Advertisement

Molecular Neurobiology

, Volume 53, Issue 9, pp 5818–5832 | Cite as

Selenoprotein T Deficiency Leads to Neurodevelopmental Abnormalities and Hyperactive Behavior in Mice

  • Matthieu T. Castex
  • Arnaud Arabo
  • Magalie Bénard
  • Vincent Roy
  • Vadim Le Joncour
  • Gaëtan Prévost
  • Jean-Jacques Bonnet
  • Youssef AnouarEmail author
  • Anthony Falluel-Morel
Article

Abstract

Selenoprotein T (SelT) is a newly discovered thioredoxin-like protein, which is abundantly but transiently expressed in the neural lineage during brain ontogenesis. Because its physiological function in the brain remains unknown, we developed a conditional knockout mouse line (Nes-Cre/SelTfl/fl) in which SelT gene is specifically disrupted in nerve cells. At postnatal day 7 (P7), these mice exhibited reduced volume of different brain structures, including hippocampus, cerebellum, and cerebral cortex. This phenotype, which is observed early during the first postnatal week, culminated at P7 and was associated with increased loss of immature neurons but not glial cells, through apoptotic cell death. This phenomenon was accompanied by elevated levels of intracellular reactive oxygen species, which may explain the increased neuron demise and reduced brain structure volumes. At the second postnatal week, an increase in neurogenesis was observed in the cerebellum of Nes-Cre/SelTfl/fl mice, suggesting the occurrence of developmental compensatory mechanisms in the brain. In fact, the brain volume alterations observed at P7 were attenuated in adult mice. Nevertheless, SelT mutant mice exhibited a hyperactive behavior, suggesting that despite an apparent morphological compensation, SelT deficiency leads to cerebral malfunction in adulthood. Altogether, these results demonstrate that SelT exerts a neuroprotective role which is essential during brain development, and that its loss impairs mice behavior.

Keywords

Antioxidant Neuroprotection Brain ontogenesis Knockout mice Behavioral deficit 

Notes

Acknowledgments

This work was supported by the Institut National de la Santé et de la Recherche Médicale (Inserm, grant number U982); the University of Rouen; the Regional Council of Haute-Normandie; the European Community Interreg IV Program (grants PeReNE and TC2N); and the French Ministry for Higher Education and Research (Scholarship to M.T.C.). We thank Dorthe Cartier and Pr Pierrick Gandolfo of Inserm U982 for technical assistance and helpful comments. Part of the behavioral tests was done on the Service Commun d’Analyse Comportementale (SCAC). Images were acquired in PRIMACEN (http://primacen.crihan.fr), the Cell Imaging Facility of Normandy.

