Molecular Neurobiology

, Volume 53, Issue 7, pp 4328–4342 | Cite as

The Role of Cdk5 in Alzheimer’s Disease

  • Shu-Lei Liu
  • Chong Wang
  • Teng Jiang
  • Lan Tan
  • Ang Xing
  • Jin-Tai Yu


Alzheimer’s disease (AD) is known as the most fatal chronic neurodegenerative disease in adults along with progressive loss of memory and other cognitive function disorders. Cyclin-dependent kinase 5 (Cdk5), a unique member of the cyclin-dependent kinases (Cdks), is reported to intimately associate with the process of the pathogenesis of AD. Cdk5 is of vital importance in the development of CNS and neuron movements such as neuronal migration and differentiation, synaptic functions, and memory consolidation. However, when neurons suffer from pathological stimuli, Cdk5 activity becomes hyperactive and causes aberrant hyperphosphorylation of various substrates of Cdk5 like amyloid precursor protein (APP), tau and neurofilament, resulting in neurodegenerative diseases like AD. Deregulation of Cdk5 contributes to an array of pathological events in AD, ranging from formation of senile plaques and neurofibrillary tangles, synaptic damage, mitochondrial dysfunction to cell cycle reactivation as well as neuronal cell apoptosis. More importantly, an inhibition of Cdk5 activity with inhibitors such as RNA inference (RNAi) could protect from memory decline and neuronal cell loss through suppressing β-amyloid (Aβ)-induced neurotoxicity and tauopathies. This review will briefly describe the above-mentioned possible roles of Cdk5 in the physiological and pathological mechanisms of AD, further discussing recent advances and challenges in Cdk5 as a therapeutic target.


Alzheimer’s disease Cdk5 Aβ Tau Pathogenesis Therapy 



This work was supported by grants from the National Natural Science Foundation of China (81471309, 81371406, 81171209), the Shandong Provincial Outstanding Medical Academic Professional Program, Qingdao Key Health Discipline Development Fund, Qingdao Outstanding Health Professional Development Fund, and Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Jiang T, Chang RC et al (2015) Advances in Alzheimer’s disease: from bench to bedside. Biomed Res Int 2015:202676PubMedPubMedCentralGoogle Scholar
  2. 2.
    Blennow K, de Leon MJ et al (2006) Alzheimer’s disease. Lancet 368(9533):387–403PubMedCrossRefGoogle Scholar
  3. 3.
    Papon MA, Whittington RA et al (2011) Alzheimer’s disease and anesthesia. Front Neurosci 4:272PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Wimo A, Prince M (2010) World Alzheimer Report 2010: the global economic impact of dementia (London: Alzheimer’s Disease International). Alzheimers Dis Int: 1–56. doi: 10.3389/fnins.2010.00272
  5. 5.
    Asada A, Saito T et al (2012) Phosphorylation of p35 and p39 by Cdk5 determines the subcellular location of the holokinase in a phosphorylation-site-specific manner. J Cell Sci 125(Pt 14):3421–3429PubMedCrossRefGoogle Scholar
  6. 6.
    Lee J, Yun N et al (2014) Acetylation of cyclin-dependent kinase 5 is mediated by GCN5. Biochem Biophys Res Commun 447(1):121–127PubMedCrossRefGoogle Scholar
  7. 7.
    Kobayashi H, Saito T et al (2014) Phosphorylation of cyclin-dependent kinase 5 (Cdk5) at Tyr-15 is inhibited by Cdk5 activators and does not contribute to the activation of Cdk5. J Biol Chem 289(28):19627–19636PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Qu J, Nakamura T et al (2012) S-nitrosylation of Cdk5: potential implications in amyloid-beta-related neurotoxicity in Alzheimer disease. Prion 6(4):364–370PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Sun KH, Chang KH et al (2011) Glutathione-S-transferase P1 is a critical regulator of Cdk5 kinase activity. J Neurochem 118(5):902–914PubMedCrossRefGoogle Scholar
  10. 10.
    Takahashi M, Ishida M et al (2014) Valproic acid downregulates Cdk5 activity via the transcription of the p35 mRNA. Biochem Biophys Res Commun 447(4):678–682PubMedCrossRefGoogle Scholar
  11. 11.
