Molecular Neurobiology

, Volume 53, Issue 8, pp 5118–5128 | Cite as

A New Approach in Gene Therapy of Glioblastoma Multiforme: Human Olfactory Ensheathing Cells as a Novel Carrier for Suicide Gene Delivery

  • Mansoureh Hashemi
  • Ali Fallah
  • Hamid Reza Aghayan
  • Babak Arjmand
  • Nasrin Yazdani
  • Javad Verdi
  • Seyed Mohammad Ghodsi
  • Seyed Mojtaba Miri
  • Mahmoudreza Hadjighassem


Olfactory ensheathing cells (OECs) of human olfactory mucosa are a type of glial-like cells that possess good migratory and tropism properties. We believe that neuronal-derived vehicle may have better capability to receive to the site of injury. In addition to, obtaining of such vehicle from the patient reduces risk of unwanted complications. So, in this study, we investigate whether human olfactory ensheathing cells can be used as a cell source for the first time in gene delivery to assay the tumoricidal effect of herpes simplex virus thymidine kinase gene (HSV-tk) on glioblastoma multiforme (GBM). We obtained OECs from superior turbinate of human nasal cavity mucosa, and cell phenotype was confirmed by the expression of cell-specific antigens including low-affinity nerve growth factor receptor (p75 neurotrophin receptor), microtubule-associated protein-2 (MAP2), and S100 calcium binding protein B (S100-beta) using immunocytochemistry. Then, these cells were transduced by lentiviral vector for transient and stable expression of the herpes simplex virus thymidine kinase gene (OEC-tk). The migratory capacity of OEC-tk, their potency to convert prodrug ganciclovir to toxic form, and cytotoxic effect on astrocyte cells were assayed in vitro. The OECs showed fibroblast-like morphology and expressed specific antigens such as p75 neurotrophin receptor, S100-beta, and MAP2. Our results indicated that OECs-tk were able to migrate toward primary cultured human glioblastoma multiforme and affected survival rate of tumor cells according to exposure time and concentration of ganciclovir. Also, OECs-HSV-tk was capable of inducing apoptosis in tumor cells. Our findings suggest that human OECs could employ as a possible tool to transfer anticancer agent in gene therapy of brain tumor.


Olfactory ensheathing cells Cell migration Gene therapy Vehicle Glioblastoma multiforme 



This study was supported by grant number 20035 obtained from School of Advanced Technologies in Medicine and grant 19925 from Brain and Spinal Cord injury Research Center, Tehran University of Medical Sciences.

Conflict of Interest

The authors declare no conflict of interest.


