Advertisement

Molecular Neurobiology

, Volume 53, Issue 6, pp 3832–3841 | Cite as

Bis(propyl)-cognitin Prevents β-amyloid-induced Memory Deficits as Well as Synaptic Formation and Plasticity Impairments via the Activation of PI3-K Pathway

  • Liting Jiang
  • Meng Huang
  • Shujun Xu
  • Yu Wang
  • Pengyuan An
  • Chenxi Feng
  • Xiaowei Chen
  • Xiaofei Wei
  • Yifan Han
  • Qinwen Wang
Article

Abstract

Bis(propyl)-cognitin (B3C), derived from tacrine linked with three methylene (–CH2–) groups, is a dimerized molecule interacting multiple targets. During the past several years, it has been reported as a promising therapeutic drug for Alzheimer’s disease (AD) and other neurodegenerative disorders. However, the therapeutic mechanism of B3C for AD needs further demonstration. Based on a combination of behavioral tests, electrophysiological technique, immunocytochemistry, and live cell imaging, we studied the effects and the underlying mechanism of B3C on the impairments of cognitive function, synapse formation, and synaptic plasticity induced by soluble amyloid-β protein (Aβ) oligomers. Our study showed that spatial learning and memory in a Morris water maze task and recognition memory in a novel object recognition task were significantly decreased in the AD model mice created by hippocampal injection of Aβ. Chronic administration of B3C for 21 days prevented the memory impairments of the AD model mice in a dose-dependent manner. Live cell imaging study showed that 2-h pretreatment of B3C prevented the decrease in the number of filopodia and synapses induced by Aβ (0.5 μM) in a dose-dependent manner. Besides, electrophysiological recording data showed that the inhibition of long-term potentiation (LTP) induced by Aβ1–42 oligomers in the dentate gyrus (DG) of hippocampus was prevented by B3C in a dose-dependent manner. Furthermore, we found that the neuroprotective effect of B3C against Aβ-oligomer-induced impairments of synaptic formation and plasticity could be partially blocked by a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 (50 μM). Therefore, these results indicate that B3C can prevent Aβ-oligomer-induced cognitive deficits, synaptic formation impairments, and synaptic plasticity impairments in a concentration-dependent manner. These effects of B3C are partially mediated via the PI3-K pathway. This study provides novel insights into the cellular mechanisms for the protective effects of B3C on AD.

Keywords

Aβ Alzheimer’s disease Bis(propyl)-cognitin Learning Memory Cognition Synapse formation Synapse plasticity Phosphatidylinositol 3-kinase 

Notes

Acknowledgments

This work was supported by 973 Program from the Ministry of Science and Technology of China (2013CB835100), the National Natural Science Foundation of China (81471398, 30900430), Zhejiang Provincial Natural Science Foundation (LY14H090004), Ningbo Natural Science Foundation (No. 2014A610258), Program for Zhejiang Leading Team of S & T Innovation, P. R. China (No. 2011R50013-04), Ningbo Talent Project, Disciplinary Project of Ningbo University (NO. xkl141058), and K.C. Wong Magna Fund in Ningbo University.

Conflict of Interest

The authors declare no conflict of interests.

