Molecular Neurobiology

, Volume 53, Issue 8, pp 5356–5366 | Cite as

Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling

  • Wen Li
  • Zhihui Zhang
  • Kai Zhang
  • Zhenyi Xue
  • Yan Li
  • Zimu Zhang
  • Lijuan Zhang
  • Chao Gu
  • Qi Zhang
  • Junwei Hao
  • Yurong Da
  • Zhi Yao
  • Ying KongEmail author
  • Rongxin ZhangEmail author


Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.


Arctigenin Th17 cells Experimental autoimmune encephalomyelitis AMPK PPAR-γ 



Multiple sclerosis


Experimental autoimmune encephalomyelitis


Myelin oligodendrocyte glycoprotein


Central nervous system
















Tumor necrosis factor-α


Transforming growth factor-β


Peroxisome proliferator-activated receptor-γ


Retinoidrelated orphan receptor-γt


Mitogen-activated protein kinases


Adenosine 5′-monophosphate (AMP)-activated protein kinase



This work is supported by the Ministry of Science and Technology of China through Grants No 2012CB932503 and 2011CB933100, the National Natural Science Foundation of China through Grants No 81172864, 81272317, 81302568, 81301026, and 31570798, and the grant TD12-5025. Natural Science Foundation of Tianjin through Grant No. 14JCTPJC00487. Tianjin Innovative grant in Nanomedicine.

