Molecular Neurobiology

, Volume 53, Issue 7, pp 4618–4630 | Cite as

microRNAs Modulate Spatial Memory in the Hippocampus and in the Ventral Striatum in a Region-Specific Manner

  • F. Capitano
  • J. Camon
  • V. Ferretti
  • V. Licursi
  • F. De Vito
  • A. Rinaldi
  • S. Vincenti
  • C. Mannironi
  • P. Fragapane
  • I. Bozzoni
  • A. Oliverio
  • R. Negri
  • C. Presutti
  • Andrea MeleEmail author


MicroRNAs are endogenous, noncoding RNAs crucial for the post-transcriptional regulation of gene expression. Their role in spatial memory formation, however, is poorly explored. In this study, we analyzed learning-induced microRNA expression in the hippocampus and in the ventral striatum. Among miRNAs specifically downregulated by spatial training, we focused on the hippocampus-specific miR-324-5p and the ventral striatum-specific miR-24. In vivo overexpression of the two miRNAs demonstrated that miR-324-5p is able to impair memory if administered in the hippocampus but not in the ventral striatum, while the opposite is true for miR-24. Overall, these findings demonstrate a causal relationship between miRNA expression changes and spatial memory formation. Furthermore, they provide support for a regional dissociation in the post-transcriptional processes underlying spatial memory in the two brain structures analyzed.


Nucleus accumbens Morris water maze miR-24 miR-324-5p Mice 



The authors would like to thank the colleagues Paola Paggi, Stefano Puglisi-Allegra, and Martine Ammassari-Teule for the useful discussion and the critical suggestions. This study was supported by the CNR grant AGESPAN (A.M., A.R.), Sapienza research grants (A.M., A.R., C.L.), FIRB no. RBIN06E9Z8 (R.N.). VL’s was supported by a grant from Regione Lazio.

Supplementary material

12035_2015_9398_Fig5_ESM.gif (144 kb)
Supplemental figure 1

Spatial training specific miRNAs expression in the HPC and VS. a. Mice trained in the hidden (spatial) and in the visible (cue) platform version of the water maze show similar learning curves, progressively decreasing the path length to reach the platform over subsequent sessions. Path length in vehicle and scramble intra-HPC administered mice is expressed as mean distance (cm) of 3 subsequent trials ± S.E.M. in training sessions. b. The scatter plot shows miRNAs relative change in the hippocampus and c. in the ventral striatum, expressed as log2 ratio, spatial - (vs. naïve controls), plotted against cue-trained (vs. naïve controls). (GIF 144 kb)

12035_2015_9398_MOESM1_ESM.eps (1.4 mb)
High Resolution Image (EPS 1454 kb)
12035_2015_9398_Fig6_ESM.gif (248 kb)
Supplemental figure 2

Intra-HPC and intra-VS scramble miRNA infusions do not affect spatial memory. In the top panels is represented the experimental procedure. a. Mice administered pre-training intra-HPC with either PBS or scramble-mimic show similar learning curve and similar memory for platform location on probe test, 24 hrs after training. Path length in vehicle and scramble intra-HPC administered mice is expressed as mean distance (cm) of 3 subsequent trials ± S.E.M. in training sessions (ANOVA for treatment: F1,18 = 0.46, p = 0.5; sessions F5,90 = 8.6, p < 0.0001; training X sessions F5,90 = 0.51, p = 0.77). Quadrants preference is expressed as time (seconds) ± S.E.M. spent in the four different quadrants. ANOVA for treatment F1,18 = -0.05, p = 1; quadrants F3,54 = 26.73, p < 0.0001; treatment X quadrants F3,54 = 0.71; p = 0.55. * p < 0.05 correct quadrant vs. others. b. Mice administered pre-training intra-VS with either PBS or scramble-mimic show similar learning curve and similar memory for platform location on probe test, 24 hrs after training. Path length in vehicle and scramble intra-VS administered mice is expressed as mean distance (cm) of 3 subsequent trials ± S.E.M. in training sessions (ANOVA for treatment: F1,20 = 2.02, p = 0.17; sessions F5,100 = 17.24, p < 0.0001; training X sessions F5,100 = 0.26, p = 0.93). Quadrants preference is expressed as time (seconds) ± S.E.M. spent in the four different quadrants. ANOVA for treatment F1,20 = 0.11, p = 0.75; quadrants F3,60 = 22.74, p < 0.0001; treatment X quadrants F3,60 = 0.04; p = 0.99. * p < 0.05 correct quadrant vs. others. (GIF 248 kb)

