Molecular Neurobiology

, Volume 53, Issue 5, pp 3400–3415 | Cite as

The Chemistry of Neurodegeneration: Kinetic Data and Their Implications

  • Matic Pavlin
  • Matej Repič
  • Robert Vianello
  • Janez Mavri


We collected experimental kinetic rate constants for chemical processes responsible for the development and progress of neurodegeneration, focused on the enzymatic and non-enzymatic degradation of amine neurotransmitters and their reactive and neurotoxic metabolites. A gross scheme of neurodegeneration on the molecular level is based on two pathways. Firstly, reactive species oxidise heavy atom ions, which enhances the interaction with alpha-synuclein, thus promoting its folding to the beta form and giving rise to insoluble amyloid plaques. The latter prevents the function of vesicular transport leading to gradual neuronal death. In the second pathway, radical species, OH· in particular, react with the methylene groups of the apolar part of the lipid bilayer of either the cell or mitochondrial wall, resulting in membrane leakage followed by dyshomeostasis, loss of resting potential and neuron death. Unlike all other central neural system (CNS)-relevant biogenic amines, dopamine and noradrenaline are capable of a non-enzymatic auto-oxidative reaction, which produces hydrogen peroxide. This reaction is not limited to the mitochondrial membrane where scavenging enzymes, such as catalase, are located. On the other hand, dopamine and its metabolites, such as dopamine-o-quinone, dopaminechrome, 5,6-dihydroxyindole and indo-5,6-quinone, also interact directly with alpha-synuclein and reversibly inhibit plaque formation. We consider the role of the heavy metal ions, selected scavengers and scavenging enzymes, and discuss the relevance of certain foods and food supplements, including curcumin, garlic, N-acetyl cysteine, caffeine and red wine, as well as the long-term administration of non-steroid anti-inflammatory drugs and occasional tobacco smoking, that could all act toward preventing neurodegeneration. The current analysis can be employed in developing strategies for the prevention and treatment of neurodegeneration, and, hopefully, aid in the building of an overall kinetic molecular model of neurodegeneration itself.


Neurodegeneration Parkinson’s disease Alzheimer’s disease Reactive oxygen species Oxidative stress Heavy metal ions 



We would like to thank Prof. Paolo Carloni (German Research School for Simulation Sciences, Jülich, Germany) and Prof. Simon Podnar (Institute for Clinical Neurophysiology, University Medical Centre Ljubljana, Slovenia) for many stimulating discussions. M.R. and J.M. would like to thank the Slovenian Research Agency for the financial support in the framework of the programme group P1–0012 and within the corresponding research project contract No. J1-2014. R.V. gratefully acknowledges the European Commission for an individual FP7 Marie Curie Career Integration Grant (contract number PCIG12-GA-2012-334493). M.P. would like to acknowledge the German Research School for Simulation Sciences (GRS) for the administrative and financial support. M.R. would like to acknowledge Sciex grant 14.141 for financial support. Part of this work was supported by COST Action CM1103. The authors thank Ms. Charlotte Taft for a careful proofreading of the manuscript.

Compliance with Ethical Standards

The authors declare that this entire submission complies with the ethical standards of the journal as there are no conflicts of interest and the research presented here did not involve human participants and/or animals.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366PubMedCrossRefGoogle Scholar
  2. 2.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid [beta]-peptide. Nat Rev Mol Cell Biol 8(2):101–112PubMedCrossRefGoogle Scholar
  3. 3.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356PubMedCrossRefGoogle Scholar
  4. 4.
    Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-[beta] protein assembly in the brain impairs memory. Nature 440(7082):352–357PubMedCrossRefGoogle Scholar
  5. 5.
    Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:S10–S17PubMedCrossRefGoogle Scholar
  6. 6.
    Pahnke J, Langer O, Krohn M (2014) Alzheimer’s and ABC transporters—new opportunities for diagnostics and treatment. Neurobiology of Disease 72, Part A (0):54–60.Google Scholar
  7. 7.
    Underwood JCE, Cross SS (2009) General and systematic pathology, 5th edn. Churchill Livingstone, EdinburghGoogle Scholar
  8. 8.
    Coyle J, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262(5134):689–695PubMedCrossRefGoogle Scholar
  9. 9.
    Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208PubMedCrossRefGoogle Scholar
  10. 10.
    Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3(3):205–214PubMedCrossRefGoogle Scholar
  11. 11.
    Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658PubMedCrossRefGoogle Scholar
  12. 12.
    Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Rev Neurosci 5:S18–S25CrossRefGoogle Scholar
  13. 13.
    LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3(11):862–872PubMedCrossRefGoogle Scholar
  14. 14.
    Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228PubMedCrossRefGoogle Scholar
  15. 15.
    DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277(5334):1990–1993PubMedCrossRefGoogle Scholar
  16. 16.
    Fauci AS, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J (2008) Harisson’s principles of internal medicine, 17th edn. McGraw-Hill, New YorkGoogle Scholar
  17. 17.
    Auluck PK, Chan HYE, Trojanowski JQ, Lee VM-Y, Bonini NM (2002) Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295(5556):865–868PubMedCrossRefGoogle Scholar
  18. 18.
    Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6(1):11–22PubMedCrossRefGoogle Scholar
  19. 19.
    Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158(1):47–52PubMedCrossRefGoogle Scholar
  20. 20.
    Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106(6):1995–2044PubMedCrossRefGoogle Scholar
  21. 21.
    Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873PubMedCrossRefGoogle Scholar
  22. 22.
