Molecular Neurobiology

, Volume 53, Issue 8, pp 5468–5479 | Cite as

Phosphoinositide 3-Kinase γ Restrains Neurotoxic Effects of Microglia After Focal Brain Ischemia

  • Caroline Schmidt
  • Christiane Frahm
  • Nadine Schneble
  • Jörg P. Müller
  • Michael Brodhun
  • Irene Franco
  • Otto W. Witte
  • Emilio Hirsch
  • Reinhard Wetzker
  • Reinhard Bauer


Phosphoinositide 3-kinase γ (PI3Kγ) is linked to neuroinflammation and phagocytosis. This study was conducted to elucidate conjectural differences of lipid kinase-dependent and kinase-independent functions of PI3Kγ in the evolvement of brain damage induced by focal cerebral ischemia/reperfusion. Therefore, PI3Kγ wild-type, knockout, and kinase-dead mice were subjected to middle cerebral artery occlusion followed by reperfusion. Tissue damage and cellular composition were assessed by immunohistochemical stainings. In addition, microglial cells derived from respective mouse genotypes were used for analysis of PI3Kγ effects on phagocytic activity, matrix metalloproteinase-9 release, and cAMP content under conditions of oxygen/glucose deprivation and recovery. Brain infarction was more pronounced in PI3Kγ-knockout mice compared to wild-type and kinase-dead mice 48 h after reperfusion. Immunohistochemical analyses revealed a reduced amount of galectin-3/MAC-2-positive microglial cells indicating that activated phagocytosis was reduced in ischemic brains of knockout mice. Cell culture studies disclosed enhanced metalloproteinase-9 secretion in supernatants derived from microglia of PI3Kγ-deficient mice after 2-h oxygen/glucose deprivation and 48-h recovery. Furthermore, PI3Kγ-deficient microglial cells showed a failed phagocytic activation throughout the observed recovery period. Lastly, PI3Kγ-deficient microglia exhibited strongly increased cAMP levels in comparison with wild-type microglia or cells expressing kinase-dead PI3Kγ after oxygen/glucose deprivation and recovery. Our data suggest PI3Kγ kinase activity-independent control of cAMP phosphodiesterase as a crucial mediator of microglial cAMP regulation, MMP-9 expression, and phagocytic activity following focal brain ischemia/recirculation. The suppressive effect of PI3Kγ on cAMP levels appears critical for the restriction of ischemia-induced immune cell functions and in turn tissue damage.


MCAO PI3Kγ Microglial cells Neuroinflammation 



The authors acknowledge Mrs. M. Guenther, Mrs. S. Tausch and Mrs. R.-M., Zimmer for skillful technical assistance, and F. D. Boehmer, for his collegial editorial review of the manuscript. The study was supported by the Deutsche Forschungsgemeinschaft (Grant RTG 1715) and by the German Federal Ministry of Education and Research (BMBF; Grant FKZ 01EO1002; Center for Sepsis Control and Care). C.S and N.S. are PhD students of the Research Training Group 1715 “Adaptive Stress Responses” Grant RTG 1715 of the DFG, and C.S. was supported in part by the Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.


C.S. designed and carried out the in vitro studies and analyzed the data. C.F. designed and supervised the animal experiments. N.S. carried out in vitro studies and analyzed the data. J.P.M. supervised the in vitro studies and revised the manuscript. M.B. carried out the immunohistochemical studies and analyzed the data. I.F. carried out the chimeric experiments. O.W.W. contributed to the study design, supervised the animal experiments, and revised the manuscript. E.H. designed and supervised the chimeric experiments. R.W. designed and coordinated the study and revised the manuscript. R.B. designed the study, supervised the experiments, analyzed the data, and wrote the manuscript.

Compliance with Ethical Standards

Conflicts of Interest

Nothing to report.

Supplementary material

12035_2015_9472_MOESM1_ESM.doc (84 kb)
ESM 1(DOC 83.5 kb)