    Lew J (2013) CDK5: a new lead to survival. Cell Cycle 12(13):1981–1982PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Shah K, Lahiri DK (2014) Cdk5 activity in the brain—multiple paths of regulation. J Cell Sci 127(Pt 11):2391–2400PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hisanaga S, Endo R (2010) Regulation and role of cyclin-dependent kinase activity in neuronal survival and death. J Neurochem 115(6):1309–1321PubMedCrossRefGoogle Scholar
  14. 14.
    Patrick GN, Zukerberg L et al (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402(6762):615–622PubMedCrossRefGoogle Scholar
  15. 15.
    Quan H, Wu X et al (2014) Overexpression of CDK5 in neural stem cells facilitates maturation of embryonic neurocytes derived from rats in vitro. Cell Biochem Biophys 69(3):445–453PubMedCrossRefGoogle Scholar
  16. 16.
    Duhr F, Deleris P et al (2014) Cdk5 induces constitutive activation of 5-HT6 receptors to promote neurite growth. Nat Chem Biol 10(7):590–597PubMedCrossRefGoogle Scholar
  17. 17.
    Petrik D, Yun S et al (2013) Early postnatal in vivo gliogenesis from nestin-lineage progenitors requires cdk5. PLoS One 8(8):e72819PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    He X, Ishizeki M et al (2014) Cdk5/p35 is required for motor coordination and cerebellar plasticity. J Neurochem 131(1):53–64PubMedCrossRefGoogle Scholar
  19. 19.
    Kumazawa A, Mita N et al (2013) Cyclin-dependent kinase 5 is required for normal cerebellar development. Mol Cell Neurosci 52:97–105PubMedCrossRefGoogle Scholar
  20. 20.
    Buchner A, Krumova P et al (2015) Sumoylation of p35 modulates p35/cyclin-dependent kinase (Cdk) 5 complex activity. Neuromol Med 17(1):12–23 Google Scholar
  21. 21.
    Ye T, Ip JP et al (2014) Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex. Nat Commun 5:4826PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Nishimura YV, Sekine K et al (2010) Dissecting the factors involved in the locomotion mode of neuronal migration in the developing cerebral cortex. J Biol Chem 285(8):5878–5887PubMedCrossRefGoogle Scholar
  23. 23.
    Tanabe K, Yamazaki H et al (2014) Phosphorylation of drebrin by cyclin-dependent kinase 5 and its role in neuronal migration. PLoS One 9(3):e92291PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Worth DC, Daly CN et al (2013) Drebrin contains a cryptic F-actin-bundling activity regulated by Cdk5 phosphorylation. J Cell Biol 202(5):793–806PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Contreras-Vallejos E, Utreras E et al (2014) Searching for novel Cdk5 substrates in brain by comparative phosphoproteomics of wild type and Cdk5-/- mice. PLoS One 9(3):e90363PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Utreras E, Henriquez D et al (2013) Cdk5 regulates Rap1 activity. Neurochem Int 62(6):848–853PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Takahashi S, Ohshima T et al (2010) Conditional deletion of neuronal cyclin-dependent kinase 5 in developing forebrain results in microglial activation and neurodegeneration. Am J Pathol 176(1):320–329PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wong AS, Lee RH et al (2011) Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson’s disease. Nat Cell Biol 13(5):568–579PubMedCrossRefGoogle Scholar
  29. 29.
    Yang Y, Wang H et al (2013) Cyclin dependent kinase 5 is required for the normal development of oligodendrocytes and myelin formation. Dev Biol 378(2):94–106PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Mita N, He X et al (2014) Cyclin-dependent kinase 5 regulates dendritic spine formation and maintenance of cortical neuron in the mouse brain. Cereb Cortex. doi: 10.1093/cercor/bhu264
  31. 31.
    Nishimura YV, Shikanai M et al (2014) Cdk5 and its substrates, Dcx and p27kip1, regulate cytoplasmic dilation formation and nuclear elongation in migrating neurons. Development 141(18):3540–3550PubMedCrossRefGoogle Scholar
  32. 32.