Compliance With Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Atkins JF, Gesteland RF (2000) The twenty-first amino acid. Nature 407:463–465. doi: 10.1038/35035189 CrossRefPubMedGoogle Scholar
  2. 2.
    Allmang C, Wurth L, Krol A (2009) The selenium to selenoprotein pathway in eukaryotes: more molecular partners than anticipated. Biochim Biophys Acta 1790:1415–1423. doi: 10.1016/j.bbagen.2009.03.003 CrossRefPubMedGoogle Scholar
  3. 3.
    Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777. doi: 10.1152/physrev.00039.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Savaskan NE, Borchert A, Bräuer AU, Kuhn H (2007) Role for glutathione peroxidase-4 in brain development and neuronal apoptosis: specific induction of enzyme expression in reactive astrocytes following brain injury. Free Radic Biol Med 43:191–201. doi: 10.1016/j.freeradbiomed.2007.03.033 CrossRefPubMedGoogle Scholar
  5. 5.
    Tanguy Y, Falluel-Morel A, Arthaud S, Boukhzar L, Manecka D-L, Chagraoui A, Prevost G, Elias S et al (2011) The PACAP-regulated gene selenoprotein T is highly induced in nervous, endocrine, and metabolic tissues during ontogenetic and regenerative processes. Endocrinology 152:4322–4335. doi: 10.1210/en.2011-1246 CrossRefPubMedGoogle Scholar
  6. 6.
    Pitts MW, Byrns CN, Ogawa-Wong AN, Kremer P, Berry MJ (2014) Selenoproteins in nervous system development and function. Biol Trace Elem Res 161:231–245. doi: 10.1007/s12011-014-0060-2 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wirth EK, Conrad M, Winterer J, Wozny C, Carlson BA, Roth S, Schmitz D, Bornkamm GW et al (2010) Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. FASEB J 24:844–852. doi: 10.1096/fj.09-143974 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Agamy O, Ben Zeev B, Lev D, Marcus B, Fine D, Su D, Narkis G, Ofir R et al (2010) Mutations disrupting selenocysteine formation cause progressive cerebello-cerebral atrophy. Am J Hum Genet 87:538–544. doi: 10.1016/j.ajhg.2010.09.007 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Soerensen J, Jakupoglu C, Beck H, Förster H, Schmidt J, Schmahl W, Schweizer U, Conrad M et al (2008) The role of thioredoxin reductases in brain development. PLoS ONE 3:e1813. doi: 10.1371/journal.pone.0001813 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kaindl AM, Favrais G, Gressens P (2009) Molecular mechanisms involved in injury to the preterm brain. J Child Neurol 24:1112–1118. doi: 10.1177/0883073809337920 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Farina M, Rocha JBT, Aschner M (2011) Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci 89:555–563. doi: 10.1016/j.lfs.2011.05.019 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cristalli DO, Arnal N, Marra FA, De Alaniz MJT, Marra CA (2012) Peripheral markers in neurodegenerative patients and their first-degree relatives. J Neurol Sci 314:48–56. doi: 10.1016/j.jns.2011.11.001 CrossRefPubMedGoogle Scholar
  13. 13.
    Mariotti M, Ridge PG, Zhang Y, Lobanov AV, Pringle TH, Guigo R, Hatfield DL, Gladyshev VN (2012) Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS ONE 7:e33066. doi: 10.1371/journal.pone.0033066 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dikiy A, Novoselov SV, Fomenko DE, Sengupta A, Carlson BA, Cerny RL, Ginalski K, Grishin NV et al (2007) SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry 46:6871–6882. doi: 10.1021/bi602462q CrossRefPubMedGoogle Scholar
  15. 15.
    Grumolato L, Ghzili H, Montero-Hadjadje M, Gasman S, Lesage J, Tanguy Y, Galas L, Ait-Ali D et al (2008) Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion. FASEB J 22:1756–1768. doi: 10.1096/fj.06-075820 CrossRefPubMedGoogle Scholar
  16. 16.
    Ikematsu K, Tsuda R, Tsuruya S, Nakasono I (2007) Identification of novel genes expressed in hypoxic brain condition by fluorescence differential display. For Sci Int 169:168–172. doi: 10.1016/j.forsciint.2006.08.015 Google Scholar
  17. 17.
    Sengupta A, Carlson BA, Labunskyy VM, Gladyshev VN, Hatfield DL (2009) Selenoprotein T deficiency alters cell adhesion and elevates selenoprotein W expression in murine fibroblast cells. Biochem Cell Biol 87:953–961. doi: 10.1139/O09-064 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Carlson BA, Xu X-M, Gladyshev VN, Hatfield DL (2005) Selective rescue of selenoprotein expression in mice lacking a highly specialized methyl group in selenocysteine tRNA. J Biol Chem 280:5542–5548. doi: 10.1074/jbc.M411725200 CrossRefPubMedGoogle Scholar
  19. 19.
    Farley FW, Soriano P, Steffen LS, Dymecki SM (2000) Widespread recombinase expression using FLPeR (Flipper) mice. Genesis 28:106–110. doi: 10.1002/1526-968X(200011/12)28:3/4<106::AID-GENE30>3.0.CO;2-T CrossRefPubMedGoogle Scholar