References

  1. 1.
    Teich AF, Nicholls RE, Puzzo D, Fiorito J, Purgatorio R, Fa M, Arancio O (2015) Synaptic therapy in Alzheimer’s disease: a CREB-centric approach. Neurotherapeutics 12(1):29–41. doi: 10.1007/s13311-014-0327-5 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hardy J, Bogdanovic N, Winblad B, Portelius E, Andreasen N, Cedazo-Minguez A, Zetterberg H (2014) Pathways to Alzheimer’ disease. J Intern Med 275(3):296–303. doi: 10.1111/joim.12192 CrossRefPubMedGoogle Scholar
  3. 3.
    Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE et al (2010) Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol 17(5):561–567. doi: 10.1038/nsmb.1799 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 8(1):79–84CrossRefPubMedGoogle Scholar
  5. 5.
    Fortea J, Vilaplana E, Alcolea D, Carmona-Iragui M, Sanchez-Saudinos MB, Sala I, Anton-Aguirre S, Gonzalez S et al (2014) Cerebrospinal fluid beta-amyloid and phospho-tau biomarker interactions affecting brain structure in preclinical Alzheimer’s disease. Ann Neurol 76(2):223–230. doi: 10.1002/ana.24186 CrossRefPubMedGoogle Scholar
  6. 6.
    Chen C, Li X, Gao P, Tu Y, Zhao M, Li J, Zhang S, Liang H (2015) Baicalin attenuates Alzheimer-like pathological changes and memory deficits induced by amyloid beta protein. Metab Brain Dis 30(2):537–544. doi: 10.1007/s11011-014-9601-9 CrossRefPubMedGoogle Scholar
  7. 7.
    Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148(6):1204–1222. doi: 10.1016/j.cell.2012.02.040 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113. doi: 10.1016/j.bbr.2008.02.016 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tu S, Okamoto S, Lipton SA, Xu H (2014) Oligomeric Abeta-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener 9:48. doi: 10.1186/1750-1326-9-48 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang-Dietrich L, Funke SA, Kuhbach K, Wang K, Besmehn A, Willbold S, Cinar Y, Bannach O et al (2013) The amyloid-beta oligomer count in cerebrospinal fluid is a biomarker for Alzheimer’s disease. J Alzheimers Dis 34(4):985–994. doi: 10.3233/JAD-122047 PubMedGoogle Scholar
  11. 11.
    Li WM, Kan KK, Carlier PR, Pang YP, Han YF (2007) East meets West in the search for Alzheimer’s therapeutics - novel dimeric inhibitors from tacrine and huperzine A. Curr Alzheimer Res 4(4):386–396CrossRefPubMedGoogle Scholar
  12. 12.
    Luo J, Li W, Zhao Y, Fu H, Ma DL, Tang J, Li C, Peoples RW et al (2010) Pathologically activated neuroprotection via uncompetitive blockade of N-methyl-D-aspartate receptors with fast off-rate by novel multifunctional dimer bis(propyl)-cognitin. J Biol Chem 285(26):19947–19958. doi: 10.1074/jbc.M110.111286 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hu S, Cui W, Mak S, Tang J, Choi C, Pang Y, Han Y (2013) Bis(propyl)-cognitin protects against glutamate-induced neuro-excitotoxicity via concurrent regulation of NO, MAPK/ERK and PI3-K/Akt/GSK3beta pathways. Neurochem Int 62(4):468–477. doi: 10.1016/j.neuint. 2013.01.022 CrossRefPubMedGoogle Scholar
  14. 14.
    Han RW, Zhang RS, Chang M, Peng YL, Wang P, Hu SQ, Choi CL, Yin M et al (2012) Reversal of scopolamine-induced spatial and recognition memory deficits in mice by novel multifunctional dimers bis-cognitins. Brain Res 1470:59–68. doi: 10.1016/j.brainres. 2012.06.015 CrossRefPubMedGoogle Scholar
  15. 15.
    Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P et al (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307(5713):1282–1288CrossRefPubMedGoogle Scholar
  16. 16.
    Miller G (2009) Alzheimer’s biomarker initiative hits its stride. Science 326(5951):386–389. doi: 10.1126/science.326_386 CrossRefPubMedGoogle Scholar
  17. 17.
    Xu S, Liu G, Bao X, Wu J, Li S, Zheng B, Anwyl R, Wang Q (2014) Rosiglitazone prevents amyloid-beta oligomer-induced impairment of synapse formation and plasticity via increasing dendrite and spine mitochondrial number. J Alzheimers Dis 39(2):239–251. doi: 10.3233/JAD-130680 PubMedGoogle Scholar
  18. 18.
    Xu S, Guan Q, Wang C, Wei X, Chen X, Zheng B, An P, Zhang J et al (2014) Rosiglitazone prevents the memory deficits induced by amyloid-beta oligomers via inhibition of inflammatory responses. Neurosci Lett 578:7–11. doi: 10.1016/j.neulet.2014.06.010 CrossRefPubMedGoogle Scholar
  19. 19.
    Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60CrossRefPubMedGoogle Scholar
  20. 20.