    Watt NT, Whitehouse IJ, Hooper NM (2010) The role of zinc in Alzheimer’s disease. Int J Alzheimers Dis 2011:971021PubMedPubMedCentralGoogle Scholar
  23. 23.
    Singh N, Haldar S, Tripathi AK, McElwee MK, Horback K, Beserra A (2014) Iron in neurodegenerative disorders of protein misfolding: a case of prion disorders and Parkinson’s disease. Antioxid Redox Signal 21(3):471–484PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Frisco R, Hodak M, Bernholc J (2011) Mechanism of copper(II)-induced misfolding of Parkinson’s disease protein. Sci Rep 1Google Scholar
  25. 25.
    Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62(6):649–671PubMedCrossRefGoogle Scholar
  26. 26.
    Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharm 57(3–4):145–155CrossRefGoogle Scholar
  27. 27.
    Pastore A, Federici G, Bertini E, Piemonte F (2003) Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 333(1):19–39PubMedCrossRefGoogle Scholar
  28. 28.
    Hare D, Ayton S, Bush A, Lei P (2013) A delicate balance: iron metabolism and diseases of the brain. Front Aging Neurosci 5:34PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Phumala N, Porasuphatana S, Unchern S, Pootrakul P, Fucharoen S, Chantharaksri U (2003) Hemin: a possible cause of oxidative stress in blood circulation of β-thalassemia/hemoglobin E disease. Free Radic Res 37(2):129–135PubMedCrossRefGoogle Scholar
  30. 30.
    Alayash AI (2004) Oxygen therapeutics: can we tame haemoglobin? Nat Rev Drug Discov 3(2):152–159PubMedCrossRefGoogle Scholar
  31. 31.
    Frederickson CJ, Koh J-Y, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6(6):449–462PubMedCrossRefGoogle Scholar
  32. 32.
    Choi DW, Koh JY (1998) Zinc and brain injury. Annu Rev Neurosci 21:347–375PubMedCrossRefGoogle Scholar
  33. 33.
    Bush AI, Pettingell WH, Multhaup G, d Paradis M, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL et al (1994) Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265(5177):1464–1467PubMedCrossRefGoogle Scholar
  34. 34.
    Clements A, Allsop D, Walsh DM, Williams CH (1996) Aggregation and metal-binding properties of mutant forms of the amyloid A beta peptide of Alzheimer’s disease. J Neurochem 66(2):740–747PubMedCrossRefGoogle Scholar
  35. 35.
    Edwards DR, Handsley MM, Pennington CJ (2008) The ADAM metalloproteinases. Mol Asp Med 29(5):258–289CrossRefGoogle Scholar
  36. 36.
    Paoletti P, Vergnano AM, Barbour B, Casado M (2009) Zinc at glutamatergic synapses. Neuroscience 158(1):126–136PubMedCrossRefGoogle Scholar
  37. 37.
    Bartzokis G, Beckson M, Hance DB, Marx P, Foster JA, Marder SR (1997) MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn Reson Imaging 15(1):29–35PubMedCrossRefGoogle Scholar
  38. 38.
    Zecca L, Gallorini M, Schunemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D (2001) Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem 76(6):1766–1773PubMedCrossRefGoogle Scholar
  39. 39.
    Markesbery WR, Ehmann WD, Alauddin M, Hossain TI (1984) Brain trace element concentrations in aging. Neurobiol Aging 5(1):19–28PubMedCrossRefGoogle Scholar
  40. 40.
    Yokel RA (2006) Blood–brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis 10(2–3):223–253PubMedCrossRefGoogle Scholar
  41. 41.
    Florence TM, Stauber JL (1989) Manganese catalysis of dopamine oxidation. Sci Total Environ 78:233–240PubMedCrossRefGoogle Scholar
  42. 42.
    Agam G (2014) Current hypotheses of lithium’s mechanism of action as a neuropsychiatric medication. ACS Chem Neurosci 5(6):410PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Weydert CJ, Cullen JJ (2010) Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 5(1):51–66PubMedCrossRefGoogle Scholar
  44. 44.
    Allen RG, Balin AK (1989) Oxidative influence on development and differentiation: an overview of a free radical theory of development. Free Radic Biol Med 6(6):631–661PubMedCrossRefGoogle Scholar
  45. 45.
    Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75(2):241–251PubMedCrossRefGoogle Scholar
  46. 46.
    Shibanuma M, Kuroki T, Nose K (1988) Induction of DNA-replication and expression of proto-oncogene cis-myc and cis-fos in quiescent balb/3t3 cells by xanthine xanthine-oxidase. Oncogene 3(1):17–21Google Scholar
  47. 47.
    Lo YY, Wong JM, Cruz TF (1996) Reactive oxygen species mediate cytokine activation of c-Jun NH2-terminal kinases. J Biol Chem 271(26):15703–15707PubMedCrossRefGoogle Scholar
  48. 48.
    Berg JM, Tymoczko L, Stryer L (2012) Biochemistry, 7th edn. W. H. Freeman, YorkGoogle Scholar
  49. 49.
    Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13PubMedCrossRefGoogle Scholar
  50. 50.
    Friedman J (2011) Why is the nervous system vulnerable to oxidative stress? In: Gadoth N, Goebel HH (eds) Oxidative stress and free radical damge in neurology. Oxidative stress in applied basic research and clinical practice. Humana Press, New YorkGoogle Scholar
  51. 51.
    Bielski BHJ, Cabelli DE, Arudi RL, Ross AB (1985) Reactivity of HO2/O2 radicals in aqueous solution. J Phys Chem Ref Data 14:1041–1100Google Scholar
  52. 52.