  1. 1.
    Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17(7):796–808PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Kono H, Rock KL (2008) How dying cells alert the immune system to danger. Nat Rev Immunol 8(4):279–289PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397PubMedCrossRefGoogle Scholar
  4. 4.
    Lo EH (2008) A new penumbra: transitioning from injury into repair after stroke. Nat Med 14(5):497–500PubMedCrossRefGoogle Scholar
  5. 5.
    Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140(6):871–882PubMedCrossRefGoogle Scholar
  6. 6.
    Sieber MW, Jaenisch N, Brehm M, Guenther M, Linnartz-Gerlach B, Neumann H, Witte OW, Frahm C (2013) Attenuated inflammatory response in triggering receptor expressed on myeloid cells 2 (TREM2) knock-out mice following stroke. PLoS ONE 8(1), e52982PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87(5):779–789PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553PubMedCrossRefGoogle Scholar
  9. 9.
    Gehrmann J, Mies G, Bonnekoh P, Banati R, Iijima T, Kreutzberg GW, Hossmann KA (1993) Microglial reaction in the rat cerebral cortex induced by cortical spreading depression. Brain Pathol 3(1):11–17PubMedCrossRefGoogle Scholar
  10. 10.
    Mies G (1993) Inhibition of protein synthesis during repetitive cortical spreading depression. J Neurochem 60(1):360–363PubMedCrossRefGoogle Scholar
  11. 11.
    Nedergaard M, Hansen AJ (1988) Spreading depression is not associated with neuronal injury in the normal brain. Brain Res 449(1–2):395–398PubMedCrossRefGoogle Scholar
  12. 12.
    Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318PubMedCrossRefGoogle Scholar
  13. 13.
    Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43(11):3063–3070PubMedCrossRefGoogle Scholar
  14. 14.
    Patel AR, Ritzel R, McCullough LD, Liu F (2013) Microglia and ischemic stroke: a double-edged sword. Int J Physiol Pathophysiol Pharmacol 5(2):73–90PubMedPubMedCentralGoogle Scholar
  15. 15.
    Biber K, Owens T, Boddeke E (2014) What is microglia neurotoxicity (Not)? Glia 62(6):841–854PubMedCrossRefGoogle Scholar
  16. 16.
    Murga C, Laguinge L, Wetzker R, Cuadrado A, Gutkind JS (1998) Activation of Akt/protein kinase B by G protein-coupled receptors. A role for alpha and beta gamma subunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinasegamma. J Biol Chem 273(30):19080–19085PubMedCrossRefGoogle Scholar
  17. 17.
    Stephens LR, Eguinoa A, Erdjument-Bromage H, Lui M, Cooke F, Coadwell J, Smrcka AS, Thelen M, Cadwallader K, Tempst P, Hawkins PT (1997) The G beta gamma sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. Cell 89(1):105–114PubMedCrossRefGoogle Scholar
  18. 18.
    Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, Stoyanova S, Vanhaesebroeck B, Dhand R, Nurnberg B, Gierschik P, Seedorf K, Hsuan JJ, Waterfield MD, Wetzker R (1995) Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269(5224):690–693PubMedCrossRefGoogle Scholar
  19. 19.
    Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann MP (2000) Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287(5455):1049–1053PubMedCrossRefGoogle Scholar
  20. 20.
    Patrucco E, Notte A, Barberis L, Selvetella G, Maffei A, Brancaccio M, Marengo S, Russo G, Azzolino O, Rybalkin SD, Silengo L, Altruda F, Wetzker R, Wymann MP, Lembo G, Hirsch E (2004) PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118(3):375–387PubMedCrossRefGoogle Scholar
  21. 21.
    Frister A, Schmidt C, Schneble N, Brodhun M, Gonnert FA, Bauer M, Hirsch E, Muller JP, Wetzker R, Bauer R (2014) Phosphoinositide 3-Kinase gamma Affects LPS-Induced Disturbance of Blood–brain Barrier Via Lipid Kinase-Independent Control of cAMP in Microglial Cells. Neuromol Med 16(4):704–713CrossRefGoogle Scholar
  22. 22.
    Schmidt C, Schneble N, Muller JP, Bauer R, Perino A, Marone R, Rybalkin SD, Wymann MP, Hirsch E, Wetzker R (2013) Phosphoinositide 3-kinase gamma mediates microglial phagocytosis via lipid kinase-independent control of cAMP. Neuroscience 233:44–53PubMedCrossRefGoogle Scholar
  23. 23.
    Jin R, Song Z, Yu S, Piazza A, Nanda A, Penninger JM, Granger DN, Li G (2011) Phosphatidylinositol-3-kinase gamma plays a central role in blood–brain barrier dysfunction in acute experimental stroke. Stroke 42(7):2033–2044PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265(5180):1883–1885PubMedCrossRefGoogle Scholar
  25. 25.
    Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17(3):472–476PubMedCrossRefGoogle Scholar
  26. 26.
