Molecular Neurobiology

, Volume 53, Issue 6, pp 4019–4025 | Cite as

Up-Regulation of Oligodendrocyte Lineage Markers in the Cerebellum of Autistic Patients: Evidence from Network Analysis of Gene Expression

  • Fares Zeidán-Chuliá
  • Ben-Hur Neves de Oliveira
  • Manuel F. Casanova
  • Emily L. Casanova
  • Mami Noda
  • Alla B. Salmina
  • Alexei Verkhratsky


Autism is a neurodevelopmental disorder manifested by impaired social interaction, deficits in communication skills, restricted interests, and repetitive behaviors. In neurodevelopmental, neurodegenerative, and psychiatric disorders, glial cells undergo morphological, biochemical, and functional rearrangements, which are critical for neuronal development, neurotransmission, and synaptic connectivity. Cerebellar function is not limited to motor coordination but also contributes to cognition and may be affected in autism. Oligodendrocytes and specifically oligodendroglial precursors are highly susceptible to oxidative stress and excitotoxic insult. In the present study, we searched for evidence for developmental oligodendropathy in the context of autism by performing a network analysis of gene expression of cerebellar tissue. We created an in silico network model (OLIGO) showing the landscape of interactions between oligodendrocyte markers and demonstrated that more than 50 % (16 out of 30) of the genes within this model displayed significant changes of expression (corrected p value <0.05) in the cerebellum of autistic patients. In particular, we found up-regulation of OLIG2-, MBP-, OLIG1-, and MAG-specific oligodendrocyte markers. We postulate that aberrant expression of oligodendrocyte-specific genes, potentially related to changes in oligodendrogenesis, may contribute to abnormal cerebellar development, impaired myelination, and anomalous synaptic connectivity in autism spectrum disorders (ASD).


ASD Psychiatric disorders White matter Glia Oligodendrocytes Connectivity Development 



amyloid protein precursor


autism spectrum disorders


central nervous system


false discovery rate




oligodendroglial precursors.