    Hermida-Ameijeiras Á, Méndez-Álvarez EA, Sánchez-Iglesias SA, Sanmartı́n-Suárez C, Soto-Otero R (2004) Autoxidation and MAO-mediated metabolism of dopamine as a potential cause of oxidative stress: role of ferrous and ferric ions. Neurochem Int 45(1):103–116PubMedCrossRefGoogle Scholar
  53. 53.
    Herlinger E, Jameson RF, Linert W (1995) Spontaneous autoxidation of dopamine. J Chem Soc Perkin Trans 2(2):259–263CrossRefGoogle Scholar
  54. 54.
    Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59(5):1609–1623PubMedCrossRefGoogle Scholar
  55. 55.
    Fridovich I (1989) Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 264(14):7761–7764PubMedGoogle Scholar
  56. 56.
    Maly FE (1990) The B lymphocyte: a newly recognized source of reactive oxygen species with immunoregulatory potential. Free Radic Res Commun 8(3):143–148PubMedCrossRefGoogle Scholar
  57. 57.
    Bray RC, Cockle SA, Fielden EM, Roberts PB, Rotilio G, Calabrese L (1974) Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem J 139(1):43–48PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hodgson EK, Fridovich I (1975) The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry 14(24):5294–5299PubMedCrossRefGoogle Scholar
  59. 59.
    Shimizu N, Kobayashi K, Hayashi K (1984) The reaction of superoxide radical with catalase. Mechanism of the inhibition of catalase by superoxide radical. J Biol Chem 259(7):4414–4418PubMedGoogle Scholar
  60. 60.
    Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller A-F, Teixeira M, Valentine JS (2014) Chem Rev 114(7):3854–3918PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Fridovich I (1997) Superoxide anion radical (O2·), superoxide dismutases, and related matters. J Biol Chem 272(30):18515–18517PubMedCrossRefGoogle Scholar
  62. 62.
    Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300(2):535–543PubMedCrossRefGoogle Scholar
  63. 63.
    Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4(5):278–286PubMedCrossRefGoogle Scholar
  64. 64.
    Sueishi Y, Hori M, Ishikawa M, Matsu-ura K, Kamogawa E, Honda Y, Kita M, Ohara K (2014) Scavenging rate constants of hydrophilic antioxidants against multiple reactive oxygen species. J Clin Biochem Nutr 54(2):67–74PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol Cell Physiol 271:C1424–C1437Google Scholar
  66. 66.
    Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112PubMedCrossRefGoogle Scholar
  67. 67.
    Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12(5):913–922PubMedCrossRefGoogle Scholar
  68. 68.
    Cassarino DS, Bennett JP Jr (1999) An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res Rev 29(1):1–25PubMedCrossRefGoogle Scholar
  69. 69.
    Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25(10):502–508PubMedCrossRefGoogle Scholar
  70. 70.
    Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276(42):38388–38393PubMedCrossRefGoogle Scholar
  71. 71.
    Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276(41):38084–38089PubMedGoogle Scholar
  72. 72.
    Wong GH, Elwell JH, Oberley LW, Goeddel DV (1989) Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58(5):923–931PubMedCrossRefGoogle Scholar
  73. 73.
    Marklund SL, Holme E, Hellner L (1982) Superoxide dismutase in extracellular fluids. Clin Chim Acta 126(1):41–51PubMedCrossRefGoogle Scholar
  74. 74.
    Marklund SL (1982) Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci U S A 79(24):7634–7638PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Miller A-F (2004) Superoxide dismutases: active sites that save, but a protein that kills. Curr Opin Chem Biol 8(2):162–168PubMedCrossRefGoogle Scholar
  76. 76.
    Fridovich I (1983) Superoxide radical: an endogenous toxicant. Annu Rev Pharmacol Toxicol 23:239–257PubMedCrossRefGoogle Scholar
  77. 77.
    Miwa S, Muller FL, Beckman KB (2008) The basics of oxidative biochemistry. In: Miwa S, Beckman KB, Muller FL (eds) Oxidative stress in aging: from model systems to human diseases. Springer.Google Scholar
  78. 78.
    Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605PubMedGoogle Scholar
  79. 79.
    Fielden EM, Roberts PB, Bray RC, Lowe DJ, Mautner GN, Rotilio G, Calabrese L (1974) Mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance. Evidence that only half the active sites function in catalysis. Biochem J 139(1):49–60PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Klug D, Rabani J, Fridovich I (1972) A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol Chem 247(15):4839–4842PubMedGoogle Scholar
  81. 81.
    Forman HJ, Fridovich I (1973) Superoxide dismutase: a comparison of rate constants. Arch Biochem Biophys 158(1):396–400PubMedCrossRefGoogle Scholar
  82. 82.
    Huie RE, Padmaja S (1993) The reaction rate of nitric oxide with superoxide. Free Radic Res Commun 18:195–199PubMedCrossRefGoogle Scholar
  83. 83.
    Tyler DD (1975) Polarographic assay and intracellular distribution of superoxide dismutase in rat liver. Biochem J 147(3):493–504PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Edmondson DE, Mattevi A, Binda C, Li M, Hubalek F (2004) Structure and mechanism of monoamine oxidase. Curr Med Chem 11(15):1983–1993PubMedCrossRefGoogle Scholar
  86. 86.
    Edmondson DE (2014) Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: biological implications. Curr Pharm Des 20(2):155–160PubMedCrossRefGoogle Scholar
  87. 87.
    Ramsay RR (2012) Monoamine oxidases: the biochemistry of the proteins as targets in medicinal chemistry and drug discovery. Curr Top Med Chem 12(20):2189–2209PubMedCrossRefGoogle Scholar
  88. 88.
