Molecular Neurobiology

, Volume 53, Issue 9, pp 5935–5947 | Cite as

Nitric Oxide Interacts with Caveolin-1 to Facilitate Autophagy-Lysosome-Mediated Claudin-5 Degradation in Oxygen-Glucose Deprivation-Treated Endothelial Cells

  • Jie Liu
  • John Weaver
  • Xinchun Jin
  • Yuan Zhang
  • Ji Xu
  • Ke J. Liu
  • Weiping LiEmail author
  • Wenlan LiuEmail author


Using in vitro oxygen-glucose deprivation (OGD) model, we have previously demonstrated that 2-h OGD induces rapid, caveolin-1-mediated dissociation of claudin-5 from the cellular cytoskeletal framework and quick endothelial barrier disruption. In this study, we further investigated the fate of translocated claudin-5 and the mechanisms by which OGD promotes caveolin-1 translocation. Exposure of bEND3 cells to 4-h OGD, but not 2-h OGD plus 2-h reoxygenation, resulted in claudin-5 degradation. Inhibition of autophagy or the fusion of autophagosome with lysosome, but not proteasome, blocked OGD-induced claudin-5 degradation. Moreover, knockdown of caveolin-1 with siRNA blocked OGD-induced claudin-5 degradation. Western blot analysis showed a transient colocalization of caveolin-1, claudin-5, and LC3B in autolysosome or lipid raft fractions at 2-h OGD. Of note, inhibiting autophagosome and lysosome fusion sustained the colocalization of caveolin-1, claudin-5, and LC3B throughout the 4-h OGD exposure. EPR spin trapping showed increased nitric oxide (NO) generation in 2-h OGD-treated cells, and inhibiting NO with its scavenger C-PTIO or inducible nitric oxide synthase (iNOS) inhibitor 1400W prevented OGD-induced caveolin-1 translocation and claudin-5 degradation. Taken together, our data provide a novel mechanism underlying endothelial barrier disruption under prolonged ischemic conditions, in which NO promotes caveolin-1-mediated delivery of claudin-5 to the autophagosome for autophagy-lysosome-dependent degradation.


Oxygen-glucose deprivation Claudin-5 Caveolin-1 Autophagy Lysosome 



We thank the financial support from the National Natural Science Foundation of China, the National Institutes of Health, and Shenzhen Science and Technology Innovation Commission. Details of funding support are listed below.

Compliance with Ethical Standards


This work was supported by grants from the National Natural Science Foundation of China (81371328), Shenzhen Science and Technology Innovation Commission (CXZZ20130516152706040 and ZDSY20140509173142601), and the National Institutes of Health (P20RR15636).