12035_2015_9398_MOESM2_ESM.eps (1.1 mb)
High Resolution Image (EPS 1166 kb)
12035_2015_9398_Fig7_ESM.gif (53 kb)
Supplemental figure 3

MicroRNAs over-expression in the hippocampus and in the ventral striatum does not affect mice performance during training. a-b. Mice administered with the miR-324-5p-mimic or scramble in the HPC (a) or in the VS (b) show similar performance during learning. Path length is expressed as mean distance (cm) of three subsequent trials ± S.E.M. (HPC: ANOVA for treatment F1,17 = 0.54, p = 0.47; for session F5,85 = 5.99, p < 0.0001; treatment X session F5,85 = 0.57, p = 0.72. VS: ANOVA for treatment F1,18 = 0.11, p = 0.74; for session F5,90 = 11.13, p < 0.0001; treatment X session F5,90 = 0.53, p = 0.74). c-d. Mice administered intra-HPC (c) or intra-VS (d) with miR-24-mimic, have similar performance during training sessions compared to scramble controls. Path length is expressed as mean distance (cm) of three subsequent trials ± S.E.M. (HPC ANOVA for treatment F1,26 = 3.77, p = 0.063; for session F5,130 = 5.36, p = 0.0002; treatment X session F5,130 = 0.514, p = 2.56. VS ANOVA for treatment F1,20 = 3.26, p = 0.086; for session F5,100 = 12.14, p < 0.0001; treatment X session F5,100 = 1.2, p = 0.31). (GIF 53 kb)

12035_2015_9398_MOESM3_ESM.eps (311 kb)
High Resolution Image (EPS 310 kb)
12035_2015_9398_Fig8_ESM.gif (317 kb)
Supplemental figure 4

Schematic drawing from Franklin and Paxinos (1997) of coronal sections and anteroposterior coordinates relative to bregma from HPC- and VS-infused animals in the different experiments. Each symbol represents the approximate cannula placement. a. Intra-HPC miR-324-5p-mimic infusions. Squares: PBS; triangles: scramble circles: miR-324-5p-mimic. b. Intra-VS miR-324-5p-mimic infusions. Squares: pbs; triangles: scramble; circles: miR- 324-5p-mimic. c. Intra-HPC miR-24-mimic infusions. Squares: PBS; triangles: scramble; circles: miR-24-mimic. d. Intra-VS miR-24-mimic infusions. Squares: PBS; triangles: scramble; circles: miR-24-mimic. (GIF 317 kb)

12035_2015_9398_MOESM4_ESM.eps (1.1 mb)
High Resolution Image (EPS 1156 kb)
12035_2015_9398_MOESM5_ESM.docx (146 kb)
Supplementary Table S1 (DOCX 145 kb)
12035_2015_9398_MOESM6_ESM.docx (244 kb)
Supplementary Table S2 (DOCX 243 kb)
12035_2015_9398_MOESM7_ESM.docx (172 kb)
Supplementary Table S3 (DOCX 171 kb)
12035_2015_9398_MOESM8_ESM.docx (132 kb)
Supplementary Table S4 (DOCX 131 kb)
12035_2015_9398_MOESM9_ESM.docx (185 kb)
Supplementary Table S5 (DOCX 184 kb)