    Chajkowski-Scarry S, Rimoldi JM (2014) Monoamine oxidase A and B substrates: probing the pathway for drug development. Futur Med Chem 6(6):697–717CrossRefGoogle Scholar
  89. 89.
    Edmondson DE, Binda C, Wang J, Upadhyay AK, Mattevi A (2009) Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. Biochemistry 48(20):4220–4230PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Finberg JPM (2014) Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol Ther 143(2):133–152PubMedCrossRefGoogle Scholar
  91. 91.
    Sader-Mazbar O, Loboda Y, Rabey MJ, Finberg JPM (2013) Increased L-DOPA-derived dopamine following selective MAO-A or -B inhibition in rat striatum depleted of dopaminergic and serotonergic innervation. Br J Pharmacol 170(5):999–1013PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Wachtel SR, Abercrombie ED (1994) l-3,4-dihydroxyphenylalanine-induced dopamine release in the striatum of intact and 6-hydroxydopamine-treated rats: differential effects of monoamine oxidase A and B inhibitors. J Neurochem 63(1):108–117PubMedCrossRefGoogle Scholar
  93. 93.
    Nagatsu T (2004) Progress in monoamine oxidase (MAO) research in relation to genetic engineering. NeuroToxicology 25(1–2):11–20PubMedCrossRefGoogle Scholar
  94. 94.
    Westlund KN (1994) The distribution of monoamine oxidases A and B in normal human brain. In: Lieberman A, Olanow CW, Youdim MBH, Tipton K (eds) Monoamine oxidase inhibitors in neurological diseases. Dekker, New York, pp 1–19Google Scholar
  95. 95.
    Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase a and monoamine oxidase b cell populations in human brainstem. Neuroscience 25(2):439–456PubMedCrossRefGoogle Scholar
  96. 96.
    Repič M, Vianello R, Purg M, Duarte F, Bauer P, Kamerlin SCL, Mavri J (2014) Empirical valence bond simulations of the hydride transfer step in the monoamine oxidase B catalyzed metabolism of dopamine. Proteins: Struct Funct Bioinforma 82(12):3347–3355CrossRefGoogle Scholar
  97. 97.
    Vianello R, Repič M, Mavri J (2012) How are biogenic amines metabolized by monoamine oxidases? Eur J Org Chem 2012(36):7057–7065CrossRefGoogle Scholar
  98. 98.
    Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with α-synuclein. J Biol Chem 282(21):15597–15605PubMedCrossRefGoogle Scholar
  99. 99.
    Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 30(5):244–250PubMedCrossRefGoogle Scholar
  100. 100.
    Bottelbergs A, Verheijden S, Hulshagen L, Gutmann DH, Goebbels S, Nave K-A, Kassmann C, Baes M (2010) Axonal integrity in the absence of functional peroxisomes from projection neurons and astrocytes. Glia 58(13):1532–1543PubMedGoogle Scholar
  101. 101.
    Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211PubMedCrossRefGoogle Scholar
  102. 102.
    Fornstedt B, Brun A, Rosengren E, Carlsson A (1989) The apparent autoxidation rate of catechols on dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. J Neural Transm 1:279–295CrossRefGoogle Scholar
  103. 103.
    Troadec J-D, Marien M, Darios F, Hartmann A, Ruberg M, Colpaert F, Michel PP (2001) Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. J Neurochem 79:200–210PubMedCrossRefGoogle Scholar
  104. 104.
    Wrona MZ, Dryhurst G (1998) Oxidation of serotonin by superoxide radical: implications to neurodegenerative brain disorders. Chem Res Toxicol 11(6):639–650PubMedCrossRefGoogle Scholar
  105. 105.
    Politis M, Niccolini F (2015) Serotonin in Parkinson’s disease. Behav Brain Res 277:136–145PubMedCrossRefGoogle Scholar
  106. 106.
    Oshino N, Chance B, Sies H, Bucher T (1973) The role of H2O2 generation in perfused rat liver and the reaction of catalase compound I and hydrogen donors. Arch Biochem Biophys 154(1):117–131PubMedCrossRefGoogle Scholar
  107. 107.
    Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40PubMedCrossRefGoogle Scholar
  108. 108.
    Revett TJ, Baker GB, Jhamandas J, Kar S (2013) Glutamate system, amyloid ss peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci 38(1):6–23PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Rousseaux CG (2008) A review of glutamate receptors I: current understanding of their biology. J Toxicol Pathol 21(1):25–51CrossRefGoogle Scholar
  110. 110.
    Andre VM, Cepeda C, Levine MS (2010) Dopamine and glutamate in Huntington’s disease: a balancing act. CNS Neurosci Ther 16(3):163–178PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Archiv-Eu J Physiol 460(2):525–542CrossRefGoogle Scholar
  112. 112.
    Hu NW, Ondrejcak T, Rowan MJ (2012) Glutamate receptors in preclinical research on Alzheimer’s disease: update on recent advances. Pharmacol Biochem Behav 100(4):855–862PubMedCrossRefGoogle Scholar
  113. 113.
    Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45(5):583–595PubMedCrossRefGoogle Scholar
  114. 114.
    Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364(6437):535–537PubMedCrossRefGoogle Scholar
  115. 115.
    Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vöckler J, Dikranian K, Tenkova TI, Stefovska V et al (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283(5398):70–74PubMedCrossRefGoogle Scholar
  116. 116.
    Atlante A, Calissano P, Bobba A, Giannattasio S, Marra E, Passarella S (2001) Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett 497(1):1–5PubMedCrossRefGoogle Scholar
  117. 117.