    Antoniou X, Gassmann M et al (2011) Cdk5 interacts with Hif-1alpha in neurons: a new hypoxic signalling mechanism? Brain Res 1381:1–10PubMedCrossRefGoogle Scholar
  33. 33.
    Jeong J, Park YU et al (2013) Cdk5 phosphorylates dopamine D2 receptor and attenuates downstream signaling. PLoS One 8(12):e84482PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lee MS, Kwon YT et al (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405(6784):360–364PubMedCrossRefGoogle Scholar
  35. 35.
    Tseng HC, Zhou Y et al (2002) A survey of Cdk5 activator p35 and p25 levels in Alzheimer’s disease brains. FEBS Lett 523(1-3):58–62PubMedCrossRefGoogle Scholar
  36. 36.
    Taniguchi S, Fujita Y et al (2001) Calpain-mediated degradation of p35 to p25 in postmortem human and rat brains. FEBS Lett 489(1):46–50PubMedCrossRefGoogle Scholar
  37. 37.
    Zhou J, Li H et al (2015) The roles of Cdk5-mediated subcellular localization of FOXO1 in neuronal death. J Neurosci 35(6):2624–2635PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Chang KH, Multani PS et al (2011) Nuclear envelope dispersion triggered by deregulated Cdk5 precedes neuronal death. Mol Biol Cell 22(9):1452–1462PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Wen Z, Shu Y et al (2014) CDK5-mediated phosphorylation and autophagy of RKIP regulate neuronal death in Parkinson’s disease. Neurobiol Aging 35(12):2870–2880PubMedCrossRefGoogle Scholar
  40. 40.
    Guan JS, Su SC et al (2011) Cdk5 is required for memory function and hippocampal plasticity via the cAMP signaling pathway. PLoS One 6(9):e25735PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Huang E, Qu D et al (2010) The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death. Nat Cell Biol 12(6):563–571PubMedCrossRefGoogle Scholar
  42. 42.
    Zhong P, Liu X et al (2014) Cyclin-dependent kinase 5 in the ventral tegmental area regulates depression-related behaviors. J Neurosci 34(18):6352–6366PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Su SC, Rudenko A et al (2013) Forebrain-specific deletion of Cdk5 in pyramidal neurons results in mania-like behavior and cognitive impairment. Neurobiol Learn Mem 105:54–62PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Crews L, Patrick C et al (2011) Modulation of aberrant CDK5 signaling rescues impaired neurogenesis in models of Alzheimer’s disease. Cell Death Dis 2:e120PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Barucker C, Sommer A et al (2015) Alzheimer amyloid peptide Abeta42 regulates gene expression of transcription and growth factors. J Alzheimers Dis 44(2):613–624Google Scholar
  46. 46.
    Mawuenyega KG, Sigurdson W et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330(6012):1774PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Bergmans BA, De Strooper B (2010) Gamma-secretases: from cell biology to therapeutic strategies. Lancet Neurol 9(2):215–226PubMedCrossRefGoogle Scholar
  48. 48.
    Esler WP, Wolfe MS (2001) A portrait of Alzheimer secretases—new features and familiar faces. Science 293(5534):1449–1454PubMedCrossRefGoogle Scholar
  49. 49.
    Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13(7):812–818PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Bertram L, Lill CM et al (2010) The genetics of Alzheimer disease: back to the future. Neuron 68(2):270–281PubMedCrossRefGoogle Scholar
  51. 51.
    Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344PubMedCrossRefGoogle Scholar
  52. 52.
    Zempel H, Thies E et al (2010) Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30(36):11938–11950PubMedCrossRefGoogle Scholar
  53. 53.
    Liu F, Su Y et al (2003) Regulation of amyloid precursor protein (APP) phosphorylation and processing by p35/Cdk5 and p25/Cdk5. FEBS Lett 547(1-3):193–196PubMedCrossRefGoogle Scholar
  54. 54.
    Zheng YL, Kesavapany S et al (2005) A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. EMBO J 24(1):209–220PubMedCrossRefGoogle Scholar
  55. 55.
    Cruz JC, Tseng HC et al (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40(3):471–483PubMedCrossRefGoogle Scholar
  56. 56.