  1. 1.
    O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9:182–194. doi: 10.1038/nrn2335 CrossRefPubMedGoogle Scholar
  3. 3.
    McGaugh JL (2000) Memory—a century of consolidation. Science 287:248–251. doi: 10.1126/science.287.5451.248 CrossRefPubMedGoogle Scholar
  4. 4.
    Kandel ER, Dudai Y, Mayford MR (2014) The molecular and systems biology of memory. Cell 157:163–186. doi: 10.1016/j.cell.2014.03.001 CrossRefPubMedGoogle Scholar
  5. 5.
    Dudai Y (2012) The restless engram: consolidations never end. Annu Rev Neurosci 35:227–247. doi: 10.1146/annurev-neuro-062111-150500 CrossRefPubMedGoogle Scholar
  6. 6.
    Miyashita T, Kubik S, Lewandowski G, Guzowski JF (2008) Networks of neurons, networks of genes: an integrated view of memory consolidation. Neurobiol Learn Mem 89:269–284. doi: 10.1016/j.nlm.2007.08.012 CrossRefPubMedGoogle Scholar
  7. 7.
    Lamprecht R, LeDoux J (2004) Structural plasticity and memory. Nat Rev Neurosci 5:45–54. doi: 10.1038/nrn1301 CrossRefPubMedGoogle Scholar
  8. 8.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114. doi: 10.1038/nrg2290 CrossRefPubMedGoogle Scholar
  9. 9.
    Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7:911–920. doi: 10.1038/nrn2037 CrossRefPubMedGoogle Scholar
  10. 10.
    Gao J, Wang W-Y, Mao Y-W et al (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109. doi: 10.1038/nature09271 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Im H-I, Hollander JA, Bali P, Kenny PJ (2010) MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 13:1120–1127. doi: 10.1038/nn.2615 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rinaldi A, Vincenti S, De Vito F et al (2010) Stress induces region specific alterations in microRNAs expression in mice. Behav Brain Res 208:265–269. doi: 10.1016/j.bbr.2009.11.012 CrossRefPubMedGoogle Scholar
  13. 13.
    Chandrasekar V, Dreyer J-L (2011) Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology 36:1149–1164. doi: 10.1038/npp.2010.250 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Tognini P, Putignano E, Coatti A, Pizzorusso T (2011) Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nat Neurosci 14:1237–1239. doi: 10.1038/nn.2920 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mannironi C, Camon J, De Vito F et al (2013) Acute stress alters amygdala microRNA miR-135a and miR-124 expression: inferences for corticosteroid dependent stress response. PLoS One 8, e73385. doi: 10.1371/journal.pone.0073385 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Remenyi J, van den Bosch MWM, Palygin O et al (2013) miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity. PLoS One 8:1–14. doi: 10.1371/journal.pone.0062509 CrossRefGoogle Scholar
  17. 17.
    Smalheiser NR, Lugli G (2009) microRNA regulation of synaptic plasticity. Neuromol Med 11:133–140. doi: 10.1007/s12017-009-8065-2 CrossRefGoogle Scholar
  18. 18.
    Kye MJ, Neveu P, Lee Y-S et al (2011) NMDA mediated contextual conditioning changes miRNA expression. PLoS One 6, e24682. doi: 10.1371/journal.pone.0024682 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Smalheiser NR, Lugli G, Lenon AL et al (2010) Olfactory discrimination training up-regulates and reorganizes expression of microRNAs in adult mouse hippocampus. ASN Neuro 2, e00028. doi: 10.1042/AN20090055 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wheeler AL, Teixeira CM, Wang AH et al (2013) Identification of a functional connectome for long-term fear memory in mice. PLoS Comput Biol 9, e1002853. doi: 10.1371/journal.pcbi.1002853 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bontempi B, Jaffard R, Destrade C (1996) Differential temporal evolution of post-training changes in regional brain glucose metabolism induced by repeated spatial discrimination training in mice: visualization of the memory consolidation process? Eur J Neurosci 8:2348–2360CrossRefPubMedGoogle Scholar
  22. 22.
    Izquierdo I, Bevilaqua LRM, Rossato JI et al (2006) Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci 29:496–505. doi: 10.1016/j.tins.2006.07.005 CrossRefPubMedGoogle Scholar
  23. 23.
    Setlow B, McGaugh JL (1998) Sulpiride infused into the nucleus accumbens posttraining impairs memory of spatial water maze training. Behav Neurosci 112:603–610CrossRefPubMedGoogle Scholar
  24. 24.
    Ito R, Robbins TW, Pennartz CMA, Everitt BJ (2008) Functional interaction between the hippocampus and nucleus accumbens shell is necessary for the acquisition of appetitive spatial context conditioning. J Neurosci 28:6950–6959. doi: 10.1523/JNEUROSCI.1615-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ferretti V, Roullet P, Sargolini F et al (2010) Ventral striatal plasticity and spatial memory. Proc Natl Acad Sci U S A 107:7945–7950. doi: 10.1073/pnas.0911757107 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rinaldi A, Oliverio A, Mele A (2012) Spatial memory, plasticity and nucleus accumbens. Rev Neurosci 23:527–541. doi: 10.1515/revneuro-2012-0070 CrossRefPubMedGoogle Scholar