  20. 20.
    Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban PC, Bock R, Klein R et al (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23:99–103CrossRefPubMedGoogle Scholar
  21. 21.
    Gundersen HJ (1980) Stereology—or how figures for spatial shape and content are obtained by observation of structures in sections. Microsc Acta 83:409–426PubMedGoogle Scholar
  22. 22.
    Gundersen HJ, Jensen EB (1987) The efficiency of systematic sampling in stereology and its prediction. J Microsc 147:229–263CrossRefPubMedGoogle Scholar
  23. 23.
    Paxinos G, Halliday G, Watson C, Koutcherov Y, Wang H (2006) Atlas of the developing mouse brain at E17.5, P0 and P6. Academic, San DiegoGoogle Scholar
  24. 24.
    Paxinos G, Franklin KBJ (2012) The mouse brain atlas. Academic, San DiegoGoogle Scholar
  25. 25.
    Desrues L, Lefebvre T, Lecointre C, Schouft M-T, Leprince J, Compère V, Morin F, Proust F et al (2012) Down-regulation of GABAA receptor via promiscuity with the vasoactive peptide urotensin II receptor. Potential involvement in astrocyte plasticity. PLoS ONE 7:e36319. doi: 10.1371/journal.pone.0036319 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Desrumaux C (2004) Phospholipid transfer protein (PLTP) deficiency reduces brain vitamin E content and increases anxiety in mice. FASEB J 19:296–297. doi: 10.1096/fj.04-2400fje PubMedGoogle Scholar
  27. 27.
    Hamburger V, Levi-Montalcini R (1949) Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool 111:457–501CrossRefPubMedGoogle Scholar
  28. 28.
    Johnston MV, Nakajima W, Hagberg H (2002) Mechanisms of hypoxic neurodegeneration in the developing brain. Neuroscientist 8:212–220CrossRefPubMedGoogle Scholar
  29. 29.
    Bandeira F, Lent R, Herculano-Houzel S (2009) Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Nat Acad Sci 106:14108–14113CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Falluel-Morel A, Tascau LI, Sokolowski K, Brabet P, DiCicco-Bloom E (2008) Granule cell survival is deficient in PAC1−/− mutant cerebellum. J Mol Neurosci 36:38–44. doi: 10.1007/s12031-008-9066-6 CrossRefPubMedGoogle Scholar
  31. 31.
    Vaudry D, Hamelink C, Damadzic R, Eskay RL, Gonzalez B, Eiden LE (2005) Endogenous PACAP acts as a stress response peptide to protect cerebellar neurons from ethanol or oxidative insult. Peptides 26:2518–2524. doi: 10.1016/j.peptides.2005.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Komuro H, Yacubova E (2003) Recent advances in cerebellar granule cell migration. Cell Mol Life Sci 60:1084–1098CrossRefPubMedGoogle Scholar
  33. 33.
    Chung YW, Jeong D, Noh OJ, Park YH, Kang SI, Lee MG, Lee TH, Yim MB et al (2009) Antioxidative role of selenoprotein W in oxidant-induced mouse embryonic neuronal cell death. Mol Cells 27:609–613. doi: 10.1007/s10059-009-0074-3 CrossRefPubMedGoogle Scholar
  34. 34.
    Mendelev N, Mehta SL, Witherspoon S, He Q, Sexton JZ, Li PA (2011) Upregulation of human selenoprotein H in murine hippocampal neuronal cells promotes mitochondrial biogenesis and functional performance. Mitochondrion 11:76–82. doi: 10.1016/j.mito.2010.07.007 CrossRefPubMedGoogle Scholar
  35. 35.
    Steinbrenner H, Alili L, Bilgic E, Sies H, Brenneisen P (2006) Involvement of selenoprotein P in protection of human astrocytes from oxidative damage. Free Radic Biol Med 40:1513–1523. doi: 10.1016/j.freeradbiomed.2005.12.022 CrossRefPubMedGoogle Scholar
  36. 36.
    Fradejas N, Del Carmen S-PÉREZM, Tranque P, Calvo S (2011) Selenoprotein S expression in reactive astrocytes following brain injury. Glia 59:959–972. doi: 10.1002/glia.21168 CrossRefPubMedGoogle Scholar
  37. 37.
    Sun Y, Gu QP, Whanger PD (2001) Selenoprotein W in overexpressed and underexpressed rat glial cells in culture. J Inor Biochem 84:151–156CrossRefGoogle Scholar
  38. 38.
    Yamada A, Suzuki N, Kuroiwa M, Takahashi A, Matsuyama S, Asayama K, Hirato J, Nakazato Y et al (2003) Encephalopathy in megacystis-microcolon-intestinal hypoperistalsis syndrome patients on long-term total parenteral nutrition possibly due to selenium deficiency. Acta Neuropathol 106:234–242. doi: 10.1007/s00401-003-0724-z CrossRefPubMedGoogle Scholar
  39. 39.
    Lyck L, Krøigård T, Finsen B (2007) Unbiased cell quantification reveals a continued increase in the number of neocortical neurones during early post-natal development in mice: post-natal recruitment of neocortical neurones. Eur J Neurosci 26:1749–1764. doi: 10.1111/j.1460-9568.2007.05763.x CrossRefPubMedGoogle Scholar
  40. 40.