  1. 1.
    Zehendner CM, Librizzi L, de Curtis M, Kuhlmann CR, Luhmann HJ (2011) Caspase-3 contributes to ZO-1 and Cl-5 tight-junction disruption in rapid anoxic neurovascular unit damage. PLoS One 6(2):e16760CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rosenberg GA (2012) Neurological diseases in relation to the blood-brain barrier. J Cereb Blood Flow Metab 32(7):1139–1151CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kaur C, Ling EA (2008) Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res 5(1):71–81CrossRefPubMedGoogle Scholar
  4. 4.
    Fontijn RD, Rohlena J, van Marle J, Pannekoek H, Horrevoets AJ (2006) Limited contribution of claudin-5-dependent tight junction strands to endothelial barrier function. Eur J Cell Biol 85(11):1131–1144CrossRefPubMedGoogle Scholar
  5. 5.
    Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161(3):653–660CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147(1):185–194CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jin R, Song Z, Yu S, Piazza A, Nanda A, Penninger JM, Granger DN, Li G (2011) Phosphatidylinositol-3-kinase gamma plays a central role in blood-brain barrier dysfunction in acute experimental stroke. Stroke 42(7):2033–2044CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    McColl BW, Rothwell NJ, Allan SM (2008) Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J Neurosci 28(38):9451–9462CrossRefPubMedGoogle Scholar
  9. 9.
    Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27(4):697–709CrossRefPubMedGoogle Scholar
  10. 10.
    Yang Y, Rosenberg GA (2011) Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke 42(11):3323–3328CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Giebel SJ, Menicucci G, McGuire PG, Das A (2005) Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest 85(5):597–607CrossRefPubMedGoogle Scholar
  12. 12.
    Liu W, Hendren J, Qin XJ, Shen J, Liu KJ (2009) Normobaric hyperoxia attenuates early blood-brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem 108(3):811–820CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mishiro K, Ishiguro M, Suzuki Y, Tsuruma K, Shimazawa M, Hara H (2012) A broad-spectrum matrix metalloproteinase inhibitor prevents hemorrhagic complications induced by tissue plasminogen activator in mice. Neuroscience 205:39–48CrossRefPubMedGoogle Scholar
  14. 14.
    Mandel I, Paperna T, Volkowich A, Merhav M, Glass-Marmor L, Miller A (2012) The ubiquitin-proteasome pathway regulates claudin 5 degradation. J Cell Biochem 113(7):2415–2423CrossRefPubMedGoogle Scholar
  15. 15.
    Chen L, Zhang B, Toborek M (2012) Autophagy is involved in nanoalumina-induced cerebrovascular toxicity. Nanomedicine 9(2):212–221CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu J, Jin X, Liu KJ, Liu W (2012) Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J Neurosci 32(9):3044–3057CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Belayev L, Busto R, Zhao W, Ginsberg MD (1996) Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res 739(1–2):88–96CrossRefPubMedGoogle Scholar
  18. 18.
    Rosenberg GA, Estrada EY, Dencoff JE (1998) Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 29(10):2189–2195CrossRefPubMedGoogle Scholar
  19. 19.
    Li XJ, Li S (2011) Proteasomal dysfunction in aging and Huntington disease. Neurobiol Dis 43(1):4–8CrossRefPubMedGoogle Scholar
  20. 20.
    Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873CrossRefPubMedGoogle Scholar
  21. 21.
    Papandreou I, Lim AL, Laderoute K, Denko NC (2008) Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 15(10):1572–1581CrossRefPubMedGoogle Scholar
  22. 22.
    Ristic B, Bosnjak M, Arsikin K, Mircic A, Suzin-Zivkovic V, Bogdanovic A, Perovic V, Martinovic T et al (2014) Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells. Exp Cell Res 326(1):90–102CrossRefPubMedGoogle Scholar
  23. 23.
    Lee SJ, Smith A, Guo L, Alastalo TP, Li M, Sawada H, Liu X, Chen ZH et al (2011) Autophagic protein LC3B confers resistance against hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med 183(5):649–658CrossRefPubMedGoogle Scholar
  24. 24.
    Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P et al (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285(14):10850–10861CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hansen TE, Johansen T (2011) Following autophagy step by step. BMC Biol 9:39CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y et al (2010) Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465(7300):942–946CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gonzalez E, Nagiel A, Lin AJ, Golan DE, Michel T (2004) Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells. J Biol Chem 279(39):40659–40669CrossRefPubMedGoogle Scholar
  28. 28.