    Pacher P, Nivorozhkin A, Szabó C (2006) Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58(1):87–114PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Metz S, Thiel W (2009) A combined QM/MM study on the reductive half-reaction of xanthine oxidase: substrate orientation and mechanism. J Am Chem Soc 131(41):14885–14902PubMedCrossRefGoogle Scholar
  119. 119.
    Atlante A, Gagliardi S, Minervini GM, Ciotti MT, Marra E, Calissano P (1997) Glutamate neurotoxicity in rat cerebellar granule cells: a major role for xanthine oxidase in oxygen radical formation. J Neurochem 68(5):2038–2045PubMedCrossRefGoogle Scholar
  120. 120.
    Danysz W, Parsons CG (2012) Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine—searching for the connections. Br J Pharmacol 167(2):324–352PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Rahn KA, Slusher BS, Kaplin AI (2012) Glutamate in CNS neurodegeneration and cognition and its regulation by GCPII inhibition. Curr Med Chem 19(9):1335–1345PubMedCrossRefGoogle Scholar
  122. 122.
    Frigo M, Cogo MG, Fusco ML, Gardinetti M, Frigeni B (2012) Glutamate and multiple sclerosis. Curr Med Chem 19(9)Google Scholar
  123. 123.
    Halliwell B, Gutteridge J (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  124. 124.
    Koppenol WH (2001) The Haber-Weiss cycle 70 years later. Redox Rep 6:229–234PubMedCrossRefGoogle Scholar
  125. 125.
    Skerrett R, Malm T, Landreth G (2014) Nuclear receptors in neurodegenerative diseases. Neurobiology of Disease 72, Part A (0):104–116.Google Scholar
  126. 126.
    Hipkiss AR (2009) Chapter 3 carnosine and its possible roles in nutrition and health. In: Steve LT (ed) Advances in food and nutrition research, vol 57. Academic Press, pp 87–154.Google Scholar
  127. 127.
    Tabakman R, Jiang H, Levine RA, Kohen R, Lazarovici P (2004) Apoptotic characteristics of cell death and the neuroprotective effect of homocarnosine on pheochromocytoma PC12 cells exposed to ischemia. J Neurosci Res 75(4):499PubMedCrossRefGoogle Scholar
  128. 128.
    Bellia F, Vecchio G, Cuzzocrea S, Calabrese V, Rizzarelli E (2011) Neuroprotective features of carnosine in oxidative driven diseases. Mol Asp Med 32(4–6):258–266CrossRefGoogle Scholar
  129. 129.
    Babizhayev MA, Deyev AI, Yegorov YE (2011) Olfactory dysfunction and cognitive impairment in age-related neurodegeneration: prevalence related to patient selection, diagnostic criteria and therapeutic treatment of aged clients receiving clinical neurology and community-based care. Curr Clin Pharmacol 6(4):236–259PubMedCrossRefGoogle Scholar
  130. 130.
    Wijeratne SS, Cuppett SL (2007) Potential of rosemary (Rosemarinus officinalis L.) diterpenes in preventing lipid hydroperoxide-mediated oxidative stress in Caco-2 cells. J Agric Food Chem 55(4):1193–1199PubMedCrossRefGoogle Scholar
  131. 131.
    Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci U S A 85(9):3175–3179PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    O’Dowd JJ, Robins DJ, Miller DJ (1988) Detection, characterisation, and quantification of carnosine and other histidyl derivatives in cardiac and skeletal muscle. Biochim Biophys Acta Gen Subj 967(2):241–249CrossRefGoogle Scholar
  133. 133.
    Boldyrev A, Bulygina E, Leinsoo T, Petrushanko I, Tsubone S, Abe H (2004) Protection of neuronal cells against reactive oxygen species by carnosine and related compounds. Comp Biochem Physiol B: Biochem Mol Biol 137(1):81–88CrossRefGoogle Scholar
  134. 134.
    Boldyrev A, Song R, Lawrence D, Carpenter DO (1999) Carnosine protects against excitotoxic cell death independently of effects on reactive oxygen species. Neuroscience 94(2):571–577PubMedCrossRefGoogle Scholar
  135. 135.
    Bellia F, Amorini AM, La Mendola D, Vecchio G, Tavazzi B, Giardina B, Di Pietro V, Lazzarino G et al (2008) New glycosidic derivatives of histidine-containing dipeptides with antioxidant properties and resistant to carnosinase activity. Eur J Med Chem 43(2):373–380PubMedCrossRefGoogle Scholar
  136. 136.
    Boldyrev A, Koudinov A, Berezov T, Carpenter DO (2004) Amyloid-ß induced cell death is independent of free radicals. J Alzheimers Dis 6(6):633–638PubMedCrossRefGoogle Scholar
  137. 137.
    Attanasio F, Convertino M, Magno A, Caflisch A, Corazza A, Haridas H, Esposito G, Cataldo S et al (2013) Carnosine inhibits Aβ42 aggregation by perturbing the H-bond network in and around the central hydrophobic cluster. ChemBioChem 14(5):583–592PubMedCrossRefGoogle Scholar
  138. 138.
    Fu Q, Dai H, Hu W, Fan Y, Shen Y, Zhang W, Chen Z (2008) Carnosine Protects Against Aβ42-induced Neurotoxicity in Differentiated Rat PC12 Cells. Cell Mol Neurobiol 28(2):307–316PubMedCrossRefGoogle Scholar
  139. 139.