    Lau KF, Howlett DR et al (2002) Cyclin-dependent kinase-5/p35 phosphorylates Presenilin 1 to regulate carboxy-terminal fragment stability. Mol Cell Neurosci 20(1):13–20PubMedCrossRefGoogle Scholar
  57. 57.
    Matrone C, Marolda R et al (2009) Tyrosine kinase nerve growth factor receptor switches from prosurvival to proapoptotic activity via Abeta-mediated phosphorylation. Proc Natl Acad Sci U S A 106(27):11358–11363PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Cruz JC, Tsai LH (2004) Cdk5 deregulation in the pathogenesis of Alzheimer’s disease. Trends Mol Med 10(9):452–458PubMedCrossRefGoogle Scholar
  59. 59.
    Holsinger RM, McLean CA et al (2002) Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Ann Neurol 51(6):783–786PubMedCrossRefGoogle Scholar
  60. 60.
    Shukla V, Skuntz S et al (2012) Deregulated Cdk5 activity is involved in inducing Alzheimer’s disease. Arch Med Res 43(8):655–662PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2(7):a006247PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Castro-Alvarez JF, Uribe-Arias SA et al (2014) Long- and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimer’s mice. Front Aging Neurosci 6:243PubMedPubMedCentralGoogle Scholar
  63. 63.
    Kimura T, Tsutsumi K et al (2013) Isomerase Pin1 stimulates dephosphorylation of tau protein at cyclin-dependent kinase (Cdk5)-dependent Alzheimer phosphorylation sites. J Biol Chem 288(11):7968–7977PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Piedrahita D, Hernandez I et al (2010) Silencing of CDK5 reduces neurofibrillary tangles in transgenic Alzheimer’s mice. J Neurosci 30(42):13966–13976PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Castro-Alvarez JF, Uribe-Arias SA et al (2014) Cyclin-dependent kinase 5, a node protein in diminished tauopathy: a systems biology approach. Front Aging Neurosci 6:232PubMedPubMedCentralGoogle Scholar
  66. 66.
    Lopes JP, Oliveira CR et al (2010) Neurodegeneration in an Abeta-induced model of Alzheimer’s disease: the role of Cdk5. Aging Cell 9(1):64–77PubMedCrossRefGoogle Scholar
  67. 67.
    Kimura T, Ishiguro K et al (2014) Physiological and pathological phosphorylation of tau by Cdk5. Front Mol Neurosci 7:65PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Takashima A, Murayama M et al (2001) Involvement of cyclin dependent kinase5 activator p25 on tau phosphorylation in mouse brain. Neurosci Lett 306(1-2):37–40PubMedCrossRefGoogle Scholar
  69. 69.
    Lee S, Hall GF et al (2011) Potentiation of tau aggregation by cdk5 and GSK3beta. J Alzheimers Dis 26(2):355–364PubMedGoogle Scholar
  70. 70.
    Li X, Wang X et al (2014) Structural basis of valmerins as dual inhibitors of GSK3beta/CDK5. J Mol Model 20(9):2407PubMedCrossRefGoogle Scholar
  71. 71.
    Jayapalan S, Natarajan J (2013) The role of CDK5 and GSK3B kinases in hyperphosphorylation of microtubule associated protein tau (MAPT) in Alzheimer’s disease. Bioinformation 9(20):1023–1030PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cuadrado-Tejedor M, Ricobaraza A et al (2011) Chronic mild stress in mice promotes cognitive impairment and CDK5-dependent tau hyperphosphorylation. Behav Brain Res 220(2):338–343PubMedCrossRefGoogle Scholar
  73. 73.
    Cancino GI, Perez de Arce K et al (2011) c-Abl tyrosine kinase modulates tau pathology and Cdk5 phosphorylation in AD transgenic mice. Neurobiol Aging 32(7):1249–1261PubMedCrossRefGoogle Scholar
  74. 74.
    Lee MS, Tsai LH (2003) Cdk5: one of the links between senile plaques and neurofibrillary tangles? J Alzheimers Dis 5(2):127–137PubMedGoogle Scholar
  75. 75.