    Popp A, Jaenisch N, Witte OW, Frahm C (2009) Identification of ischemic regions in a rat model of stroke. PLoS ONE 4(3), e4764PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    del Zoppo GJ, Frankowski H, Gu YH, Osada T, Kanazawa M, Milner R, Wang X, Hosomi N, Mabuchi T, Koziol JA (2012) Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation. J Cereb Blood Flow Metab 32(5):919–932PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hawkins PT, Stephens LR (2007) PI3Kgamma is a key regulator of inflammatory responses and cardiovascular homeostasis. Science 318(5847):64–66PubMedCrossRefGoogle Scholar
  29. 29.
    Rotshenker S, Reichert F, Gitik M, Haklai R, Elad-Sfadia G, Kloog Y (2008) Galectin-3/MAC-2, Ras and PI3K activate complement receptor-3 and scavenger receptor-AI/II mediated myelin phagocytosis in microglia. Glia 56(15):1607–1613PubMedCrossRefGoogle Scholar
  30. 30.
    Chen B, Friedman B, Cheng Q, Tsai P, Schim E, Kleinfeld D, Lyden PD (2009) Severe blood–brain barrier disruption and surrounding tissue injury. Stroke 40(12):e666–674. doi:10.1161/STROKEAHA.109.551341 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Globus MY, Busto R, Dietrich WD, Martinez E, Valdes I, Ginsberg MD (1989) Direct evidence for acute and massive norepinephrine release in the hippocampus during transient ischemia. J Cereb Blood Flow Metab 9(6):892–896PubMedCrossRefGoogle Scholar
  32. 32.
    Goyagi T, Nishikawa T, Tobe Y (2011) Neuroprotective effects and suppression of ischemia-induced glutamate elevation by beta1-adrenoreceptor antagonists administered before transient focal ischemia in rats. J Neurosurg Anesthesiol 23(2):131–137PubMedCrossRefGoogle Scholar
  33. 33.
    Verkhratsky A, Krishtal OA, Burnstock G (2009) Purinoceptors on neuroglia. Mol Neurobiol 39(3):190–208PubMedCrossRefGoogle Scholar
  34. 34.
    Bianco F, Fumagalli M, Pravettoni E, D'Ambrosi N, Volonte C, Matteoli M, Abbracchio MP, Verderio C (2005) Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Res Brain Res Rev 48(2):144–156PubMedCrossRefGoogle Scholar
  35. 35.
    Dai SS, Zhou YG (2011) Adenosine 2A receptor: a crucial neuromodulator with bidirectional effect in neuroinflammation and brain injury. Rev Neurosci 22(2):231–239PubMedCrossRefGoogle Scholar
  36. 36.
    Rivera S, Ogier C, Jourquin J, Timsit S, Szklarczyk AW, Miller K, Gearing AJ, Kaczmarek L, Khrestchatisky M (2002) Gelatinase B and TIMP-1 are regulated in a cell- and time-dependent manner in association with neuronal death and glial reactivity after global forebrain ischemia. Eur J Neurosci 15(1):19–32PubMedCrossRefGoogle Scholar
  37. 37.
    Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20(12):1681–1689PubMedCrossRefGoogle Scholar
  38. 38.
    Romanic AM, White RF, Arleth AJ, Ohlstein EH, Barone FC (1998) Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke 29(5):1020–1030PubMedCrossRefGoogle Scholar
  39. 39.
    Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297(5584):1186–1190PubMedCrossRefGoogle Scholar
  40. 40.
    Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Stoll G, Schroeter M, Jander S, Siebert H, Wollrath A, Kleinschnitz C, Bruck W (2004) Lesion-associated expression of transforming growth factor-beta-2 in the rat nervous system: evidence for down-regulating the phagocytic activity of microglia and macrophages. Brain Pathol 14(1):51–58PubMedCrossRefGoogle Scholar
  42. 42.
    Schilling M, Besselmann M, Muller M, Strecker JK, Ringelstein EB, Kiefer R (2005) Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 196(2):290–297PubMedCrossRefGoogle Scholar
  43. 43.
    Perino A, Ghigo A, Ferrero E, Morello F, Santulli G, Baillie GS, Damilano F, Dunlop AJ, Pawson C, Walser R, Levi R, Altruda F, Silengo L, Langeberg LK, Neubauer G, Heymans S, Lembo G, Wymann MP, Wetzker R, Houslay MD, Iaccarino G, Scott JD, Hirsch E (2011) Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110gamma. Mol Cell 42(1):84–95PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Caroline Schmidt
    • 1
  • Christiane Frahm
    • 2
  • Nadine Schneble
    • 1
  • Jörg P. Müller
    • 1
  • Michael Brodhun
    • 3
  • Irene Franco
    • 4
  • Otto W. Witte
    • 2
  • Emilio Hirsch
    • 4
  • Reinhard Wetzker
    • 1
  • Reinhard Bauer
    • 1
  1. 1.Institute of Molecular Cell Biology, Center for Molecular BiomedicineJena University Hospital, Friedrich Schiller UniversityJenaGermany
  2. 2.Department of NeurologyJena University HospitalJenaGermany
  3. 3.Institute of Pathology, HELIOS KlinikumErfurtGermany
  4. 4.Department of Genetics, Biology, Biochemistry and Molecular Biotechnology CenterUniversity of TorinoTorinoItaly

Personalised recommendations