    Atamna H, Kumar R (2010) Protective role of methylene blue in Alzheimer’s disease via mitochondria and cytochrome c oxidase. J Alzheimers Dis 20:439–452CrossRefGoogle Scholar
  140. 140.
    Fernandez-Busquets X, Ponce J, Bravo R, Arimon M, Martianez T, Gella A, Cladera J, Durany N (2010) Modulation of amyloid β peptide1-42 cytotoxicity and aggregation in vitro by glucose and chondroitin sulfate. Curr Alzheimer Res 7(5):428–438PubMedCrossRefGoogle Scholar
  141. 141.
    Hipkiss AR (2007) Could carnosine or related structures suppress Alzheimer’s disease? J Alzheimers Dis 11(2):229–240PubMedCrossRefGoogle Scholar
  142. 142.
    Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG (2007) Free amino acid and dipeptide changes in the body fluids from Alzheimer’s disease subjects. Amino Acids 32(2):213–224PubMedCrossRefGoogle Scholar
  143. 143.
    Teufel M, Saudek V, Ledig JP, Bernhardt A, Boularand S, Carreau A, Cairns NJ, Carter C et al (2003) Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem 278(8):6521–6531PubMedCrossRefGoogle Scholar
  144. 144.
    Otani H, Okumura N, Hashida-Okumura A, Nagai K (2005) Identification and characterization of a mouse dipeptidase that hydrolyzes l-carnosine. J Biochem 137(2):167–175PubMedCrossRefGoogle Scholar
  145. 145.
    Babizhayev MA (2012) Biomarkers and special features of oxidative stress in the anterior segment of the eye linked to lens cataract and the trabecular meshwork injury in primary open-angle glaucoma: challenges of dual combination therapy with N-acetylcarnosine lubricant eye drops and oral formulation of nonhydrolyzed carnosine. Fund Clin Pharmacol 26(1):86–117CrossRefGoogle Scholar
  146. 146.
    McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Rev 21(2):195–218PubMedCrossRefGoogle Scholar
  147. 147.
    Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Liu B, Hong J-S (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304(1):1–7PubMedCrossRefGoogle Scholar
  149. 149.
    Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35(3):419–432PubMedCrossRefGoogle Scholar
  150. 150.
    Block ML, Hong J-S (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76(2):77–98PubMedCrossRefGoogle Scholar
  151. 151.
    Lucas S-M, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(S1):S232–S240PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Ellwardt E, Zipp F (2014) Molecular mechanisms linking neuroinflammation and neurodegeneration in MS. Experimental Neurology 262, Part A (0):8–17.Google Scholar
  153. 153.
    Amor S, Puentes F, Baker D, van der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129(2):154–169PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Skaper SD, Di Marzo V (2012) Endocannabinoids in nervous system health and disease: the big picture in a nutshell. Philos Trans R Soc Lond Ser B Biol Sci 367(1607):3193–3200CrossRefGoogle Scholar
  155. 155.
    Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305PubMedCrossRefGoogle Scholar
  156. 156.
    in’t Veld BA, Launer LJ, Hoes AW, Ott A, Hofman A, Breteler MM, Stricker BH (1998) NSAIDs and incident Alzheimer’s disease. The Rotterdam Study. Neurobiol Aging 19(6):607–611CrossRefGoogle Scholar
  157. 157.
    Gao X, Chen H, Schwarzschild MA, Ascherio A (2011) Use of ibuprofen and risk of Parkinson disease. Neurology 76(10):863–869PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Czirr E, Wyss-Coray T (2012) The immunology of neurodegeneration. J Clin Invest 122(4):1156–1163PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Hakim J (1993) Reactive oxygen species and inflammation. C R Soc Seances Soc Biol Fil 187(3):286–295Google Scholar
  160. 160.
    Koppula S, Kumar H, Kim IS, Choi DK (2012) Reactive oxygen species and inhibitors of inflammatory enzymes, NADPH oxidase, and iNOS in experimental models of Parkinson’s disease. Mediat Inflamm 2012:823902CrossRefGoogle Scholar
  161. 161.
    Cordeiro RM (2014) Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation. Biochim Biophys Acta Biomembr 1838(1, Part B):438–444CrossRefGoogle Scholar
  162. 162.
    Radak Z, Marton O, Nagy E, Koltai E, Goto S (2013) The complex role of physical exercise and reactive oxygen species on brain. J Sport Health Sci 2(2):87–93CrossRefGoogle Scholar
  163. 163.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Szabó C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6(8):662–680PubMedCrossRefGoogle Scholar
  165. 165.
    Metodiewa D, Koska C (1999) Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotox Res 1:197–233CrossRefGoogle Scholar
  166. 166.
    Hobbs AJ, Higgs A, Moncada S (1999) Inhibition of nitric oxide synthase as a potential therapeutic target. Annu Rev Pharmacol Toxicol 39:191–220PubMedCrossRefGoogle Scholar
  167. 167.
    Igarashi K, Kashiwagi K (2010) Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol Biochem 48(7):506–512PubMedCrossRefGoogle Scholar
  168. 168.
    Luo J, Yu CH, Yu H, Borstnar R, Kamerlin SC, Graslund A, Abrahams JP, Warmlander SK (2013) Cellular polyamines promote amyloid-Beta (abeta) peptide fibrillation and modulate the aggregation pathways. ACS Chem Neurosci 4(3):454–462PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Bencini A, Bianchi A, Garcia-Espana E, Micheloni M, Ramirez JA (1999) Proton coordination by polyamine compounds in aqueous solution. Coord Chem Rev 188:97–156CrossRefGoogle Scholar
  170. 170.