    Chu J, Pratico D (2013) 5-Lipoxygenase pharmacological blockade decreases tau phosphorylation in vivo: involvement of the cyclin-dependent kinase-5. Neurobiol Aging 34(6):1549–1554PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Li L, Zhang C et al (2015) Epigenetic modulation of Cdk5 contributes to memory deficiency induced by amyloid fibrils. Exp Brain Res 233(1):165–173Google Scholar
  77. 77.
    Mota SI, Ferreira IL et al (2014) Dysfunctional synapse in Alzheimer’s disease—a focus on NMDA receptors. Neuropharmacology 76 Pt A:16–26PubMedCrossRefGoogle Scholar
  78. 78.
    Price KA, Varghese M et al (2014) Altered synaptic structure in the hippocampus in a mouse model of Alzheimer’s disease with soluble amyloid-beta oligomers and no plaque pathology. Mol Neurodegener 9:41PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Su SC, Seo J et al (2012) Regulation of N-type voltage-gated calcium channels and presynaptic function by cyclin-dependent kinase 5. Neuron 75(4):675–687PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Mishiba T, Tanaka M et al (2014) Cdk5/p35 functions as a crucial regulator of spatial learning and memory. Mol Brain 7(1):82PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Maeder CI, Shen K et al (2014) Axon and dendritic trafficking. Curr Opin Neurobiol 27:165–170PubMedCrossRefGoogle Scholar
  82. 82.
    Kim SH, Ryan TA (2010) CDK5 serves as a major control point in neurotransmitter release. Neuron 67(5):797–809PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Marra V, Burden JJ et al (2012) A preferentially segregated recycling vesicle pool of limited size supports neurotransmission in native central synapses. Neuron 76(3):579–589PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Xin X, Ferraro F et al (2004) Cdk5 and Trio modulate endocrine cell exocytosis. J Cell Sci 117(Pt 20):4739–4748PubMedCrossRefGoogle Scholar
  85. 85.
    Peng YR, Hou ZH et al (2013) The kinase activity of EphA4 mediates homeostatic scaling-down of synaptic strength via activation of Cdk5. Neuropharmacology 65:232–243PubMedCrossRefGoogle Scholar
  86. 86.
    Tan TC, Valova VA et al (2003) Cdk5 is essential for synaptic vesicle endocytosis. Nat Cell Biol 5(8):701–710PubMedCrossRefGoogle Scholar
  87. 87.
    Goodwin PR, Sasaki JM et al (2012) Cyclin-dependent kinase 5 regulates the polarized trafficking of neuropeptide-containing dense-core vesicles in Caenorhabditis elegans motor neurons. J Neurosci 32(24):8158–8172PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ou CY, Poon VY et al (2010) Two cyclin-dependent kinase pathways are essential for polarized trafficking of presynaptic components. Cell 141(5):846–858PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Easley-Neal C, Fierro J Jr et al (2013) Late recruitment of synapsin to nascent synapses is regulated by Cdk5. Cell Rep 3(4):1199–1212PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Plattner F, Hernandez A et al (2014) Memory enhancement by targeting Cdk5 regulation of NR2B. Neuron 81(5):1070–1083PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Bianchetta MJ, Lam TT et al (2011) Cyclin-dependent kinase 5 regulates PSD-95 ubiquitination in neurons. J Neurosci 31(33):12029–12035PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Yang L, Gu X et al (2014) Cdk5 inhibitor roscovitine alleviates neuropathic pain in the dorsal root ganglia by downregulating N-methyl-D-aspartate receptor subunit 2A. Neurol Sci 35(9):1365–1371PubMedCrossRefGoogle Scholar
  93. 93.
    Brittain JM, Wang Y et al (2012) Cdk5-mediated phosphorylation of CRMP-2 enhances its interaction with CaV2.2. FEBS Lett 586(21):3813–3818PubMedCrossRefGoogle Scholar
  94. 94.
    Fu AK, Fu WY et al (2001) Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nat Neurosci 4(4):374–381PubMedCrossRefGoogle Scholar
  95. 95.
    Higuchi O, Yamanashi Y (2011) Molecular mechanisms underlying the formation of neuromuscular junction. Brain Nerve 63(7):649–655PubMedGoogle Scholar
  96. 96.