  27. 27.
    Humphries MD, Prescott TJ (2010) The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog Neurobiol 90:385–417. doi: 10.1016/j.pneurobio.2009.11.003 CrossRefPubMedGoogle Scholar
  28. 28.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262
  29. 29.
    Dweep H, Sticht C, Pandey P, Gretz N (2011) MiRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44:839–847. doi: 10.1016/j.jbi.2011.05.002 CrossRefPubMedGoogle Scholar
  30. 30.
    Paraskevopoulou MD, Georgakilas G, Kostoulas N et al (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41:169–173. doi: 10.1093/nar/gkt393 CrossRefGoogle Scholar
  31. 31.
    Garcia DM, Baek D, Shin C et al (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18:1139–1146. doi: 10.1038/nsmb.2115 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Franklin BJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San DiegoGoogle Scholar
  33. 33.
    Roullet P, Sargolini F, Oliverio A, Mele A (2001) NMDA and AMPA antagonist infusions into the ventral striatum impair different steps of spatial information processing in a nonassociative task in mice. J Neurosci 21:2143–2149PubMedGoogle Scholar
  34. 34.
    Vetere G, Barbato C, Pezzola S et al (2014) Selective inhibition of miR-92 in hippocampal neurons alters contextual fear memory. Hippocampus 1465:1–22. doi: 10.1002/hipo.22326 Google Scholar
  35. 35.
    Zhou Z, Meng Y, Asrar S et al (2009) A critical role of Rho-kinase ROCK2 in the regulation of spine and synaptic function. Neuropharmacology 56:81–89. doi: 10.1016/j.neuropharm.2008.07.031 CrossRefPubMedGoogle Scholar
  36. 36.
    Ferretti E, De Smaele E, Miele E et al (2008) Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 27:2616–2627. doi: 10.1038/emboj.2008.172 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hung H, Hsiao Y, Gean P (2015) Learning induces sonic hedgehog signaling in the amygdala which promotes neurogenesis and long-term memory formation. Int J Neuropsychopharmacol 18:1–11. doi: 10.1093/ijnp/pyu071 CrossRefGoogle Scholar
  38. 38.
    Ferretti V, Perri V, Cristofoli A et al (2014) Phosphorylation of S845 GluA1 AMPA receptors modulates spatial memory and structural plasticity in the ventral striatum. Brain Struct Funct. doi: 10.1007/s00429-014-0816-7 PubMedGoogle Scholar
  39. 39.
    Im H-I, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35:325–334. doi: 10.1016/j.tins.2012.01.004 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang Q, Huang Z, Xue H et al (2008) MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood 111:588–595. doi: 10.1182/blood-2007-05-092718 CrossRefPubMedGoogle Scholar
  41. 41.
    Ageta H, Ikegami S, Miura M et al (2010) Activin plays a key role in the maintenance of long-term memory and late-LTP. Learn Mem 17:176–185. doi: 10.1101/lm.16659010 CrossRefPubMedGoogle Scholar
  42. 42.
    Griggs EM, Young EJ, Rumbaugh G, Miller CA (2013) MicroRNA-182 regulates amygdala-dependent memory formation. J Neurosci 33:1734–1740. doi: 10.1523/JNEUROSCI.2873-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Packard MG, Teather LA (1997) Double dissociation of hippocampal and dorsal-striatal memory systems by posttraining intracerebral injections of 2-amino-5-phosphonopentanoic acid. Behav Neurosci 111:543–551. doi: 10.1037/0735-7044.111.3.543 CrossRefPubMedGoogle Scholar
  44. 44.
    Sargolini F, Florian C, Oliverio A et al (2003) Differential involvement of NMDA and AMPA receptors within the nucleus accumbens in consolidation of information necessary for place navigation and guidance strategy of mice. Learn Mem 10:285–292. doi: 10.1101/lm.54003 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Morris RG, Anderson E, Lynch GS, Baudry M (1986) Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319:774–776. doi: 10.1038/319774a0 CrossRefPubMedGoogle Scholar
  46. 46.
    Riedel G, Micheau J, Lam AG et al (1999) Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Neurosci 2:898–905. doi: 10.1038/13202 CrossRefPubMedGoogle Scholar
  47. 47.
    Edbauer D, Neilson JR, Foster KA et al (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384. doi: 10.1016/j.neuron.2010.01.005 CrossRefPubMedGoogle Scholar
  48. 48.
    Ruiz i Altaba A, Palma V, Dahmane N (2002) Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci 3:24–33. doi: 10.1038/nrn704 CrossRefPubMedGoogle Scholar
  49. 49.