    Chattopadhyay MK, Chen WP, Poy G, Cam M, Stiles D, Tabor H (2009) Microarray studies on the genes responsive to the addition of spermidine or spermine to a Saccharomyces cerevisiae spermidine synthase mutant. Yeast 26(10):531–544PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Minois N, Carmona-Gutierrez D, Madeo F (2011) Polyamines in aging and disease. Aging 3(8):716–732PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Hussain SS, Ali M, Ahmad M, Siddique KH (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29(3):300–311PubMedCrossRefGoogle Scholar
  173. 173.
    Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11(11):1305–1314PubMedCrossRefGoogle Scholar
  174. 174.
    Rubinstein S, Breitbart H (1994) Cellular localization of polyamines: cytochemical and ultrastructural methods providing new clues to polyamine function in ram spermatozoa. Biol Cell 81(2):177–183PubMedCrossRefGoogle Scholar
  175. 175.
    Yatin M (2002) Polyamines in living organisms. J Cell Mol Biol 1:57–67Google Scholar
  176. 176.
    Antony T, Hoyer W, Cherny D, Heim G, Jovin TM, Subramaniam V (2003) Cellular polyamines promote the aggregation of alpha-synuclein. J Biol Chem 278(5):3235–3240PubMedCrossRefGoogle Scholar
  177. 177.
    Singh M, Dang TN, Arseneault M, Ramassamy C (2010) Role of by-products of lipid oxidation in Alzheimer’s disease brain: a focus on acrolein. J Alzheimers Dis 21(3):741–756PubMedCrossRefGoogle Scholar
  178. 178.
    Morrison LD, Kish SJ (1995) Brain polyamine levels are altered in Alzheimer’s disease. Neurosci Lett 197(1):5–8PubMedCrossRefGoogle Scholar
  179. 179.
    Seidl R, Beninati S, Cairns N, Singewald N, Risser D, Bavan H, Nemethova M, Lubec G (1996) Polyamines in frontal cortex of patients with Down syndrome and Alzheimer disease. Neurosci Lett 206(2–3):193–195PubMedCrossRefGoogle Scholar
  180. 180.
    Vivo M, de Vera N, Cortes R, Mengod G, Camon L, Martinez E (2001) Polyamines in the basal ganglia of human brain. Influence of aging and degenerative movement disorders. Neurosci Lett 304(1–2):107–111PubMedCrossRefGoogle Scholar
  181. 181.
    Yatin SM, Yatin M, Varadarajan S, Ain KB, Butterfield DA (2001) Role of spermine in amyloid beta-peptide-associated free radical-induced neurotoxicity. J Neurosci Res 63(5):395–401PubMedCrossRefGoogle Scholar
  182. 182.
    Gomes-Trolin C, Nygren I, Aquilonius SM, Askmark H (2002) Increased red blood cell polyamines in ALS and Parkinson’s disease. Exp Neurol 177(2):515–520PubMedCrossRefGoogle Scholar
  183. 183.
    Fernandez CO, Hoyer W, Zweckstetter M, Jares-Erijman EA, Subramaniam V, Griesinger C, Jovin TM (2004) NMR of alpha-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation. EMBO J 23(10):2039–2046PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Grabenauer M, Bernstein SL, Lee JC, Wyttenbach T, Dupuis NF, Gray HB, Winkler JR, Bowers MT (2008) Spermine binding to Parkinson’s protein alpha-synuclein and its disease-related A30P and A53T mutants. J Phys Chem B 112(35):11147–11154PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Bertoncini CW, Jung YS, Fernandez CO, Hoyer W, Griesinger C, Jovin TM, Zweckstetter M (2005) Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc Natl Acad Sci U S A 102(5):1430–1435PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Chowhan RK, Singh LR (2012) Polyamines in modulating protein aggregation. J Protein Proteomics 2(3):141–150Google Scholar
  187. 187.
    Merali S, Barrero CA, Sacktor NC, Haughey NJ, Datta PK, Langford D, Khalili K (2014) Polyamines: predictive biomarker for HIV-associated neurocognitive disorders. J AIDS Clin Res 5(6):2155–6113CrossRefGoogle Scholar
  188. 188.
    Chowhan RK, Mittal S, Dar TA, Kamal MA, Singh LR (2014) Ignored avenues in alpha-synuclein associated proteopathy. CNS Neurol Disords-Drug Targets 13(7):1246–1257CrossRefGoogle Scholar
  189. 189.
    Herrera FE, Chesi A, Paleologou KE, Schmid A, Munoz A, Vendruscolo M, Gustincich S, Lashuel HA et al (2008) Inhibition of α-synuclein fibrillization by dopamine is mediated by interactions with five C-terminal residues and with E83 in the NAC region. PLoS ONE 3(10), e3394PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Latawiec D, Herrera F, Bek A, Losasso V, Candotti M, Benetti F, Carlino E, Kranjc A et al (2010) Modulation of alpha-synuclein aggregation by dopamine analogs. PLoS ONE 5(2), e9234PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Norris EH, Giasson BI, Hodara R, Xu S, Trojanowski JQ, Ischiropoulos H, Lee VM-Y (2005) Reversible inhibition of α-synuclein fibrillization by dopaminochrome-mediated conformational alterations. J Biol Chem 280:21212–21219PubMedCrossRefGoogle Scholar
  192. 192.
    Mazzulli JR, Armakola M, Dumoulin M, Parastatidis I, Ischiropoulos H (2007) Cellular oligomerization of α-synuclein is determined by the interaction of oxidized catechols with a C-terminal sequence. J Biol Chem 282(43):31621–31630PubMedCrossRefGoogle Scholar
  193. 193.
