Advertisement

Molecular Neurobiology

, Volume 53, Issue 8, pp 5310–5323 | Cite as

Sulforaphane Ameliorates Okadaic Acid-Induced Memory Impairment in Rats by Activating the Nrf2/HO-1 Antioxidant Pathway

  • Subhash Dwivedi
  • N. Rajasekar
  • Kashif Hanif
  • Chandishwar Nath
  • Rakesh ShuklaEmail author
Article

Abstract

Okadaic acid (OKA) causes memory impairment and attenuates nuclear factor erythroid 2-related factor 2 (Nrf2) along with oxidative stress and neuroinflammation in rats. Sulforaphane (dietary isothiocyanate compound), an activator of Nrf2 signaling, exhibits neuroprotective effects. However, the protective effect of sulforaphane in OKA-induced neurotoxicity remains uninvestigated. Therefore, in the present study, the role of sulforaphane in OKA-induced memory impairment in rats was explored. A significant increased Nrf2 expression in the hippocampus and cerebral cortex was observed in trained (Morris water maze) rats, and a significant decreased Nrf2 expression in memory-impaired (OKA, 200 ng icv) rats indicated its involvement in memory function. Sulforaphane administration (5 and 10 mg/kg, ip, days 1 and 2) ameliorates OKA-induced memory impairment in rats. The treatment also restored Nrf2 and its downstream antioxidant protein expression (GCLC, HO-1) and attenuated oxidative stress (ROS, nitrite, GSH), neuroinflammation (NF-κB, TNF-α, IL-10), and neuronal apoptosis in the cerebral cortex and hippocampus of OKA-treated rats. Further, to determine whether modulation of Nrf2 signaling is responsible for the protective effect of sulforaphane, in vitro, Nrf2 siRNA and its downstream HO-1 inhibition studies were carried out in a rat astrocytoma cell line (C6). The protective effects of sulforaphane were abolished with Nrf2 siRNA and HO-1 inhibition in astrocytes. The results suggest that Nrf2-dependent activation of cellular antioxidant machinery results in sulforaphane-mediated protection against OKA-induced memory impairment in rats.

Graphical Abstract

Keywords

Nrf2 Sulforaphane Neuroinflammation Memory impairment Okadaic acid Astrocytes 

Notes

Acknowledgments

SRF to SD from the Indian Council of Medical Research (ICMR), New Delhi and NR from CSIR, New Delhi, India is gratefully acknowledged. The authors are also thankful to Dr. Prem N. Yadav for helping with the Nrf2 siRNA transfection experiment and Dr. A.K. Balapure, Head, Tissue & Cell Culture Facility CSIR-CDRI and his team for providing the rat astroglial cell line, C6.

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12035_2015_9451_MOESM1_ESM.doc (3.7 mb)
ESM 1 (DOC 3824 kb).

