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann Neurol 70(1):59–69. doi: 10.1002/ana.22458 CrossRefPubMedGoogle Scholar
  12. 12.
    Yang B, Migliati E, Parsha K, Schaar K, Xi X, Aronowski J, Savitz SI (2013) Intra-arterial delivery is not superior to intravenous delivery of autologous bone marrow mononuclear cells in acute ischemic stroke. Stroke 44(12):3463–3472. doi: 10.1161/STROKEAHA.111.000821 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Friedrich MA, Martins MP, Araujo MD, Klamt C, Vedolin L, Garicochea B, Raupp EF, Sartori El Ammar J et al (2012) Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplant 21(1):S13–S21. doi: 10.3727/096368911X612512 CrossRefPubMedGoogle Scholar
  14. 14.
    Rosado-de-Castro PH, Schmidt Fda R, Battistella V, de Souza SA L, Gutfilen B, Goldenberg RC, Kasai-Brunswick TH, Vairo L et al (2013) Biodistribution of bone marrow mononuclear cells after intra-arterial or intravenous transplantation in subacute stroke patients. Regen Med 8(2):145–155. doi: 10.2217/rme.13.2 CrossRefPubMedGoogle Scholar
  15. 15.
    Xu Y, Hu X, Wang L, Jiang Z, Liu X, Yu H, Zhang Z, Chen H et al (2013) Preconditioning via angiotensin type 2 receptor activation improves therapeutic efficacy of bone marrow mononuclear cells for cardiac repair. PLoS One 8(12), e82997CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Matoba S, Matsubara H (2009) Therapeutic angiogenesis for peripheral artery diseases by autologous bone marrow cell transplantation. Curr Pharm Des 15(24):2769–2777CrossRefPubMedGoogle Scholar
  17. 17.
    Ruiz-Salmeron R, de la Cuesta-Diaz A, Constantino-Bermejo M, Perez-Camacho I, Marcos-Sanchez F, Hmadcha A, Soria B (2011) Angiographic demonstration of neoangiogenesis after intra-arterial infusion of autologous bone marrow mononuclear cells in diabetic patients with critical limb ischemia. Cell Transplant 20(10):1629–1639CrossRefPubMedGoogle Scholar
  18. 18.
    Jiwa NS, Garrard P, Hainsworth AH (2010) Experimental models of vascular dementia and vascular cognitive impairment: a systematic review. J Neurochem 115(4):814–828CrossRefPubMedGoogle Scholar
  19. 19.
    Wang J, Fu X, Jiang C, Yu L, Wang M, Han W, Liu L, Wang J (2014) Bone marrow mononuclear cell transplantation promotes therapeutic angiogenesis via upregulation of the VEGF-VEGFR2 signaling pathway in a rat model of vascular dementia. Behav Brain Res 265:171–180CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Miki Y, Nonoguchi N, Ikeda N, Coffin RS, Kuroiwa T, S-i M (2007) Vascular endothelial growth factor gene-transferred bone marrow stromal cells engineered with a herpes simplex virus type 1 vector can improve neurological deficits and reduce infarction volume in rat brain ischemia. Neurosurgery 61(3):586–594, discussion 594–585CrossRefPubMedGoogle Scholar
  21. 21.
    Chang YS, Ahn SY, Jeon HB, Sung DK, Kim ES, Sung SI, Yoo HS, Choi SJ et al (2014) Critical role of VEGF secreted by mesenchymal stem cells in hyperoxic lung injury. Am J Respir Cell Mol Biol. doi: 10.1165/rcmb.2013-0385OC PubMedCentralGoogle Scholar
  22. 22.
    Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, Shamloo M, Hamilton SA et al (2011) Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells 29(2):274–285. doi: 10.1002/stem.584 CrossRefPubMedGoogle Scholar
  23. 23.
    Ma Y, Qu Y, Fei Z (2011) Vascular endothelial growth factor in cerebral ischemia. J Neurosci Res 89(7):969–978. doi: 10.1002/jnr.22628 CrossRefPubMedGoogle Scholar
  24. 24.
    Zechariah A, ElAli A, Doeppner TR, Jin F, Hasan MR, Helfrich I, Mies G, Hermann DM (2013) Vascular endothelial growth factor promotes pericyte coverage of brain capillaries, improves cerebral blood flow during subsequent focal cerebral ischemia, and preserves the metabolic penumbra. Stroke 44(6):1690–1697. doi: 10.1161/STROKEAHA.111.000240 CrossRefPubMedGoogle Scholar
  25. 25.
    Chen J, Zhang C, Jiang H, Li Y, Zhang L, Robin A, Katakowski M, Lu M et al (2005) Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Metab 25(2):281–290. doi: 10.1038/sj.jcbfm.9600034 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bleier BS, Kohman RE, Feldman RE, Ramanlal S, Han X (2013) Permeabilization of the blood–brain barrier via mucosal engrafting: implications for drug delivery to the brain. PLoS One 8(4), e61694. doi: 10.1371/journal.pone.0061694 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Choy M, Ganesan V, Thomas DL, Thornton JS, Proctor E, King MD, van der Weerd L, Gadian DG et al (2006) The chronic vascular and haemodynamic response after permanent bilateral common carotid occlusion in newborn and adult rats. J Cereb Blood Flow Metab 26(8):1066–1075. doi: 10.1038/sj.jcbfm.9600259 CrossRefPubMedGoogle Scholar
  28. 28.