    Raff M (1996) Size control: the regulation of cell numbers in animal development. Cell 86:173–175. doi: 10.1016/S0092-8674(00)80087-2 CrossRefPubMedGoogle Scholar
  41. 41.
    Jacobson DJ, Well M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354. doi: 10.1016/S0092-8674(00)81873-5 CrossRefPubMedGoogle Scholar
  42. 42.
    Le Belle JE, Orozco NM, Paucar AA, Saxe JP, Mottahedeh J, Pyle AD, Wu H, Kornblum HI (2011) Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8:59–71. doi: 10.1016/j.stem.2010.11.028 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Topchiy E, Panzhinskiy E, Griffin WST, Barger SW, Das M, Zawada WM (2013) Nox4-generated superoxide drives angiotensin II-induced neural stem cell proliferation. Dev Neurosci 35:293–305. doi: 10.1159/000350502 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Coleman LG, Oguz I, Lee J, Styner M, Crews FT (2012) Postnatal day 7 ethanol treatment causes persistent reductions in adult mouse brain volume and cortical neurons with sex specific effects on neurogenesis. Alcohol 46:603–612. doi: 10.1016/j.alcohol.2012.01.003 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Miller MW (1995) Generation of neurons in the rat dentate gyrus and hippocampus: effects of prenatal and postnatal treatment with ethanol. Alcohol Clin Exp Res 19:1500–1509CrossRefPubMedGoogle Scholar
  46. 46.
    Dong H, Csernansky CA, Goico B, Csernansky JG (2003) Hippocampal neurogenesis follows kainic acid-induced apoptosis in neonatal rats. J Neurosci 23:1742–1749PubMedGoogle Scholar
  47. 47.
    Bercury KK, Macklin WB (2015) Dynamics and mechanisms of CNS myelination. Dev Cell 32:447–458. doi: 10.1016/j.devcel.2015.01.016 CrossRefPubMedGoogle Scholar
  48. 48.
    Hashimoto H, Shintani N, Tanaka K, Mori W, Hirose M, Matsuda T, Sakaue M, Miyazaki J et al (2001) Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci U S A 98:13355–13360. doi: 10.1073/pnas.231094498 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Otto C, Martin M, Wolfer DP, Lipp HP, Maldonado R, Schütz G (2001) Altered emotional behavior in PACAP-type-I-receptor-deficient mice. Brain Res Mol Brain Res 92:78–84. doi: 10.1016/S0169-328X(01)00153-X CrossRefPubMedGoogle Scholar
  50. 50.
    Watanabe C, Satoh H (1995) Effects of prolonged selenium deficiency on open field behavior and Morris water maze performance in mice. Pharmacol Biochem Behav 51:747–752CrossRefPubMedGoogle Scholar
  51. 51.
    Peters MM, Hill KE, Burk RF, Weeber EJ (2006) Altered hippocampus synaptic function in selenoprotein P deficient mice. Mol Neurodeg 1:12CrossRefGoogle Scholar
  52. 52.
    Ieraci A, Herrera DG (2006) Nicotinamide protects against ethanol-induced apoptotic neurodegeneration in the developing mouse brain. PLoS Med 3:e101. doi: 10.1371/journal.pmed.0030101 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Streissguth AP, Sampson PD, Olson HC, Bookstein FL, Barr HM, Scott M, Feldman J, Mirsky AF (1994) Maternal drinking during pregnancy: attention and short-term memory in 14-year-old offspring—a longitudinal prospective study. Alcohol Clin Exp Res 18:202–218. doi: 10.1111/j.1530-0277.1994.tb00904.x CrossRefPubMedGoogle Scholar
  54. 54.
    Mick E, Biederman J, Faraone SV, Sayer J, Kleinman S (2002) Case–control study of attention-deficit hyperactivity disorder and maternal smoking, alcohol use, and drug use during pregnancy. J Am Acad Child Psychol 41:378–385. doi: 10.1097/00004583-200204000-00009 CrossRefGoogle Scholar
  55. 55.
    Mosconi MW, Wang Z, Schmitt LM, Tsai P, Sweeney JA (2015) The role of cerebellar circuitry alterations in the pathophysiology of autism spectrum disorders. Front Neurosci 9:296. doi: 10.3389/fnins.2015.00296 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V et al (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11:777–807. doi: 10.1007/s12311-012-0355-9 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13:171–181. doi: 10.1016/j.pathophys.2006.05.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Matthieu T. Castex
    • 1
  • Arnaud Arabo
    • 2
  • Magalie Bénard
    • 3
  • Vincent Roy
    • 4
  • Vadim Le Joncour
    • 1
  • Gaëtan Prévost
    • 1
  • Jean-Jacques Bonnet
    • 1
  • Youssef Anouar
    • 1
    Email author
  • Anthony Falluel-Morel
    • 1
  1. 1.Inserm, U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in BiomedicineUniversity of Rouen, Normandy UniversityMont-Saint-AignanFrance
  2. 2.Sciences FacultyUniversity of RouenMont-Saint-AignanFrance
  3. 3.PRIMACEN, Institute for Research and Innovation in BiomedicineUniversity of RouenMont-Saint-AignanFrance
  4. 4.PSY-NCA, EA4700University of RouenMont-Saint-AignanFrance

Personalised recommendations