  1. 1.
    Wen PY, Kesary S (2008) Malignant gliomas in adults. N Engl J Med 359:492–507CrossRefPubMedGoogle Scholar
  2. 2.
    Stuup R, Mason WP, Van den bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefGoogle Scholar
  3. 3.
    Fischer U, Steffens S, Frank S, Rainov NG, Schulze-Osthoff K, Kramm CM (2005) Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene 24:1231–1243CrossRefPubMedGoogle Scholar
  4. 4.
    Vousden K, Lane D (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283CrossRefPubMedGoogle Scholar
  5. 5.
    Tanaka T, Manome Y, Wen P, Kufe DW, Fine HA (1997) Viral vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumour growth. Nat Med 3:437–442CrossRefPubMedGoogle Scholar
  6. 6.
    Chiocca EA, Smith KM, McKinney B, Palmer CA, Rosenfeld S, Lillehei K, Hamilton A, DeMasters BK et al (2008) A phase I trial of Ad.hIFN-beta gene therapy for glioma. Mol Ther 16:618–626CrossRefPubMedGoogle Scholar
  7. 7.
    Lawler SE, Peruzzi PP, Chiocca EA (2006) Genetic strategies for brain tumor therapy. Cancer Gene Ther 13:225–233CrossRefPubMedGoogle Scholar
  8. 8.
    Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U et al (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A 97:12846–12851CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Germano IM, Uzzaman M, Keller G (2008) Gene delivery by embryonic stem cells for malignant glioma therapy: hype or hope? Cancer Biol Ther 7:1341–1347CrossRefPubMedGoogle Scholar
  10. 10.
    Picinich SC, Mishra PJ, Glod J, Banerjee D (2007) The therapeutic potential of mesenchymal stem cells. Expert Opin Biol 7:965–973CrossRefGoogle Scholar
  11. 11.
    Trivedi P, Hematti P (2008) Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol 36:350–359PubMedPubMedCentralGoogle Scholar
  12. 12.
    Yen BL, Chang CJ, Liu KJ, Chen YC, Hu HI, Bai CH, Yen ML (2009) Brief report—human embryonic stem cell-derived mesenchymal progenitors possess strong immunosuppressive effects toward natural killer cells as well as T lymphocytes. Stem Cells 27:451–456CrossRefPubMedGoogle Scholar
  13. 13.
    Herberts CA, Kwa MS, Hermsen HP (2011) Risk factors in the development of stem cell therapy. J Transl Med 9:1–14CrossRefGoogle Scholar
  14. 14.
    Singh N, Gopal SC, Srivastava RN, Chandra T, Agarwal SP, Singh SK, Gupta DK, Balapure AK (2013) In vitro maintenance of olfactory mucosa: with enriched olfactory ensheathing cells. J Stem Cell Res Ther 3:1–8CrossRefGoogle Scholar
  15. 15.
    Pastrana E, Moreno-Flores MT, Avila J, Wandosell F, Minichiello L, Diaz-Nido J (2007) BDNF production by olfactory ensheathing cells contributes to axonal regeneration of cultured adult CNS neurons. Neurochem Int 50:491–498CrossRefPubMedGoogle Scholar
  16. 16.
    Novikova LN, Lobov S, Wiberg M, Novikov LN (2011) Efficacy of olfactory ensheathing cells to support regeneration after spinal cord injury is influenced by method of culture preparation. Exp Neurol 229:132–142CrossRefPubMedGoogle Scholar
  17. 17.
    Escada PA, Lima C, da Silva JM (2009) The human olfactory mucosa. Eur Arch Otorhinolaryngol 266:1675–1680CrossRefPubMedGoogle Scholar
  18. 18.
    Huang ZH, Wang Y, Cao L, Su ZD, Zhu YL, Chen YZ, Yuan XB, He C (2008) Migratory properties of cultured olfactory ensheathing cells by single-cell migration assay. Cell Res 18:479–490CrossRefPubMedGoogle Scholar
  19. 19.
    Leopold D, Hummel T, Schwob J, Hong S, Kneeht M, Kobal G (2000) Anterior distribution of human olfactory epithelium. Laryngoscope 110:417–421CrossRefPubMedGoogle Scholar
  20. 20.
    Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD (2006) Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med 29:191–203CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Au E, Roskams A (2002) Culturing olfactory ensheathing glia from the mouse olfactory epithelium. Methods Mol Biol 198:49–54PubMedGoogle Scholar
  22. 22.
    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760CrossRefPubMedGoogle Scholar
  23. 23.
    Yasuda Y, Tateishi N, Shimoda T, Satoh S, Ogitani E, Fujita S (2004) Relationship between S100beta and GFAP expression in astrocytes during infarction and glial scar formation after mild transient ischemia. Brain Res 1021:20–31CrossRefPubMedGoogle Scholar
  24. 24.
    Moolten FL, Wells JM (1990) Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst 82:297–300CrossRefPubMedGoogle Scholar
  25. 25.
    Imren S, Fabry ME, Westerman KA, Pawliuk R, Tang P, Rosten PM, Nagel RL, Leboulch P et al (2004) High-level beta-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J Clin Invest 114:889–891CrossRefGoogle Scholar
  26. 26.
    Yang J, Liu TJ, Lu Y (2007) Effects of bicistronic lentiviral vector–mediated herpes simplex virus thymidine kinase/ganciclovir system on human lens epithelial cells. Curr Eye Res 32:33–42CrossRefPubMedGoogle Scholar
  27. 27.
    Sanson M, Marcaud V, Robin E, Valery C, Sturtz F, Zalc B (2002) Connexin 43-mediated bystander effect in two rat glioma cell models. Cancer Gene Ther 9:149–155CrossRefPubMedGoogle Scholar
  28. 28.
    Zhao Y, Lam DH, Yang J, Lin J, Tham CK, Ng WH, Wang S (2011) Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. Gene Ther 19:189–200CrossRefPubMedGoogle Scholar
  29. 29.
    Mostafavi H, Khaksarian M, Joghataei MT, Soleimani M, Hassanzadeh G, Eftekhari S, Soleimani M, Mousavizadeh K et al (2014) Selective β2 adrenergic agonist increases Cx43 and miR-451 expression via cAMP-Epac. Mol Med Rep 9:2405–2410PubMedGoogle Scholar
  30. 30.
    Mesnil M, Yamasaki H (2000) Bystander effect in herpes simplex virusthymidine kinase/ ganciclovir cancer gene therapy: role of gapjunctional intercellular communication. Cancer Res 60:3989–3999PubMedGoogle Scholar
  31. 31.
    Bak XY, Lam DH, Yang J, Ye K, Wei EL, Lim SK, Wang S (2011) Human embryonic stem cell-derived mesenchymal stem cells as cellular delivery vehicles for prodrug gene therapy of glioblastoma. Human Gene Ther 22:1365–1377CrossRefGoogle Scholar
  32. 32.
    Muller FJ, Snyder EY, Loring JF (2006) Gene therapy: can neural stem cells deliver? Nat Rev Neurosci 7:75–84CrossRefPubMedGoogle Scholar
  33. 33.
    Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J et al (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101:18117–18122CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Mansoureh Hashemi
    • 1
  • Ali Fallah
    • 2
  • Hamid Reza Aghayan
    • 3
    • 4
  • Babak Arjmand
    • 3
    • 4
  • Nasrin Yazdani
    • 5
  • Javad Verdi
    • 6
    • 7
  • Seyed Mohammad Ghodsi
    • 8
  • Seyed Mojtaba Miri
    • 8
    • 9
  • Mahmoudreza Hadjighassem
    • 1
    • 8
  1. 1.Department of Neuroscience, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
  2. 2.Systems and Synthetic Biology Group, Mede Bioeconomy CompanyTehranIran
  3. 3.cGMP-Compliant Stem Cell Manufacturing Facility, Brain and Spinal Cord Injury Research CenterTehran University of Medical SciencesTehranIran
  4. 4.Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research InstituteTehran University of Medical SciencesTehranIran
  5. 5.Otorhinolaryngology Research Center, Amir-Alam HospitalTehran University of Medical SciencesTehranIran
  6. 6.Applied Cell Sciences Department, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
  7. 7.Research Center for Science and Technology in MedicineTehran University of Medical SciencesTehranIran
  8. 8.Brain and Spinal Cord Injury Research Center, Neuroscience InstituteTehran University of Medical SciencesTehranIran
  9. 9.Department of Neurosurgery, Imam Khomeini HospitalTehran University of Medical SciencesTehranIran

Personalised recommendations