    Jiang C, Wang J, Yu L, Ou C, Liu X, Zhao X, Wang J (2013) Comparison of the therapeutic effects of bone marrow mononuclear cells and microglia for permanent cerebral ischemia. Behav Brain Res 250:222–229. doi: 10.1016/j.bbr.2013.05.011 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Storkebaum E, Lambrechts D, Dewerchin M, Moreno-Murciano MP, Appelmans S, Oh H, Van Damme P, Rutten B et al (2005) Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8(1):85–92. doi: 10.1038/nn1360 CrossRefPubMedGoogle Scholar
  30. 30.
    Nowacka MM, Obuchowicz E (2012) Vascular endothelial growth factor (VEGF) and its role in the central nervous system: a new element in the neurotrophic hypothesis of antidepressant drug action. Neuropeptides 46(1):1–10. doi: 10.1016/j.npep.2011.05.005 CrossRefPubMedGoogle Scholar
  31. 31.
    Yang B, Strong R, Sharma S, Brenneman M, Mallikarjunarao K, Xi X, Grotta JC, Aronowski J et al (2011) Therapeutic time window and dose response of autologous bone marrow mononuclear cells for ischemic stroke. J Neurosci Res 89(6):833–839. doi: 10.1002/jnr.22614 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chang CF, Cho S, Wang J (2014) (−)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Ann Clin Transl Neurol 1(4):258–271. doi: 10.1002/acn3.54 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Farkas E, Luiten PG, Bari F (2007) Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 54(1):162–180. doi: 10.1016/j.brainresrev.2007.01.003 CrossRefPubMedGoogle Scholar
  34. 34.
    Feng Y, Rhodes PG, Bhatt AJ (2008) Neuroprotective effects of vascular endothelial growth factor following hypoxic ischemic brain injury in neonatal rats. Pediatr Res 64(4):370–374. doi: 10.1203/PDR.0b013e318180ebe6 CrossRefPubMedGoogle Scholar
  35. 35.
    Cechetti F, Worm PV, Pereira LO, Siqueira IR CAN (2010) The modified 2VO ischemia protocol causes cognitive impairment similar to that induced by the standard method, but with a better survival rate. Braz J Med Biol Res 43(12):1178–1183CrossRefPubMedGoogle Scholar
  36. 36.
    Manaenko A, Chen H, Kammer J, Zhang JH, Tang J (2011) Comparison Evans blue injection routes: intravenous versus intraperitoneal, for measurement of blood–brain barrier in a mice hemorrhage model. J Neurosci Methods 195(2):206–210. doi: 10.1016/j.jneumeth.2010.12.013 CrossRefPubMedGoogle Scholar
  37. 37.
    Chang SH, Mirabolfathinejad SG, Katta H, Cumpian AM, Gong L, Caetano MS, Moghaddam SJ, Dong C (2014) T helper 17 cells play a critical pathogenic role in lung cancer. Proc Natl Acad Sci U S A 111(15):5664–5669. doi: 10.1073/pnas.1319051111 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang J, Fields J, Zhao C, Langer J, Thimmulappa RK, Kensler TW, Yamamoto M, Biswal S et al (2007) Role of Nrf2 in protection against intracerebral hemorrhage injury in mice. Free Radic Biol Med 43(3):408–414. doi: 10.1016/j.freeradbiomed.2007.04.020 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Donega V, van Velthoven CT, Nijboer CH, Kavelaars A, Heijnen CJ (2013) The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment. J Cereb Blood Flow Metab 33(5):625–634. doi: 10.1038/jcbfm.2013.3 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Darsalia V, Allison SJ, Cusulin C, Monni E, Kuzdas D, Kallur T, Lindvall O, Kokaia Z (2011) Cell number and timing of transplantation determine survival of human neural stem cell grafts in stroke-damaged rat brain. J Cereb Blood Flow Metab 31(1):235–242. doi: 10.1038/jcbfm.2010.81 CrossRefPubMedGoogle Scholar
  41. 41.
    Hecht N, Schneider UC, Czabanka M, Vinci M, Hatzopoulos AK, Vajkoczy P, Woitzik J (2014) Endothelial progenitor cells augment collateralization and hemodynamic rescue in a model of chronic cerebral ischemia. J Cereb Blood Flow Metab 34(8):1297–1305. doi: 10.1038/jcbfm.2014.78 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS Jr (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18(5):683–692. doi: 10.1089/scd.2008.0253 CrossRefPubMedGoogle Scholar
  43. 43.
    Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P et al (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5(1):54–63. doi: 10.1016/j.stem.2009.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang J, Yu L, Jiang C, Fu X, Liu X, Wang M, Ou C, Cui X et al (2015) Cerebral ischemia increases bone marrow CD4+CD25+FoxP3+ regulatory T cells in mice via signals from sympathetic nervous system. Brain Behav Immun 43:172–183. doi: 10.1016/j.bbi.2014.07.022 CrossRefPubMedGoogle Scholar
  45. 45.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439. doi: 10.1038/380435a0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jianping Wang
    • 1
    Email author
  • Xiaojie Fu
    • 1
  • Lie Yu
    • 1
  • Nan Li
    • 1
  • Menghan Wang
    • 1
  • Xi Liu
    • 1
  • Di Zhang
    • 1
  • Wei Han
    • 1
  • Chenguang Zhou
    • 1
  • Jian Wang
    • 2
    Email author
  1. 1.Department of NeurologyThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  2. 2.Department of Anesthesiology/Critical Care MedicineJohns Hopkins University, School of MedicineBaltimoreUSA

Personalised recommendations