    Santibanez JF, Blanco FJ, Garrido-Martin EM, Sanz-Rodriguez F, del Pozo MA, Bernabeu C (2008) Caveolin-1 interacts and cooperates with the transforming growth factor-beta type I receptor ALK1 in endothelial caveolae. Cardiovasc Res 77(4):791–799CrossRefPubMedGoogle Scholar
  29. 29.
    Mukhopadhyay S, Lee J, Sehgal PB (2008) Depletion of the ATPase NSF from Golgi membranes with hypo-S-nitrosylation of vasorelevant proteins in endothelial cells exposed to monocrotaline pyrrole. Am J Physiol Heart Circ Physiol 295(5):H1943–H1955CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Weaver J, Porasuphatana S, Tsai P, Budzichowski T, Rosen GM (2005) Spin trapping nitric oxide from neuronal nitric oxide synthase: a look at several iron-dithiocarbamate complexes. Free Radic Res 39(10):1027–1033CrossRefPubMedGoogle Scholar
  31. 31.
    Bevers LM, Braam B, Post JA, van Zonneveld AJ, Rabelink TJ, Koomans HA, Verhaar MC, Joles JA (2006) Tetrahydrobiopterin, but not L-arginine, decreases NO synthase uncoupling in cells expressing high levels of endothelial NO synthase. Hypertension 47(1):87–94CrossRefPubMedGoogle Scholar
  32. 32.
    Pan T, Kondo S, Le W, Jankovic J (2008) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131(Pt 8):1969–1978CrossRefPubMedGoogle Scholar
  33. 33.
    Chen L, Zhang B, Toborek M (2013) Autophagy is involved in nanoalumina-induced cerebrovascular toxicity. Nanomed Nanotechnol Biol Med 9(2):212–221CrossRefGoogle Scholar
  34. 34.
    Fiucci G, Ravid D, Reich R, Liscovitch M (2002) Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 21(15):2365–2375CrossRefPubMedGoogle Scholar
  35. 35.
    Frank PG, Woodman SE, Park DS, Lisanti MP (2003) Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol 23(7):1161–1168CrossRefPubMedGoogle Scholar
  36. 36.
    Gonzalez MI, Krizman-Genda E, Robinson MB (2007) Caveolin-1 regulates the delivery and endocytosis of the glutamate transporter, excitatory amino acid carrier 1. J Biol Chem 282(41):29855–29865CrossRefPubMedGoogle Scholar
  37. 37.
    Hayer A, Stoeber M, Ritz D, Engel S, Meyer HH, Helenius A (2010) Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol 191(3):615–629CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mundy DI, Li WP, Luby-Phelps K, Anderson RG (2012) Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content. Mol Biol Cell 23(5):864–880CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ribeiro IP, Marques F, Caramelo F, Pereira J, Patricio M, Prazeres H, Ferrao J, Juliao MJ et al (2014) Genetic gains and losses in oral squamous cell carcinoma: impact on clinical management. Cell Oncol 37(1):29–39CrossRefGoogle Scholar
  40. 40.
    Chanvorachote P, Nimmannit U, Lu Y, Talbott S, Jiang BH, Rojanasakul Y (2009) Nitric oxide regulates lung carcinoma cell anoikis through inhibition of ubiquitin-proteasomal degradation of caveolin-1. J Biol Chem 284(41):28476–28484CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Egea J, Martin-de-Saavedra MD, Parada E, Romero A, Del Barrio L, Rosa AO, Garcia AG, Lopez MG (2012) Galantamine elicits neuroprotection by inhibiting iNOS, NADPH oxidase and ROS in hippocampal slices stressed with anoxia/reoxygenation. Neuropharmacology 62(2):1082–1090CrossRefPubMedGoogle Scholar
  42. 42.
    Huang ZG, Xue D, Preston E, Karbalai H, Buchan AM (1999) Biphasic opening of the blood-brain barrier following transient focal ischemia: effects of hypothermia. Can J Neurol Sci 26(4):298–304CrossRefPubMedGoogle Scholar
  43. 43.
    Kuroiwa T, Ting P, Martinez H, Klatzo I (1985) The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol (Berl) 68(2):122–129CrossRefGoogle Scholar
  44. 44.
    Porasuphatana S, Weaver J, Budzichowski TA, Tsai P, Rosen GM (2001) Differential effect of buffer on the spin trapping of nitric oxide by iron chelates. Anal Biochem 298(1):50–56CrossRefPubMedGoogle Scholar
  45. 45.
    Raines KW, Cao GL, Porsuphatana S, Tsai P, Rosen GM, Shapiro P (2004) Nitric oxide inhibition of ERK1/2 activity in cells expressing neuronal nitric-oxide synthase. J Biol Chem 279(6):3933–3940CrossRefPubMedGoogle Scholar
  46. 46.
    Abedinpour P, Jergil B (2003) Isolation of a caveolae-enriched fraction from rat lung by affinity partitioning and sucrose gradient centrifugation. Anal Biochem 313(1):1–8CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research CenterTongji University School of MedicineShanghaiChina
  2. 2.The Central LaboratoryShenzhen Second People’s Hospital, Shenzhen University 1st Affiliated HospitalShenzhenChina
  3. 3.Department of Neurosurgery and Shenzhen Key Laboratory of NeurosurgeryShenzhen Second People’s Hospital, Shenzhen University 1st Affiliated HospitalShenzhenChina
  4. 4.Department of Pharmaceutical Sciences, College of PharmacyUniversity of New MexicoAlbuquerqueUSA
  5. 5.Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, the Second Affiliated Hospital of Soochow UniversitySoochow UniversitySuzhouChina

Personalised recommendations