    Silverberg NB, Ryan LM, Carrillo MC, Sperling R, Petersen RC, Posner HB, Snyder PJ, Hilsabeck R et al (2011) Assessment of cognition in early dementia. Alzheimers Dement 7(3):e60–e76CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hu SQ, Cui W, Xu DP, Mak SH, Tang J, Choi CL, Pang YP, Han YF (2013) Substantial neuroprotection against K+ deprivation-induced apoptosis in primary cerebellar granule neurons by novel dimer bis(propyl)-cognitin via the activation of VEGFR-2 signaling pathway. CNS Neurosci Ther 19(10):764–772. doi: 10.1111/cns.12141 PubMedGoogle Scholar
  22. 22.
    Wang Q, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R (2004) Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J Neurosci 24(13):3370–3378CrossRefPubMedGoogle Scholar
  23. 23.
    Ma T, Klann E (2012) Amyloid beta: linking synaptic plasticity failure to memory disruption in Alzheimer’s disease. J Neurochem 120(Suppl 1):140–148. doi: 10.1111/j.1471-4159.2011. 07506.x CrossRefPubMedGoogle Scholar
  24. 24.
    Marchetti C, Marie H (2011) Hippocampal synaptic plasticity in Alzheimer’s disease: what have we learned so far from transgenic models? Rev Neurosci 22(4):373–402. doi: 10.1515/RNS.2011.035 CrossRefPubMedGoogle Scholar
  25. 25.
    Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, Devidze N, Ho K et al (2012) Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci U S A 109(42):E2895–E2903. doi: 10.1073/pnas.1121081109 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ardiles AO, Tapia-Rojas CC, Mandal M, Alexandre F, Kirkwood A, Inestrosa NC, Palacios AG (2012) Postsynaptic dysfunction is associated with spatial and object recognition memory loss in a natural model of Alzheimer’s disease. Proc Natl Acad Sci U S A 109(34):13835–13840. doi: 10.1073/pnas.1201209109 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Koffie RM, Hyman BT, Spires-Jones TL (2011) Alzheimer’s disease: synapses gone cold. Mol Neurodegener 6(1):63. doi: 10.1186/1750-1326-6-63 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jontes JD, Smith SJ (2000) Filopodia, spines, and the generation of synaptic diversity. Neuron 27(1):11–14CrossRefPubMedGoogle Scholar
  29. 29.
    Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129(Pt 7):1659–1673CrossRefPubMedGoogle Scholar
  30. 30.
    Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39CrossRefPubMedGoogle Scholar
  31. 31.
    Barry AE, Klyubin I, Mc Donald JM, Mably AJ, Farrell MA, Scott M, Walsh DM, Rowan MJ (2011) Alzheimer’s disease brain-derived amyloid-beta-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J Neurosci 31(20):7259–7263. doi: 10.1523/JNEUROSCI.6500-10.2011 CrossRefPubMedGoogle Scholar
  32. 32.
    Carlier PR, Han YF, Chow ES, Li CP, Wang H, Lieu TX, Wong HS, Pang YP (1999) Evaluation of short-tether bis-THA AChE inhibitors. A further test of the dual binding site hypothesis. Bioorg Med Chem 7(2):351–357CrossRefPubMedGoogle Scholar
  33. 33.
    Klyubin I, Wang Q, Reed MN, Irving EA, Upton N, Hofmeister J, Cleary JP, Anwyl R et al (2011) Protection against Abeta-mediated rapid disruption of synaptic plasticity and memory by memantine. Neurobiol Aging 32(4):614–623. doi: 10.1016/j.neurobiolaging. 2009.04.005 CrossRefPubMedGoogle Scholar
  34. 34.
    Hanson JE, Pare JF, Deng L, Smith Y, Zhou Q (2015) Altered GluN2B NMDA receptor function and synaptic plasticity during early pathology in the PS2APP mouse model of Alzheimer’s disease. Neurobiol Dis 74:254–262. doi: 10.1016/j.nbd.2014.11.017 CrossRefPubMedGoogle Scholar
  35. 35.
    Lee KY, Koh SH, Noh MY, Kim SH, Lee YJ (2008) Phosphatidylinositol-3-kinase activation blocks amyloid beta-induced neurotoxicity. Toxicology 243(1-2):43–50CrossRefPubMedGoogle Scholar
  36. 36.
    Ohno H, Kato S, Naito Y, Kunitomo H, Tomioka M, Iino Y (2014) Role of synaptic phosphatidylinositol 3-kinase in a behavioral learning response in C. elegans. Science 345(6194):313–317. doi: 10.1126/science.1250709 CrossRefPubMedGoogle Scholar
  37. 37.
    Ivanov AD, Tukhbatova GR, Salozhin SV, Markevich VA (2015) NGF but not BDNF overexpression protects hippocampal LTP from beta-amyloid-induced impairment. Neuroscience 289:114–122. doi: 10.1016/j.neuroscience.2014.12.063 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Liting Jiang
    • 1
  • Meng Huang
    • 1
    • 2
  • Shujun Xu
    • 1
  • Yu Wang
    • 1
  • Pengyuan An
    • 1
  • Chenxi Feng
    • 1
  • Xiaowei Chen
    • 1
  • Xiaofei Wei
    • 1
  • Yifan Han
    • 3
  • Qinwen Wang
    • 1
  1. 1.Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of MedicineNingbo UniversityNingboChina
  2. 2.The First People’s Hospital of Yuhang District HangzhouZhejiangChina
  3. 3.Department of Applied Biology and Chemical Technology, Institute of Modern Chinese MedicineThe Hong Kong Polytechnic UniversityHong KongChina

Personalised recommendations