References

  1. 1.
    Niranjan R (2013) Molecular basis of etiological implications in Alzheimer’s disease: focus on neuroinflammation. Mol Neurobiol 48(3):412–428PubMedCrossRefGoogle Scholar
  2. 2.
    Rajasekar N, Dwivedi S, Tota SK, Kamat PK, Hanif K, Nath C, Shukla R (2013) Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur J Pharmacol 715(1–3):381–394PubMedCrossRefGoogle Scholar
  3. 3.
    Fukui K, Omoi NO, Hayasaka T, Shinnkai T, Suzuki S, Abe K, Urano S (2002) Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Ann N Y Acad Sci 959:275–284PubMedCrossRefGoogle Scholar
  4. 4.
    Kamat PK, Rai S, Swarnkar S, Shukla R, Nath C (2014) Molecular and cellular mechanism of okadaic acid (OKA)-induced neurotoxicity: a novel tool for Alzheimer’s disease therapeutic application. Mol Neurobiol 50(3):852–865PubMedCrossRefGoogle Scholar
  5. 5.
    Kamat PK, Tota S, Saxena G, Shukla R, Nath C (2010) Okadaic acid (ICV) induced memory impairment in rats: a suitable experimental model to test anti-dementia activity. Brain Res 1309:66–74PubMedCrossRefGoogle Scholar
  6. 6.
    Kamat PK, Tota S, Rai S, Swarnkar S, Shukla R, Nath C (2012) A study on neuroinflammatory marker in brain areas of okadaic acid (ICV) induced memory impaired rats. Life Sci 90(19–20):713–720PubMedCrossRefGoogle Scholar
  7. 7.
    Dwivedi S, Nagarajan R, Hanif K, Siddiqui HH, Nath C, Shukla R (2013) Standardized extract of Bacopa monniera attenuates okadaic acid induced memory dysfunction in rats: effect on Nrf2 pathway. Evid Based Complement Alternat Med 2013:294501PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Itoh K, Ishii T, Wakabayashi N, Yamamoto M (1999) Regulatory mechanisms of cellular response to oxidative stress. Free Radic Res 31(4):319–324PubMedCrossRefGoogle Scholar
  9. 9.
    Yamamoto T, Suzuki T, Kobayashi A, Wakabayashi J, Maher J, Motohashi H, Yamamoto M (2008) Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol Cell Biol 28(8):2758–2770PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Eggler AL, Liu G, Pezzuto JM, van Breemen RB, Mesecar AD (2005) Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proc Natl Acad Sci U S A 102(29):10070–10075PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7(3–4):385–394PubMedCrossRefGoogle Scholar
  12. 12.
    Kang CH, Choi YH, Moon SK, Kim WJ, Kim GY (2013) Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-kappaB pathway and activating the Nrf2-dependent HO-1 pathway. Int Immunopharmacol 17(3):808–813PubMedCrossRefGoogle Scholar
  13. 13.
    Li R, Bianchet MA, Talalay P, Amzel LM (1995) The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc Natl Acad Sci U S A 92(19):8846–8850PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Tanaka N, Ikeda Y, Ohta Y, Deguchi K, Tian F, Shang J, Matsuura T, Abe K (2010) Expression of Keap1-Nrf2 system and antioxidative proteins in mouse brain after transient middle cerebral artery occlusion. Brain Res 1370:246–253PubMedCrossRefGoogle Scholar
  15. 15.
    Kim SW, Lee HK, Shin JH, Lee JK (2013) Up-down regulation of HO-1 and iNOS gene expressions by ethyl pyruvate via recruiting p300 to Nrf2 and depriving it from p65. Free Radic Biol Med 65C:468–476CrossRefGoogle Scholar
  16. 16.
    Burton NC, Kensler TW, Guilarte TR (2006) In vivo modulation of the Parkinsonian phenotype by Nrf2. Neurotoxicology 27(6):1094–1100PubMedCrossRefGoogle Scholar
  17. 17.
    Negi G, Kumar A, Sharma SS (2011) Melatonin modulates neuroinflammation and oxidative stress in experimental diabetic neuropathy: effects on NF-kappaB and Nrf2 cascades. J Pineal Res 50(2):124–131PubMedGoogle Scholar
  18. 18.
    Innamorato NG, Rojo AI, Garcia-Yague AJ, Yamamoto M, de Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181(1):680–689PubMedCrossRefGoogle Scholar
  19. 19.