    Fu AK, Fu WY et al (2004) Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Proc Natl Acad Sci U S A 101(17):6728–6733PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hou H, Sun L et al (2013) Synaptic NMDA receptor stimulation activates PP1 by inhibiting its phosphorylation by Cdk5. J Cell Biol 203(3):521–535PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lai KO, Wong AS et al (2012) TrkB phosphorylation by Cdk5 is required for activity-dependent structural plasticity and spatial memory. Nat Neurosci 15(11):1506–1515PubMedCrossRefGoogle Scholar
  99. 99.
    Kim Y, Sung JY et al (2006) Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442(7104):814–817PubMedCrossRefGoogle Scholar
  100. 100.
    Barros-Minones L, Martin-de-Saavedra D et al (2013) Inhibition of calpain-regulated p35/cdk5 plays a central role in sildenafil-induced protection against chemical hypoxia produced by malonate. Biochim Biophys Acta 1832(6):705–717PubMedCrossRefGoogle Scholar
  101. 101.
    Gong X, Tang X et al (2003) Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38(1):33–46PubMedCrossRefGoogle Scholar
  102. 102.
    Fang WQ, Ip JP et al (2011) Cdk5-mediated phosphorylation of Axin directs axon formation during cerebral cortex development. J Neurosci 31(38):13613–13624PubMedCrossRefGoogle Scholar
  103. 103.
    Takano T, Tomomura M et al (2012) LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner. J Neurosci 32(19):6587–6599PubMedCrossRefGoogle Scholar
  104. 104.
    Qu J, Nakamura T et al (2011) S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc Natl Acad Sci U S A 108(34):14330–14335PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Zhang P, Yu PC et al (2010) S-nitrosylation of cyclin-dependent kinase 5 (cdk5) regulates its kinase activity and dendrite growth during neuronal development. J Neurosci 30(43):14366–14370PubMedCrossRefGoogle Scholar
  106. 106.
    van der Zee EA (2015) Synapses, spines and kinases in mammalian learning and memory, and the impact of aging. Neurosci Biobehav Rev 50:77–85 Google Scholar
  107. 107.
    Yuzaki M (2011) Cbln1 and its family proteins in synapse formation and maintenance. Curr Opin Neurobiol 21(2):215–220PubMedCrossRefGoogle Scholar
  108. 108.
    Samuels BA, Hsueh YP et al (2007) Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 56(5):823–837PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Liu W, Zhang Y et al (2012) Nestin protects mouse podocytes against high glucose-induced apoptosis by a Cdk5-dependent mechanism. J Cell Biochem 113(10):3186–3196PubMedCrossRefGoogle Scholar
  110. 110.
    Chang KH, de Pablo Y et al (2010) Cdk5 is a major regulator of p38 cascade: relevance to neurotoxicity in Alzheimer’s disease. J Neurochem 113(5):1221–1229PubMedGoogle Scholar
  111. 111.
    Li X, Zhang HM et al (2012) Changes of cdk5, p35 and p53 gene expression levels in arsenic-induced neural cell apoptosis. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 30(2):85–88PubMedGoogle Scholar
  112. 112.
    Tian B, Yang Q et al (2009) Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nat Cell Biol 11(2):211–218PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Li BS, Zhang L et al (2002) Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. EMBO J 21(3):324–333PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Kim D, Frank CL et al (2008) Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60(5):803–817PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Brambrink AM, Evers AS et al (2010) Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology 112(4):834–841PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Jiang H, Huang Y et al (2012) Hypoxia inducible factor-1alpha is involved in the neurodegeneration induced by isoflurane in the brain of neonatal rats. J Neurochem 120(3):453–460PubMedCrossRefGoogle Scholar
  117. 117.
    Wang WY, Luo Y et al (2014) Inhibition of aberrant cyclin-dependent kinase 5 activity attenuates isoflurane neurotoxicity in the developing brain. Neuropharmacology 77:90–99PubMedCrossRefGoogle Scholar
  118. 118.
    Ke K, Shen J et al (2015) CDK5 contributes to neuronal apoptosis via promoting MEF2D phosphorylation in rat model of intracerebral hemorrhage. J Mol Neurosci 56(1):48–59Google Scholar
  119. 119.