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Nylander A, Hafler DA (2012) Multiple sclerosis. J Clin Invest 122:1180–1188CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Merrill JE (2008) In Vitro and In Vivo Pharmacological Models to Assess Demyelination and Remyelination. Neuropsychopharmacology 34:55–73CrossRefPubMedGoogle Scholar
  3. 3.
    Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald Criteria". Ann Neurol 58:840–846CrossRefPubMedGoogle Scholar
  5. 5.
    Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA (2004) Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117:515–526CrossRefPubMedGoogle Scholar
  6. 6.
    Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ, Littman DR (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133CrossRefPubMedGoogle Scholar
  8. 8.
    Yang J, Sundrud MS, Skepner J, Yamagata T (2014) Targeting Th17 cells in autoimmune diseases. Trends Pharmacol Sci 35:493–500CrossRefPubMedGoogle Scholar
  9. 9.
    Steinman L, Zamvil SS (2006) How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60:12–21CrossRefPubMedGoogle Scholar
  10. 10.
    Wekerle H (2008) Lessons from multiple sclerosis: models, concepts, observations. Ann Rheum Dis 67(Suppl 3):iii56–60CrossRefPubMedGoogle Scholar
  11. 11.
    Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG (2003) The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J Clin Invest 111:1703–1713CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Beeton C, Pennington MW, Wulff H, Singh S, Nugent D, Crossley G, Khaytin I, Calabresi PA et al (2005) Targeting Effector Memory T Cells with a Selective Peptide Inhibitor of Kv1.3 Channels for Therapy of Autoimmune Diseases. Mol Pharmacol 67:1369–1381CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zhang K, Ge Z, Da Y, Wang D, Liu Y, Xue Z, Li Y, Li W et al (2014) Plumbagin suppresses dendritic cell functions and alleviates experimental autoimmune encephalomyelitis. J Neuroimmunol 273:42–52CrossRefPubMedGoogle Scholar
  14. 14.
    Xue Z, Ge Z, Zhang K, Sun R, Yang J, Han R, Peng M, Li Y et al (2014) Embelin suppresses dendritic cell functions and limits autoimmune encephalomyelitis through the TGF-beta/beta-catenin and STAT3 signaling pathways. Mol Neurobiol 49:1087–1101CrossRefPubMedGoogle Scholar
  15. 15.
    Tang X, Zhuang J, Chen J, Yu L, Hu L, Jiang H, Shen X (2011) Arctigenin efficiently enhanced sedentary mice treadmill endurance. PLoS One 6:e24224CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kou X, Qi S, Dai W, Luo L, Yin Z (2011) Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway. Int Immunopharmacol 11:1095–1102CrossRefPubMedGoogle Scholar
  17. 17.
    Jang YP, Kim SR, Choi YH, Kim J, Kim SG, Markelonis GJ, Oh TH, Kim YC (2002) Arctigenin protects cultured cortical neurons from glutamate-induced neurodegeneration by binding to kainate receptor. J Neurosci Res 68:233–240CrossRefPubMedGoogle Scholar
  18. 18.
    Schroder HC, Merz H, Steffen R, Muller WE, Sarin PS, Trumm S, Schulz J, Eich E (1990) Differential in vitro anti-HIV activity of natural lignans. Z Naturforsch C 45:1215–1221PubMedGoogle Scholar
  19. 19.
    Jang YP, Kim SR, Kim YC (2001) Neuroprotective dibenzylbutyrolactone lignans of Torreya nucifera. Planta Med 67:470–472CrossRefPubMedGoogle Scholar
  20. 20.
    Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451CrossRefPubMedGoogle Scholar
  21. 21.
    Liu XT, Wang ZX, Yang Y, Wang L, Sun RF, Zhao YM, Yu NJ (2014) Active components with inhibitory activities on IFN-gamma/STAT1 and IL-6/STAT3 signaling pathways from Caulis Trachelospermi. Molecules 19:11560–11571CrossRefPubMedGoogle Scholar
  22. 22.
    Tsai WJ, Chang CT, Wang GJ, Lee TH, Chang SF, Lu SC, Kuo YC (2011) Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes. Chin Med 6:12CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sun Y, Zang Z, Zhong L, Wu M, Su Q, Gao X, Zan W, Lin D et al (2013) Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay. PLoS One 8:e63354CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhou Y, Liu SQ, Yu L, He B, Wu SH, Zhao Q, Xia SQ, Mei HJ (2015) Berberine prevents nitric oxide-induced rat chondrocyte apoptosis and cartilage degeneration in a rat osteoarthritis model via AMPK and p38 MAPK signaling. Apoptosis. [Epub ahead of print]Google Scholar
  25. 25.
    Kang HS, Lee JY, Kim CJ (2008) Anti-inflammatory activity of arctigenin from Forsythiae Fructus. J Ethnopharmacol 116:305–312CrossRefPubMedGoogle Scholar
  26. 26.
    Gu Y, Qi C, Sun X, Ma X, Zhang H, Hu L, Yuan J, Yu Q (2012) Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism. Biochem Pharmacol 84:468–476CrossRefPubMedGoogle Scholar
  27. 27.
    Singh S, Simpson RL, Bennett RG (2015) Relaxin Activates Peroxisome Proliferator-activated Receptor gamma (PPARgamma) through a Pathway Involving PPARgamma Coactivator 1alpha (PGC1alpha). J Biol Chem 290:950–959CrossRefPubMedGoogle Scholar
  28. 28.
    Klotz L, Burgdorf S, Dani I, Saijo K, Flossdorf J, Hucke S, Alferink J, Nowak N et al (2009) The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med 206:2079–2089CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Stromnes IM, Goverman JM (2006) Active induction of experimental allergic encephalomyelitis. Nat Protoc 1:1810–1819CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang L, Liu SH, Wright TT, Shen ZY, Li HY, Zhu W, Potempa LA, Ji SR et al (2015) C-reactive protein directly suppresses Th1 cell differentiation and alleviates experimental autoimmune encephalomyelitis. J Immunol 194:5243–5252CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dieudonne MN, Bussiere M, Dos Santos E, Leneveu MC, Giudicelli Y, Pecquery R (2006) Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells. Biochem Biophys Res Commun 345:271–279CrossRefPubMedGoogle Scholar
  32. 32.
    Brochu-Gaudreau K, Rehfeldt C, Blouin R, Bordignon V, Murphy BD, Palin MF (2010) Adiponectin action from head to toe. Endocrine 37:11–32CrossRefPubMedGoogle Scholar
  33. 33.
    Dos Santos E, Benaitreau D, Dieudonne MN, Leneveu MC, Serazin V, Giudicelli Y, Pecquery R (2008) Adiponectin mediates an antiproliferative response in human MDA-MB 231 breast cancer cells. Oncol Rep 20:971–977PubMedGoogle Scholar
  34. 34.
    Wu X, Yang Y, Dou Y, Ye J, Bian D, Wei Z, Tong B, Kong L et al (2014) Arctigenin but not arctiin acts as the major effective constituent of Arctium lappa L. fruit for attenuating colonic inflammatory response induced by dextran sulfate sodium in mice. Int Immunopharmacol 23:505–515CrossRefPubMedGoogle Scholar
  35. 35.
    Sun CH, Lai XQ, Zhang L, Yao JC, Guan YX, Pan LH, Yan Y (2014) Inhibitory effect of arctigenin on lymphocyte activation stimulated with PMA/ionomycin. Yao Xue Xue Bao 49:482–489PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Wen Li
    • 1
  • Zhihui Zhang
    • 1
  • Kai Zhang
    • 1
  • Zhenyi Xue
    • 1
  • Yan Li
    • 1
  • Zimu Zhang
    • 1
  • Lijuan Zhang
    • 1
  • Chao Gu
    • 1
  • Qi Zhang
    • 1
  • Junwei Hao
    • 2
  • Yurong Da
    • 1
  • Zhi Yao
    • 1
  • Ying Kong
    • 3
    Email author
  • Rongxin Zhang
    • 1
    Email author
  1. 1.Laboratory of Immunology and Inflammation, Department of Immunology and Research Center of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Immune Microenvironments and Diseases of Educational Ministry, Key Laboratory of Hormones and Development (Ministry of Health)Tianjin Medical UniversityTianjinChina
  2. 2.Department of Neurology, Tianjin Neurological InstituteTianjin Medical University General HospitalTianjinChina
  3. 3.Department of Biochemistry and MolecularDalian Medical UniversityDalianChina

Personalised recommendations