    Kanninen K, Heikkinen R, Malm T, Rolova T, Kuhmonen S, Leinonen H, Yla-Herttuala S, Tanila H et al (2009) Intrahippocampal injection of a lentiviral vector expressing Nrf2 improves spatial learning in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 106(38):16505–16510PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Tripathi DN, Jena GB (2010) Effect of melatonin on the expression of Nrf2 and NF-kappaB during cyclophosphamide-induced urinary bladder injury in rat. J Pineal Res 48(4):324–331PubMedCrossRefGoogle Scholar
  21. 21.
    Calkins MJ, Jakel RJ, Johnson DA, Chan K, Kan YW, Johnson JA (2005) Protection from mitochondrial complex II inhibition in vitro and in vivo by Nrf2-mediated transcription. Proc Natl Acad Sci U S A 102(1):244–249PubMedCrossRefGoogle Scholar
  22. 22.
    Jakel RJ, Townsend JA, Kraft AD, Johnson JA (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 1144:192–201PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Danilov CA, Chandrasekaran K, Racz J, Soane L, Zielke C, Fiskum G (2009) Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation. Glia 57(6):645–656PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Dinkova-Kostova AT, Massiah MA, Bozak RE, Hicks RJ, Talalay P (2001) Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc Natl Acad Sci U S A 98(6):3404–3409PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Zhao J, Kobori N, Aronowski J, Dash PK (2006) Sulforaphane reduces infarct volume following focal cerebral ischemia in rodents. Neurosci Lett 393(2–3):108–112PubMedCrossRefGoogle Scholar
  26. 26.
    Siebert A, Desai V, Chandrasekaran K, Fiskum G, Jafri MS (2009) Nrf2 activators provide neuroprotection against 6-hydroxydopamine toxicity in rat organotypic nigrostriatal cocultures. J Neurosci Res 87(7):1659–1669PubMedCrossRefGoogle Scholar
  27. 27.
    Rojo AI, Rada P, Egea J, Rosa AO, Lopez MG, Cuadrado A (2008) Functional interference between glycogen synthase kinase-3 beta and the transcription factor Nrf2 in protection against kainate-induced hippocampal cell death. Mol Cell Neurosci 39(1):125–132PubMedCrossRefGoogle Scholar
  28. 28.
    Lee C, Park GH, Lee SR, Jang JH (2013) Attenuation of beta-amyloid-induced oxidative cell death by sulforaphane via activation of NF-E2-related factor 2. Oxid Med Cell Longev 2013:313510PubMedPubMedCentralGoogle Scholar
  29. 29.
    Alfieri A, Srivastava S, Siow RC, Cash D, Modo M, Duchen MR, Fraser PA, Williams SC et al (2013) Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood-brain barrier disruption and neurological deficits in stroke. Free Radic Biol Med 65C:1012–1022CrossRefGoogle Scholar
  30. 30.
    Dash PK, Zhao J, Orsi SA, Zhang M, Moore AN (2009) Sulforaphane improves cognitive function administered following traumatic brain injury. Neurosci Lett 460(2):103–107PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60PubMedCrossRefGoogle Scholar
  32. 32.
    Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem 13(8):655–669PubMedCrossRefGoogle Scholar
  33. 33.
    Goswami P, Gupta S, Biswas J, Joshi N, Swarnkar S, Nath C, Singh S (2014) Endoplasmic reticulum stress plays a key role in rotenone-induced apoptotic death of neurons. Mol Neurobiol. doi: 10.1007/s12035-014-9001-5
  34. 34.
    Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126(1):131–138PubMedCrossRefGoogle Scholar
  35. 35.
    Deak T, Bellamy C, D’Agostino LG (2003) Exposure to forced swim stress does not alter central production of IL-1. Brain Res 972(1–2):53–63PubMedCrossRefGoogle Scholar
  36. 36.
    Kamat PK, Tota S, Shukla R, Ali S, Najmi AK, Nath C (2011) Mitochondrial dysfunction: a crucial event in okadaic acid (ICV) induced memory impairment and apoptotic cell death in rat brain. Pharmacol Biochem Behav 100(2):311–319PubMedCrossRefGoogle Scholar
  37. 37.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  38. 38.
    Tiwari RL, Singh V, Singh A, Barthwal MK (2011) IL-1R-associated kinase-1 mediates protein kinase Cdelta-induced IL-1beta production in monocytes. J Immunol 187(5):2632–2645PubMedCrossRefGoogle Scholar