FZC holds a PNPD postdoctoral position (Programa de Pós Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul) funded by CAPES. AV was supported in part by the grant (agreement from 27 August 2013 No. 02.B.49.21.0003) between The Ministry of Education and Science of the Russian Federation and Lobachevsky State University of Nizhny Novgorod and by the grant of the Russian Scientific Foundation No.14-15-00633.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Blumberg SJ, Bramlett MD, Kogan MD, Schieve LA, Jones JR (2013) Changes in prevalence of parent-reported autism spectrum disorder in school-aged U.S. children: 2007 to 2011–2012. Natl Health Stat Rep 65:1–12Google Scholar
  2. 2.
    Zeidán-Chuliá F, Gursoy UK, Könönen E, Gottfried C (2011) A dental look at the autistic patient through orofacial pain. Acta Odontol Scand 69(4):193–200CrossRefPubMedGoogle Scholar
  3. 3.
    Zeidán-Chuliá F, Rybarczyk-Filho JL, Salmina AB, de Oliveira BH, Noda M, Moreira JC (2013) Exploring the multifactorial nature of autism through computational systems biology: calcium and the Rho GTPase RAC1 under the spotlight. Neruomol Med 15(2):364–383CrossRefGoogle Scholar
  4. 4.
    Chauhan A, Chauhan V (2006) Oxidative stress in autism. Pathophysiology 13(3):171–181CrossRefPubMedGoogle Scholar
  5. 5.
    Zeidán-Chuliá F, Salmina AB, Malinovskaya NA, Noda M, Verkhratsky A, Moreira JC (2014) The glial perspective of autism spectrum disorders. Neurosci Biobehav Rev 38:160–172CrossRefPubMedGoogle Scholar
  6. 6.
    Zeidán-Chuliá F, de Oliveira BH, Salmina AB, Casanova MF, Gelain DP, Noda M, Verkhratsky A, Moreira JC (2014) Altered expression of Alzheimer’s disease-related genes in the cerebellum of autistic patients: a model for disrupted brain connectome and therapy. Cell Death Dis 5:e1250CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Casanova MF, Buxhoeveden DP, Brown C (2002) Clinical and macroscopic correlates of minicolumnar pathology in autism. J Child Neurol 17(9):692–695CrossRefPubMedGoogle Scholar
  8. 8.
    Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, Ma SY, Chauhan A et al (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119(6):755–770CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jeste SS, Geschwind DH (2014) Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol 10(2):74–81CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shen MD, Nordahl CW, Young GS, Wootton-Gorges SL, Lee A, Liston SE, Harrington KR, Ozonoff S et al (2013) Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder. Brain 136(Pt 9):2825–2835CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tique ZD, Chisum HJ, Moses P et al (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57(2):245–254CrossRefPubMedGoogle Scholar
  12. 12.
    Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31(3):137–145CrossRefPubMedGoogle Scholar
  13. 13.
    Courchesne E, Pierce K (2005) Why the frontal cortex in autism might be talking only to itself: local overconnectivity but long-distance disconnection. Curr Opin Neurobiol 15(2):225–230CrossRefPubMedGoogle Scholar
  14. 14.
    Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD, Blatt GJ, Chauhan A, Chauhan V et al (2012) Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11(3):777–807CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hardan AY, Minshew NJ, Harenski K, Keshavan MS (2001) Posterior fossa magnetic resonance imaging in autism. J Am Acad Child Adolesc Psychiatry 40(6):666–672CrossRefPubMedGoogle Scholar
  16. 16.
    Courchesne E (1997) Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol 7(2):269–278CrossRefPubMedGoogle Scholar
  17. 17.
    Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39(Database issue):D561–D568CrossRefPubMedGoogle Scholar
  18. 18.
    Hooper SD, Bork P (2005) Medusa: a simple tool for interaction graph analysis. Bioinformatics 21(24):4432–4433CrossRefPubMedGoogle Scholar
  19. 19.
    Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927PubMedGoogle Scholar
  20. 20.
    Deng W, Poretz RD (2003) Oligodendroglia in developmental neurotoxicity. Neurotoxicology 24(2):161–178CrossRefPubMedGoogle Scholar
  21. 21.
    Ginsberg MR, Rubin RA, Falcone T, Ting AH, Natowicz MR (2012) Brain transcriptional and epigenetic associations with autism. PLoS ONE 7(9):e44736CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A (2005) False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21(13):3017–3024CrossRefPubMedGoogle Scholar
  24. 24.
    Walhovd KB, Johansen-Berg H, Karadottir RT (2014) Unraveling the secrets of white matter--Bridging the gap between cellular, animal and human imaging studies. Neuroscience 276:2–13CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mathis C, Collin L, Borrelli E (2003) Oligodendrocyte ablation impairs cerebellum development. Development 130(19):4709–4718CrossRefPubMedGoogle Scholar
  26. 26.
    El Waly B, Macchi M, Cayre M, Durbec P (2014) Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 8:145PubMedPubMedCentralGoogle Scholar
  27. 27.
    Verkhratsky A, Kirchhoff F (2007) NMDA receptors in glia. Neuroscientist 13(1):28–37CrossRefPubMedGoogle Scholar
  28. 28.
    Thorburne SK, Juurlink BH (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67(3):1014–1022CrossRefPubMedGoogle Scholar
  29. 29.
    Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ (1998) Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 18(16):6241–6253PubMedGoogle Scholar
  30. 30.
    Butts BD, Houde C, Mehmet H (2008) Maturation-dependent sensitivity of oligodendrocyte lineage cells to apoptosis: implications for normal development and disease. Cell Death Differ 15(7):1178–1186CrossRefPubMedGoogle Scholar
  31. 31.
    Akshoomoff N, Lord C, Lincoln AJ, Courchesne RY, Carper RA, Townsend J, Courchesne E (2004) Outcome classification of preschool children with autism spectrum disorders using MRI brain measures. J Am Acad Child Adolesc Psychiatry 43(3):349–357CrossRefPubMedGoogle Scholar
  32. 32.
    Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD (1993) Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262(5134):695–700CrossRefPubMedGoogle Scholar
  33. 33.
    Hendry J, De Vito T, Gelman N, Densmore M, Rajakumar N, Pavlosky W, Williamson PC, Thompson PM et al (2006) White matter abnormalities in autism detected through transverse relaxation time imaging. Neuroimage 29(4):1049–1057CrossRefPubMedGoogle Scholar
  34. 34.
    Carmody DP, Lewis M (2010) Regional white matter development in children with autism spectrum disorders. Dev Psychobiol 52(8):755–763CrossRefPubMedGoogle Scholar
  35. 35.
    Gozzi M, Nielson DM, Lenroot RK, Ostuni JL, Luckenbaugh DA, Thurm AE, Giedd JN, Swedo SE (2012) A magnetization transfer imaging study of corpus callosum myelination in young children with autism. Biol Psychiatry 72(3):215–220CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Libbey JE, Sweeten TL, MacMahon WM, Fujinami RS (2005) Autistic disorder and viral infections. J Neurovirol 11(1):1–10CrossRefPubMedGoogle Scholar
  37. 37.
    Bell ES, Park M (2012) Models of crk adaptor proteins in cancer. Genes Cancer 3(5–6):341–352CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE et al (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344(6183):1252304CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fares Zeidán-Chuliá
    • 1
  • Ben-Hur Neves de Oliveira
    • 1
  • Manuel F. Casanova
    • 2
  • Emily L. Casanova
    • 2
  • Mami Noda
    • 3
  • Alla B. Salmina
    • 4
  • Alexei Verkhratsky
    • 5
    • 6
    • 7
  1. 1.Departamento de Bioquímica, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
  2. 2.Department of Biomedical SciencesUniversity of South Carolina School of Medicine - Greenville CampusGreenvilleUSA
  3. 3.Laboratory of Pathophysiology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
  4. 4.Department of Biochemistry, Medical, Pharmaceutical & Toxicological ChemistryKrasnoyarsk State Medical UniversityKrasnoyarskRussia
  5. 5.Faculty of Life SciencesThe University of ManchesterManchesterUK
  6. 6.IKERBASQUE, Basque Foundation for Science, Bilbao, Spain and Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain
  7. 7.University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations