Molecular Neurobiology

, Volume 53, Issue 7, pp 4529–4538 | Cite as

Anti-Vascular Endothelial Growth Factor Treatment Suppresses Early Brain Injury After Subarachnoid Hemorrhage in Mice

  • Lei Liu
  • Masashi Fujimoto
  • Fumihiro Kawakita
  • Fumi Nakano
  • Kyoko Imanaka-Yoshida
  • Toshimichi Yoshida
  • Hidenori Suzuki


The role of vascular endothelial growth factor (VEGF) in early brain injury (EBI) after subarachnoid hemorrhage (SAH) remains unclear. The aim of this study was to investigate effects of anti-VEGF therapy on EBI after SAH. C57BL/6 male mice underwent sham or filament perforation SAH modeling, and vehicle or two dosages (0.2 and 1 μg) of anti-VEGF antibody were randomly administrated by an intracerebroventricular injection. Neuroscore, brain water content, immunoglobulin G staining, and Western blotting were performed to evaluate EBI at 24–48 h. To confirm the role of VEGF, anti-VEGF receptor (VEGFR)-2 (a major receptor of VEGF) antibody was intracerebroventricularly administered and the effects on EBI were evaluated at 24 h. A higher dose, but not a lower dose, of anti-VEGF antibody significantly ameliorated post-SAH neurological impairments and brain edema at 24–48 h post-SAH. Post-SAH blood-brain barrier disruption was also inhibited by anti-VEGF antibody. The protective effects of anti-VEGF antibody were associated with the inhibition of post-SAH induction of VEGF, VEGFR-2, phosphorylated VEGFR-2, interleukin-1β and a matricellular protein tenascin-C (TNC). Anti-VEGFR-2 antibody also suppressed post-SAH neurological impairments and brain edema associated with VEGFR-2 inactivation and TNC downregulation. These findings demonstrated that VEGF causes post-SAH EBI via VEGFR-2 and TNC and that anti-VEGF therapy is effective for post-SAH EBI.


Subarachnoid hemorrhage Vascular endothelial growth factor Blood-brain barrier Tenascin-C Antibody neutralization 



Analysis of variance


Blood-brain barrier


Cerebrospinal fluid


Early brain injury


Epidermal growth factor




Mitogen-activation protein kinase


Phosphate-buffered saline


Platelet-derived growth factor


Phosphorylated vascular endothelial growth factor receptor-2


Subarachnoid hemorrhage




Vascular endothelial growth factor


Vascular endothelial growth factor receptor


Zona occludens

Supplementary material

12035_2015_9386_MOESM1_ESM.pdf (5.2 mb)
ESM 1(PDF 5366 kb)