    Essa M, Vijayan R, Castellano-Gonzalez G, Memon M, Braidy N, Guillemin G (2012) Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res 37(9):1829–1842PubMedCrossRefGoogle Scholar
  194. 194.
    Hipkiss AR (2014) Aging risk factors and Parkinson’s disease: contrasting roles of common dietary constituents. Neurobiol Aging 35(6):1469–1472PubMedCrossRefGoogle Scholar
  195. 195.
    Witschi A, Reddy S, Stofer B, Lauterburg BH (1992) The systemic availability of oral glutathione. Eur J Clin Pharmacol 43(6):667–669PubMedCrossRefGoogle Scholar
  196. 196.
    Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45(4):287–306PubMedCrossRefGoogle Scholar
  197. 197.
    Joshi M, Billing BH, Hallinan T (1995) Investigation of the role of reactive oxygen species in bilirubin metabolism in the Gunn rat. Biochim Biophys Acta Gen Subj 1243(2):244–250CrossRefGoogle Scholar
  198. 198.
    Trujillo J, Granados-Castro LF, Zazueta C, Andérica-Romero AC, Chirino YI, Pedraza-Chaverrí J (2014) Mitochondria as a target in the therapeutic properties of curcumin. Arch Pharm 347(12):873–884CrossRefGoogle Scholar
  199. 199.
    Mishra S, Palanivelu K (2008) The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann Indian Acad Neurol 11(1):13–19PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Ak T, Gülçin İ (2008) Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174(1):27–37PubMedCrossRefGoogle Scholar
  201. 201.
    Gautam S, Karmakar S, Bose A, Chowdhury PK (2014) β-cyclodextrin and curcumin, a potent cocktail for disaggregating and/or inhibiting amyloids: a case study with α-synuclein. Biochemistry 53(25):4081–4083PubMedCrossRefGoogle Scholar
  202. 202.
    Mandel S, Amit T, Reznichenko L, Weinreb O, Youdim MBH (2006) Green tea catechins as brain-permeable, natural iron chelators-antioxidants for the treatment of neurodegenerative disorders. Mol Nutr Food Res 50(2):229–234PubMedCrossRefGoogle Scholar
  203. 203.
    Glade MJ (2010) Caffeine—not just a stimulant. Nutrition 26(10):932–938PubMedCrossRefGoogle Scholar
  204. 204.
    Sebastião A, Ribeiro J (2009) Adenosine receptors and the central nervous system. In: Wilson CN, Mustafa SJ (eds) Adenosine receptors in health and disease, vol 193. Handbook of experimental pharmacology, Springer Berlin Heidelberg, pp 471–534CrossRefGoogle Scholar
  205. 205.
    Rivera-Oliver M, Díaz-Ríos M (2014) Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sci 101(1–2):1–9PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Hardman JG, Limbird LE, Gilman AG (2005) Goodman & Gilman’s the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New YorkGoogle Scholar
  207. 207.
    Borštnar R, Repič M, Kržan M, Mavri J, Vianello R (2011) Irreversible inhibition of monoamine oxidase B by the antiparkinsonian medicines rasagiline and selegiline: a computational study. Eur J Org Chem 32:6419–6433CrossRefGoogle Scholar
  208. 208.
    Pavlin M, Mavri J, Repič M, Vianello R (2013) Quantum-chemical approach to determining the high potency of clorgyline as an irreversible acetylenic monoamine oxidase inhibitor. J Neural Transm 120(6):875–882PubMedCrossRefGoogle Scholar
  209. 209.
    Pavlin R, Sket D (1993) Effect of cigarette smoke on brain monoamine oxidase activity. Farmacevtski Vestnik 44:185–192Google Scholar
  210. 210.
    Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, Shea C, Alexoff D, MacGregor RR et al (1996) Brain monoamine oxidase A inhibition in cigarette smokers. Proc Natl Acad Sci U S A 93(24):14065–14069PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Dickerson TJ, Janda KD (2003) Glycation of the amyloid β-protein by a nicotine metabolite: a fortuitous chemical dynamic between smoking and Alzheimer’s disease. Proc Natl Acad Sci U S A 100(14):8182–8187PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    More SS, Vartak AP, Vince R (2012) The butter flavorant, diacetyl, exacerbates β-amyloid cytotoxicity. Chem Res Toxicol 25(10):2083–2091PubMedCrossRefGoogle Scholar
  213. 213.
    Schachter EN (2002) Popcorn worker’s lung. N Engl J Med 347(5):360–361PubMedCrossRefGoogle Scholar
  214. 214.
    Weinreb O, Mandel S, Bar-Am O, Amit T (2011) Iron-chelating backbone coupled with monoamine oxidase inhibitory moiety as novel pluripotential therapeutic agents for Alzheimer’s disease: a tribute to Moussa Youdim. J Neural Transm 118(3):479–492PubMedCrossRefGoogle Scholar
  215. 215.
    Perin R, Telefont M, Markram H (2013) Computing the size and number of neuronal clusters in local circuits. Front Neuroanat 7:1–10Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Computational Biophysics, German Research School for Simulation SciencesJoint Venture of RWTH Aachen University and Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Computational BiomedicineInstitute for Advanced Simulations (IAS-5/INM-9)JülichGermany
  3. 3.Laboratory of Computational Chemistry and BiochemistryInstitute of Chemical Sciences and EngineeringLausanneSwitzerland
  4. 4.Quantum Organic Chemistry GroupRuđer Bošković InstituteZagrebCroatia
  5. 5.National Institute of ChemistryLjubljanaSlovenia

Personalised recommendations