    Dityatev A, Bukalo O, Schachner M (2008) Modulation of synaptic transmission and plasticity by cell adhesion and repulsion molecules. Neuron Glia Biol 4:197. doi: 10.1017/S1740925X09990111 CrossRefPubMedGoogle Scholar
  50. 50.
    Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63CrossRefPubMedGoogle Scholar
  51. 51.
    Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10:842–849. doi: 10.1038/nrn2763 CrossRefPubMedGoogle Scholar
  52. 52.
    Schratt GM, Tuebing F, Nigh EA et al (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289. doi: 10.1038/nature04909 CrossRefPubMedGoogle Scholar
  53. 53.
    Gu Q-H, Yu D, Hu Z et al (2015) miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat Commun 6:6789. doi: 10.1038/ncomms7789 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Moser MB, Trommald M, Andersen P (1994) An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci U S A 91:12673–12675CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Naghdi N, Majlessi N, Bozorgmehr T (2003) The effects of anisomycin (a protein synthesis inhibitor) on spatial learning and memory in CA1 region of rats hippocampus. Behav Brain Res 139:69–73. doi: 10.1016/S0166-4328(02)00060-8 CrossRefPubMedGoogle Scholar
  56. 56.
    Restivo L, Vetere G, Bontempi B, Ammassari-Teule M (2009) The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci 29:8206–8214. doi: 10.1523/JNEUROSCI.0966-09.2009 CrossRefPubMedGoogle Scholar
  57. 57.
    Wickens JR (2009) Synaptic plasticity in the basal ganglia. Behav Brain Res 199:119–128. doi: 10.1016/j.bbr.2008.10.030 CrossRefPubMedGoogle Scholar
  58. 58.
    Baucum AJ, Brown AM, Colbran RJ (2013) Differential association of postsynaptic signaling protein complexes in striatum and hippocampus. J Neurochem 124:490–501. doi: 10.1111/jnc.12101 CrossRefPubMedGoogle Scholar
  59. 59.
    Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190. doi: 10.1038/nrn753 CrossRefPubMedGoogle Scholar
  60. 60.
    Gregorian C, Nakashima J, Le Belle J et al (2009) Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis. J Neurosci 29:1874–1886. doi: 10.1523/JNEUROSCI.3095-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Amiri A, Cho W, Zhou J et al (2012) Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis. J Neurosci 32:5880–5890. doi: 10.1523/JNEUROSCI.5462-11.2012 CrossRefPubMedGoogle Scholar
  62. 62.
    Cheng L-C, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408. doi: 10.1038/nn.2294 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Agostini M, Tucci P, Steinert et al (2011) microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proc Natl Acad Sci U S A 108:1–6. doi: 10.1073/pnas.1112063108 CrossRefGoogle Scholar
  64. 64.
    Lin Q, Wei W, Coelho CM et al (2011) The brain-specific microRNA miR-128b regulates the formation of fear-extinction memory. Nat Neurosci 14:1115–1117. doi: 10.1038/nn.2891 CrossRefPubMedGoogle Scholar
  65. 65.
    Zovoilis A, Agbemenyah HY, Agis-Balboa RC et al (2011) microRNA-34c is a novel target to treat dementias. EMBO J 30:4299–4308. doi: 10.1038/emboj.2011.327 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Yang Y, Shu X, Liu D et al (2012) EPAC null mutation impairs learning and social interactions via aberrant regulation of miR-124 and Zif268 translation. Neuron 73:774–788. doi: 10.1016/j.neuron.2012.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Hansen KF, Karelina K, Sakamoto K et al (2013) miRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct 218:817–831. doi: 10.1007/s00429-012-0431-4 CrossRefPubMedGoogle Scholar
  68. 68.
    Dias BG, Goodman JV, Ahluwalia R et al (2014) Amygdala-dependent fear memory consolidation via miR-34a and notch signaling. Neuron 83:906–918. doi: 10.1016/j.neuron.2014.07.019 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    He M, Liu Y, Wang X et al (2012) Cell-type-based analysis of MicroRNA profiles in the mouse brain. Neuron 73:35–48. doi: 10.1016/j.neuron.2011.11.010 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • F. Capitano
    • 1
    • 2
    • 3
  • J. Camon
    • 1
    • 2
    • 3
  • V. Ferretti
    • 1
    • 2
    • 3
  • V. Licursi
    • 1
  • F. De Vito
    • 1
  • A. Rinaldi
    • 1
    • 2
    • 3
  • S. Vincenti
    • 1
  • C. Mannironi
    • 1
    • 4
  • P. Fragapane
    • 1
    • 4
  • I. Bozzoni
    • 1
    • 4
  • A. Oliverio
    • 1
    • 2
    • 3
  • R. Negri
    • 1
  • C. Presutti
    • 1
  • Andrea Mele
    • 1
    • 2
    • 3
    Email author
  1. 1.Dipartimento di Biologia e Biotecnologie C. DarwinSapienza Università di RomaRomeItaly
  2. 2.Centro di Ricerca in Neurobiologia “D. Bovet”Sapienza Università di RomaRomeItaly
  3. 3.Istituto Biologia Cellulare e NeurobiologiaCNRRomeItaly
  4. 4.Istituto di Biologia e Patologia MolecolariCNRRomeItaly

Personalised recommendations