  39. 39.
    Niranjan R, Rajasekar N, Nath C, Shukla R (2012) The effect of guggulipid and nimesulide on MPTP-induced mediators of neuroinflammation in rat astrocytoma cells, C6. Chem Biol Interact 200(2–3):73–83PubMedCrossRefGoogle Scholar
  40. 40.
    Moosmann B, Behl C (2002) Antioxidants as treatment for neurodegenerative disorders. Expert Opin Investig Drugs 11(10):1407–1435PubMedCrossRefGoogle Scholar
  41. 41.
    Muthusamy VR, Kannan S, Sadhaasivam K, Gounder SS, Davidson CJ, Boeheme C, Hoidal JR, Wang L et al (2012) Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radic Biol Med 52(2):366–376PubMedCrossRefGoogle Scholar
  42. 42.
    Jia L, Liu Z, Sun L, Miller SS, Ames BN, Cotman CW, Liu J (2007) Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells: protection by (R)-alpha-lipoic acid. Invest Ophthalmol Vis Sci 48(1):339–348PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Negi G, Kumar A, Sharma SS (2011) Nrf2 and NF-kappaB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Curr Neurovasc Res 8(4):294–304PubMedCrossRefGoogle Scholar
  44. 44.
    Kraft AD, Johnson DA, Johnson JA (2004) Nuclear factor E2-related factor 2-dependent antioxidant response element activation by tert-butylhydroquinone and sulforaphane occurring preferentially in astrocytes conditions neurons against oxidative insult. J Neurosci 24(5):1101–1112PubMedCrossRefGoogle Scholar
  45. 45.
    Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49):6853–6866PubMedCrossRefGoogle Scholar
  46. 46.
    Townsend BE, Chen YJ, Jeffery EH, Johnson RW (2014) Dietary broccoli mildly improves neuroinflammation in aged mice but does not reduce lipopolysaccharide-induced sickness behavior. Nutr Res 34(11):990–999PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Jiang XZ, Song Q, Xu XP, Cai QQ, Hong GL, Liang H, Lu ZQ (2012) The effects of Nrf2 gene expression induced by RU486 at different doses on A549 cell damage induced by paraquat. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 30(4):268–272PubMedGoogle Scholar
  48. 48.
    Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23(8):3394–3406PubMedGoogle Scholar
  49. 49.
    Juravleva E, Barbakadze T, Mikeladze D, Kekelidze T (2005) Creatine enhances survival of glutamate-treated neuronal/glial cells, modulates Ras/NF-kappaB signaling, and increases the generation of reactive oxygen species. J Neurosci Res 79(1–2):224–230PubMedCrossRefGoogle Scholar
  50. 50.
    de Bernardo S, Canals S, Casarejos MJ, Solano RM, Menendez J, Mena MA (2004) Role of extracellular signal-regulated protein kinase in neuronal cell death induced by glutathione depletion in neuron/glia mesencephalic cultures. J Neurochem 91(3):667–682PubMedCrossRefGoogle Scholar
  51. 51.
    Montilla-Lopez P, Munoz-Agueda MC, Feijoo Lopez M, Munoz-Castaneda JR, Bujalance-Arenas I, Tunez-Finana I (2002) Comparison of melatonin versus vitamin C on oxidative stress and antioxidant enzyme activity in Alzheimer’s disease induced by okadaic acid in neuroblastoma cells. Eur J Pharmacol 451(3):237–243PubMedCrossRefGoogle Scholar
  52. 52.
    Vauzour D, Buonfiglio M, Corona G, Chirafisi J, Vafeiadou K, Angeloni C, Hrelia S, Hrelia P et al (2010) Sulforaphane protects cortical neurons against 5-S-cysteinyl-dopamine-induced toxicity through the activation of ERK1/2, Nrf-2 and the upregulation of detoxification enzymes. Mol Nutr Food Res 54(4):532–542PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Subhash Dwivedi
    • 1
  • N. Rajasekar
    • 1
    • 3
  • Kashif Hanif
    • 1
    • 3
  • Chandishwar Nath
    • 2
    • 3
  • Rakesh Shukla
    • 1
    • 3
    Email author
  1. 1.Division of PharmacologyCSIR-Central Drug Research InstituteLucknowIndia
  2. 2.Division of ToxicologyCSIR-Central Drug Research InstituteLucknowIndia
  3. 3.Academy of Scientific and Innovative Research (AcSIR)ChennaiIndia

Personalised recommendations