  1. 1.
    Cahill J, Calvert JW, Zhang JH (2006) Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 26:1341–1353CrossRefPubMedGoogle Scholar
  2. 2.
    Fujii M, Yan J, Rolland WB et al (2013) Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res 4:432–446CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676CrossRefPubMedGoogle Scholar
  4. 4.
    Jiang S, Xia R, Jiang Y et al (2014) Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier. PLoS One 9:e86407CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Argaw AT, Asp L, Zhang J et al (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Invest 122:2454–2468CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kusaka G, Ishikawa M, Nanda A et al (2004) Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 24:916–925CrossRefPubMedGoogle Scholar
  7. 7.
    Tucker RP, Chiquet-Ehrismann R (2009) The regulation of tenascin expression by tissue microenvironments. Biochim Biophys Acta 1793:888–892CrossRefPubMedGoogle Scholar
  8. 8.
    Suzuki H, Kanamaru K, Shiba M et al (2011) Cerebrospinal fluid tenascin-C in cerebral vasospasm after aneurysmal subarachnoid hemorrhage. J Neurosurg Anesthesiol 23:310–317CrossRefPubMedGoogle Scholar
  9. 9.
    Shiba M, Fujimoto M, Imanaka-Yoshida K et al (2014) Tenascin-C causes neuronal apoptosis after subarachnoid hemorrhage in rats. Transl Stroke Res 5:238–247CrossRefPubMedGoogle Scholar
  10. 10.
    Altay O, Suzuki H, Hasegawa Y et al (2012) Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke 43:2513–2516CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chi OZ, Hunter C, Liu X et al (2007) Effects of anti-VEGF antibody on blood-brain barrier disruption in focal cerebral ischemia. Exp Neurol 204:283–287CrossRefPubMedGoogle Scholar
  12. 12.
    Krum JM, Mani N, Rosenstein JM (2008) Roles of the endogenous VEGF receptors flt-1 and flk-1 in astroglial and vascular remodeling after brain injury. Exp Neurol 212:108–117CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Suzuki H, Zhang JH (2012) Neurobehavioral assessments of subarachnoid hemorrhage. In: Chen J, Xu X-M, Xu ZC, Zhang JH (eds) Springer protocols handbooks. Animal models of acute neurological injuries II. Humana, New York, pp 435–440CrossRefGoogle Scholar
  14. 14.
    Richmon JD, Fukuda K, Maida N et al (1998) Induction of heme oxygenase-1 after hyperosmotic opening of the blood-brain barrier. Brain Res 780:108–118CrossRefPubMedGoogle Scholar
  15. 15.
    Suzuki H, Ayer R, Sugawara T et al (2010) Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med 38:612–618CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zacharia BE, Hickman ZL, Grobelny BT et al (2010) Epidemiology of aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am 21:221–233CrossRefPubMedGoogle Scholar
  17. 17.
    Friedrich V, Flores R, Muller A et al (2010) Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage. Neuroscience 165:968–975CrossRefPubMedGoogle Scholar
  18. 18.
    Scholler K, Trinkl A, Klopotowski M et al (2007) Characterization of microvascular basal lamina damage and blood-brain barrier dysfunction following subarachnoid hemorrhage in rats. Brain Res 1142:237–246CrossRefPubMedGoogle Scholar
  19. 19.
    Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci 109:227–241CrossRefPubMedGoogle Scholar
  20. 20.
    Ostrowski RP, Colohan AR, Zhang JH (2005) Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 25:554–571CrossRefPubMedGoogle Scholar
  21. 21.
    Suzuki H, Hasegawa Y, Kanamaru K et al (2010) Mechanisms of osteopontin-induced stabilization of blood-brain barrier disruption after subarachnoid hemorrhage in rats. Stroke 41:1783–1790CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yatsushige H, Ostrowski RP, Tsubokawa T et al (2007) Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. J Neurosci Res 85:1436–1448CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang J, Xu X, Zhou D et al (2014) Possible role of Raf-1 kinase in the development of cerebral vasospasm and early brain injury after experimental subarachnoid hemorrhage in rats. Mol Neurobiol. doi:10.1007/s12035-014-8939-7 Google Scholar
  24. 24.
    Shibuya M (2013) Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem 153:13–19CrossRefPubMedGoogle Scholar
  25. 25.
    Davis B, Tang J, Zhang L et al (2010) Role of vasodilator stimulated phosphoprotein in VEGF induced blood-brain barrier permeability in endothelial cell monolayers. Int J Dev Neurosci 28:423–428CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Midwood KS, Hussenet T, Langlois B et al (2011) Advances in tenascin-C biology. Cell Mol Life Sci 68:3175–3199CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Udalova IA, Ruhmann M, Thomson SJ et al (2011) Expression and immune function of tenascin-C. Crit Rev Immunol 31:115–145CrossRefPubMedGoogle Scholar
  28. 28.
    Fujimoto M, Suzuki H, Shiba M et al (2013) Tenascin-C induces prolonged constriction of cerebral arteries in rats. Neurobiol Dis 55:104–109CrossRefPubMedGoogle Scholar
  29. 29.
    Shiba M, Suzuki H, Fujimoto M et al (2012) Imatinib mesylate prevents cerebral vasospasm after subarachnoid hemorrhage via inhibiting tenascin-C expression in rats. Neurobiol Dis 46:172–179CrossRefPubMedGoogle Scholar
  30. 30.
    Tanaka K, Hiraiwa N, Hashimoto H et al (2004) Tenascin-C regulates angiogenesis in tumor through the regulation of vascular endothelial growth factor expression. Int J Cancer 108:31–40CrossRefPubMedGoogle Scholar
  31. 31.
    Fujimoto M, Shiba M, Kawakita F et al. (2015) Deficiency of tenascin-C attenuates blood-brain barrier disruption after experimental subarachnoid hemorrhage in mice. J Neurosurg. In pressGoogle Scholar
  32. 32.
    Li W, Lu ZF, Man XY et al (2012) VEGF upregulates VEGF receptor-2 on human outer root sheath cells and stimulates proliferation through ERK pathway. Mol Biol Rep 39:8687–8694CrossRefPubMedGoogle Scholar
  33. 33.
    Sozen T, Tsuchiyama R, Hasegawa Y et al (2009) Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke 40:2519–2525CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chiquet-Ehrismann R, Chiquet M (2003) Tenascins: regulation and putative functions during pathological stress. J Pathol 200:488–499CrossRefPubMedGoogle Scholar
  35. 35.
    Kuriyama N, Duarte S, Hamada T et al (2011) Tenascin-C: a novel mediator of hepatic ischemia and reperfusion injury. Hepatology 54:2125–2136CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Narita Y (2013) Drug review: safety and efficacy of bevacizumab for glioblastoma and other brain tumors. Jpn J Clin Oncol 43:587–595CrossRefPubMedGoogle Scholar
  37. 37.
    Stefanini FR, Badaro E, Falabella P et al (2014) Anti-VEGF for the management of diabetic macular edema. J Immunol Res 2014:632307CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Lei Liu
    • 1
  • Masashi Fujimoto
    • 1
  • Fumihiro Kawakita
    • 1
  • Fumi Nakano
    • 1
  • Kyoko Imanaka-Yoshida
    • 2
    • 3
  • Toshimichi Yoshida
    • 2
    • 3
  • Hidenori Suzuki
    • 1
    • 3
  1. 1.Department of NeurosurgeryMie University Graduate School of MedicineTsuJapan
  2. 2.Department of Pathology and Matrix BiologyMie University Graduate School of MedicineTsuJapan
  3. 3.Research Center for Matrix BiologyMie University Graduate School of MedicineTsuJapan

Personalised recommendations