    Kawauchi T, Shikanai M et al (2013) Extra-cell cycle regulatory functions of cyclin-dependent kinases (CDK) and CDK inhibitor proteins contribute to brain development and neurological disorders. Genes Cells 18(3):176–194PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Lopes JP, Blurton-Jones M et al (2009) Activation of cell cycle proteins in transgenic mice in response to neuronal loss but not amyloid-beta and tau pathology. J Alzheimers Dis 16(3):541–549PubMedGoogle Scholar
  121. 121.
    Lopes JP, Oliveira CR et al (2009) Cdk5 acts as a mediator of neuronal cell cycle re-entry triggered by amyloid-beta and prion peptides. Cell Cycle 8(1):97–104PubMedCrossRefGoogle Scholar
  122. 122.
    Zhang J, Li H et al (2010) Cdk5 suppresses the neuronal cell cycle by disrupting the E2F1-DP1 complex. J Neurosci 30(15):5219–5228PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Minegishi S, Asada A et al (2010) Membrane association facilitates degradation and cleavage of the cyclin-dependent kinase 5 activators p35 and p39. Biochemistry 49(26):5482–5493PubMedCrossRefGoogle Scholar
  124. 124.
    Chang KH, Vincent F et al (2012) Deregulated Cdk5 triggers aberrant activation of cell cycle kinases and phosphatases inducing neuronal death. J Cell Sci 125(Pt 21):5124–5137PubMedCrossRefGoogle Scholar
  125. 125.
    Park J, Choi H et al (2015) Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells. J Neurochem 132(6):687–702Google Scholar
  126. 126.
    Cho B, Cho HM et al (2014) CDK5-dependent inhibitory phosphorylation of Drp1 during neuronal maturation. Exp Mol Med 46:e105PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Fitzgerald JC, Camprubi MD et al (2012) Phosphorylation of HtrA2 by cyclin-dependent kinase-5 is important for mitochondrial function. Cell Death Differ 19(2):257–266PubMedCrossRefGoogle Scholar
  128. 128.
    Weishaupt JH, Kussmaul L et al (2003) Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Mol Cell Neurosci 24(2):489–502PubMedCrossRefGoogle Scholar
  129. 129.
    Wu S, Zhou F et al (2011) Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J 278(6):941–954PubMedCrossRefGoogle Scholar
  130. 130.
    Quintanilla RA, von Bernhardi R et al (2014) Phosphorylated tau potentiates Abeta-induced mitochondrial damage in mature neurons. Neurobiol Dis 71:260–269PubMedCrossRefGoogle Scholar
  131. 131.
    Yoshida H, Kong YY et al (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94(6):739–750PubMedCrossRefGoogle Scholar
  132. 132.
    Shi LL, Yang WN et al (2012) The protective effects of tanshinone IIA on neurotoxicity induced by beta-amyloid protein through calpain and the p35/Cdk5 pathway in primary cortical neurons. Neurochem Int 61(2):227–235PubMedCrossRefGoogle Scholar
  133. 133.
    Zhang Z, Zhao R, Tang Y, Wen S, Wang D, Qi J (2012) Retraction note to: Fuzhisan, a Chinese herbal medicine, inhibits beta-amyloid-induced neurotoxicity and tau phosphorylation through calpain/Cdk5 pathway in cultured cortical neurons. Neurochem Res 37(4):902CrossRefGoogle Scholar
  134. 134.
    Tian F, Xu LH et al (2014) The neuroprotective mechanism of puerarin in the treatment of acute spinal ischemia-reperfusion injury is linked to cyclin-dependent kinase 5. Neurosci Lett 584C:50–55Google Scholar
  135. 135.
    Zheng YL, Amin ND et al (2010) A 24-residue peptide (p5), derived from p35, the Cdk5 neuronal activator, specifically inhibits Cdk5-p25 hyperactivity and tau hyperphosphorylation. J Biol Chem 285(44):34202–34212PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Neurology, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoChina
  2. 2.Department of Neurology, Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
  3. 3.Department of GeriatricsThe Affiliated Hospital of Qingdao UniversityQingdaoChina
  4. 4.Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations