Molecular Neurobiology

, Volume 53, Issue 5, pp 3349–3359 | Cite as

The Role of TDP-43 in Alzheimer’s Disease

  • Xiao-Long Chang
  • Meng-Shan Tan
  • Lan Tan
  • Jin-Tai Yu


The transactive response DNA binding protein (TDP-43) has long been characterized as a main hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U, also known as FTLD-TDP). Several studies have indicated TDP-43 deposits in Alzheimer’s disease (AD) brains and have robust connection with AD clinical phenotype. FTLD-U, which was symptomatically connected with AD, may be predictable for the comprehension of the role TDP-43 in AD. TDP-43 may contribute to AD through both β-amyloid (Aβ)-dependent and Aβ-independent pathways. In this article, we summarize the latest studies concerning the role of TDP-43 in AD and explore TDP-43 modulation as a potential therapeutic strategy for AD. However, to date, little of pieces of the research on TDP-43 have been performed to investigate the role in AD; more investigations need to be confirmed in the future.


TDP-43 Aβ Tau Alzheimer’s disease Pathogenesis Therapy 



This work was supported by grants from the National Natural Science Foundation of China (81471309, 81371406, and 81171209), the Shandong Provincial Outstanding Medical Academic Professional Program, Qingdao Key Health Discipline Development Fund, Qingdao Outstanding Health Professional Development Fund, and Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders.

Conflict of Interest

The authors declare no conflicts of interest.


  1. 1.
    Hoyert DL, Xu J (2012) Deaths: preliminary data for 2011. Natl Vital Stat Rep 61(6):1–51PubMedGoogle Scholar
  2. 2.
    De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV (2012) Alzheimer’s disease. Subcell Biochem 65:329–352. doi: 10.1007/978-94-007-5416-4_14 CrossRefPubMedGoogle Scholar
  3. 3.
    Rayaprolu S, Fujioka S, Traynor S, Soto-Ortolaza AI, Petrucelli L, Dickson DW, Rademakers R, Boylan KB et al (2013) TARDBP mutations in Parkinson’s disease. Parkinsonism Relat Disord 19(3):312–315. doi: 10.1016/j.parkreldis.2012.11.003 CrossRefPubMedGoogle Scholar
  4. 4.
    Chanson JB, Echaniz-Laguna A, Vogel T, Mohr M, Benoilid A, Kaltenbach G, Kiesmann M (2010) TDP43-positive intraneuronal inclusions in a patient with motor neuron disease and Parkinson’s disease. Neurodegener Dis 7(4):260–264. doi: 10.1159/000273591 CrossRefPubMedGoogle Scholar
  5. 5.
    Rohn TT (2008) Caspase-cleaved TAR DNA-binding protein-43 is a major pathological finding in Alzheimer’s disease. Brain Res 1228:189–198. doi: 10.1016/j.brainres.2008.06.094 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Davis MY, Keene CD, Jayadev S, Bird T (2014) The co-occurrence of Alzheimer’s disease and Huntington’s disease: a neuropathological study of 15 elderly Huntington’s disease subjects. J Huntingtons Dis 3(2):209–217. doi: 10.3233/JHD-140111 PubMedGoogle Scholar
  7. 7.
    Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878CrossRefPubMedGoogle Scholar
  8. 8.
    Higashi S, Kabuta T, Nagai Y, Tsuchiya Y, Akiyama H, Wada K (2013) TDP-43 associates with stalled ribosomes and contributes to cell survival during cellular stress. J Neurochem 126(2):288–300. doi: 10.1111/jnc.12194 CrossRefPubMedGoogle Scholar
  9. 9.
    Austin JA, Wright GS, Watanabe S, Grossmann JG, Antonyuk SV, Yamanaka K, Hasnain SS (2014) Disease causing mutants of TDP-43 nucleic acid binding domains are resistant to aggregation and have increased stability and half-life. Proc Natl Acad Sci U S A 111(11):4309–4314. doi: 10.1073/pnas.1317317111 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brouwers N, Bettens K, Gijselinck I, Engelborghs S, Pickut BA, Van Miegroet H, Montoya AG, Mattheijssens M et al (2010) Contribution of TARDBP to Alzheimer’s disease genetic etiology. J Alzheimers Dis 21(2):423–430. doi: 10.3233/JAD-2010-100198 CrossRefPubMedGoogle Scholar
  11. 11.
    Vanden Broeck L, Kleinberger G, Chapuis J, Gistelinck M, Amouyel P, Van Broeckhoven C, Lambert JC, Callaerts P et al (2015) Functional complementation in Drosophila to predict the pathogenicity of TARDBP variants: evidence for a loss-of-function mechanism. Neurobiol Aging 36(2):1121–1129. doi: 10.1016/j.neurobiolaging.2014.09.001 CrossRefPubMedGoogle Scholar
  12. 12.
    Ticozzi N, LeClerc AL, van Blitterswijk M, Keagle P, McKenna-Yasek DM, Sapp PC, Silani V, Wills AM et al (2011) Mutational analysis of TARDBP in neurodegenerative diseases. Neurobiol Aging 32(11):2096–2099. doi: 10.1016/j.neurobiolaging.2009.11.018 CrossRefPubMedGoogle Scholar
  13. 13.
    Gendron TF, Rademakers R, Petrucelli L (2013) TARDBP mutation analysis in TDP-43 proteinopathies and deciphering the toxicity of mutant TDP-43. J Alzheimers Dis 33(Suppl 1):S35–45. doi: 10.3233/JAD-2012-129036 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Lauranzano E, Pozzi S, Pasetto L, Stucchi R, Massignan T, Paolella K, Mombrini M, Nardo G et al (2015) Peptidylprolyl isomerase A governs TARDBP function and assembly in heterogeneous nuclear ribonucleoprotein complexes. Brain 138(Pt 4):974–991. doi: 10.1093/brain/awv005 CrossRefPubMedGoogle Scholar
  15. 15.
    Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442(7105):916–919. doi: 10.1038/nature05016 CrossRefPubMedGoogle Scholar
  16. 16.
    Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36(4):377–381. doi: 10.1038/ng1332 CrossRefPubMedGoogle Scholar
  17. 17.
    McGurk L, Lee VM, Trojanowksi JQ, Van Deerlin VM, Lee EB, Bonini NM (2014) Poly-A binding protein-1 localization to a subset of TDP-43 inclusions in amyotrophic lateral sclerosis occurs more frequently in patients harboring an expansion in C9orf72. J Neuropathol Exp Neurol 73(9):837–845. doi: 10.1097/NEN.0000000000000102 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Devlin AC, Burr K, Borooah S, Foster JD, Cleary EM, Geti I, Vallier L, Shaw CE et al (2015) Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability. Nat Commun 6:5999. doi: 10.1038/ncomms6999 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Buratti E, Brindisi A, Pagani F, Baralle FE (2004) Nuclear factor TDP-43 binds to the polymorphic TG repeats in CFTR intron 8 and causes skipping of exon 9: a functional link with disease penetrance. Am J Hum Genet 74(6):1322–1325. doi: 10.1086/420978 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang YJ, Caulfield T, Xu YF, Gendron TF, Hubbard J, Stetler C, Sasaguri H, Whitelaw EC et al (2013) The dual functions of the extreme N-terminus of TDP-43 in regulating its biological activity and inclusion formation. Hum Mol Genet 22(15):3112–3122. doi: 10.1093/hmg/ddt166 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kuo PH, Chiang CH, Wang YT, Doudeva LG, Yuan HS (2014) The crystal structure of TDP-43 RRM1-DNA complex reveals the specific recognition for UG- and TG-rich nucleic acids. Nucleic Acids Res 42(7):4712–4722. doi: 10.1093/nar/gkt1407 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pesiridis GS, Lee VM, Trojanowski JQ (2009) Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis. Hum Mol Genet 18(R2):R156–162. doi: 10.1093/hmg/ddp303 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    D’Ambrogio A, Buratti E, Stuani C, Guarnaccia C, Romano M, Ayala YM, Baralle FE (2009) Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Res 37(12):4116–4126. doi: 10.1093/nar/gkp342 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Romano M, Buratti E, Romano G, Klima R, Del Bel Belluz L, Stuani C, Baralle F, Feiguin F (2014) Evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins functionally interact with human and Drosophila TAR DNA-binding protein 43 (TDP-43). J Biol Chem 289(10):7121–7130. doi: 10.1074/jbc.M114.548859 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Huang CC, Bose JK, Majumder P, Lee KH, Huang JT, Huang JK, Shen CK (2014) Metabolism and mis-metabolism of the neuropathological signature protein TDP-43. J Cell Sci 127(Pt 14):3024–3038. doi: 10.1242/jcs.136150 CrossRefPubMedGoogle Scholar
  26. 26.
    Igaz LM, Kwong LK, Chen-Plotkin A, Winton MJ, Unger TL, Xu Y, Neumann M, Trojanowski JQ et al (2009) Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J Biol Chem 284(13):8516–8524. doi: 10.1074/jbc.M809462200 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xu YF, Gendron TF, Zhang YJ, Lin WL, D’Alton S, Sheng H, Casey MC, Tong J et al (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30(32):10851–10859. doi: 10.1523/JNEUROSCI.1630-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wegorzewska I, Bell S, Cairns NJ, Miller TM, Baloh RH (2009) TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 106(44):18809–18814. doi: 10.1073/pnas.0908767106 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vanden Broeck L, Callaerts P, Dermaut B (2014) TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? Trends Mol Med 20(2):66–71. doi: 10.1016/j.molmed.2013.11.003 CrossRefPubMedGoogle Scholar
  30. 30.
    Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, Graff-Radford NR, Hutton ML et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61(5):435–445. doi: 10.1002/ana.21154 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Uryu K, Nakashima-Yasuda H, Forman MS, Kwong LK, Clark CM, Grossman M, Miller BL, Kretzschmar HA et al (2008) Concomitant TAR-DNA-Binding Protein 43 pathology is present in Alzheimer disease and corticobasal degeneration but not in other tauopathies. J Neuropathol Exp Neurol 67(6):555–564. doi: 10.1097/NEN.0b013e31817713b5 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Polymenidou M, Cleveland DW (2011) The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147(3):498–508. doi: 10.1016/j.cell.2011.10.011 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Arai T (2014) Significance and limitation of the pathological classification of TDP-43 proteinopathy. Neuropathology 34(6):578–588. doi: 10.1111/neup.12138 CrossRefPubMedGoogle Scholar
  34. 34.
    Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E, Perry RH, Trojanowski JQ et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122(1):111–113. doi: 10.1007/s00401-011-0845-8 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Josephs KA, Murray ME, Whitwell JL, Parisi JE, Petrucelli L, Jack CR, Petersen RC, Dickson DW (2014) Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathol 127(3):441–450. doi: 10.1007/s00401-013-1211-9 CrossRefPubMedGoogle Scholar
  36. 36.
    Tremblay C, St-Amour I, Schneider J, Bennett DA, Calon F (2011) Accumulation of transactive response DNA binding protein 43 in mild cognitive impairment and Alzheimer disease. J Neuropathol Exp Neurol 70(9):788–798. doi: 10.1097/NEN.0b013e31822c62cf CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rauramaa T, Pikkarainen M, Englund E, Ince PG, Jellinger K, Paetau A, Alafuzoff I (2011) TAR-DNA binding protein-43 and alterations in the hippocampus. J Neural Transm 118(5):683–689. doi: 10.1007/s00702-010-0574-5 CrossRefPubMedGoogle Scholar
  38. 38.
    Josephs KA, Whitwell JL, Weigand SD, Murray ME, Tosakulwong N, Liesinger AM, Petrucelli L, Senjem ML et al (2014) TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol 127(6):811–824. doi: 10.1007/s00401-014-1269-z CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Josephs KA, Whitwell JL, Knopman DS, Hu WT, Stroh DA, Baker M, Rademakers R, Boeve BF et al (2008) Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 70(19 Pt 2):1850–1857. doi: 10.1212/01.wnl.0000304041.09418.b1 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jung Y, Dickson DW, Murray ME, Whitwell JL, Knopman DS, Boeve BF, Jack CR, Parisi JE et al (2014) TDP-43 in Alzheimer’s disease is not associated with clinical FTLD or Parkinsonism. J Neurol 261(7):1344–1348. doi: 10.1007/s00415-014-7352-5 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Vatsavayi AV, Kofler J, Demichele-Sweet MA, Murray PS, Lopez OL, Sweet RA (2014) TAR DNA-binding protein 43 pathology in Alzheimer’s disease with psychosis. Int Psychogeriatr 26(6):987–994. doi: 10.1017/S1041610214000246 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Wurtman R (2015) Biomarkers in the diagnosis and management of Alzheimer’s disease. Metab Clin Exp 64(3 Suppl 1):S47–50. doi: 10.1016/j.metabol.2014.10.034 CrossRefPubMedGoogle Scholar
  43. 43.
    Foulds P, McAuley E, Gibbons L, Davidson Y, Pickering-Brown SM, Neary D, Snowden JS, Allsop D et al (2008) TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol 116(2):141–146. doi: 10.1007/s00401-008-0389-8 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Foulds PG, Davidson Y, Mishra M, Hobson DJ, Humphreys KM, Taylor M, Johnson N, Weintraub S et al (2009) Plasma phosphorylated-TDP-43 protein levels correlate with brain pathology in frontotemporal lobar degeneration. Acta Neuropathol 118(5):647–658. doi: 10.1007/s00401-009-0594-0 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Feneberg E, Steinacker P, Lehnert S, Schneider A, Walther P, Thal DR, Linsenmeier M, Ludolph AC et al (2014) Limited role of free TDP-43 as a diagnostic tool in neurodegenerative diseases. Amyotroph Lateral Scler Frontotemporal Degener 15(5–6):351–356. doi: 10.3109/21678421.2014.905606 CrossRefPubMedGoogle Scholar
  46. 46.
    Hu WT, Chen-Plotkin A, Grossman M, Arnold SE, Clark CM, Shaw LM, McCluskey L, Elman L et al (2010) Novel CSF biomarkers for frontotemporal lobar degenerations. Neurology 75(23):2079–2086. doi: 10.1212/WNL.0b013e318200d78d CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wang J, Yan K, Wu ZQ, Zheng CY, Xu RX, Chen LH, Wen ZM, Zhao HQ et al (2014) TDP-43 interaction with the intracellular domain of amyloid precursor protein induces p53-associated apoptosis. Neurosci Lett 569:131–136. doi: 10.1016/j.neulet.2014.03.075 CrossRefPubMedGoogle Scholar
  48. 48.
    Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI (1994) Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 57(4):419–425CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sanz-Blasco S, Valero RA, Rodriguez-Crespo I, Villalobos C, Nunez L (2008) Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One 3(7), e2718. doi: 10.1371/journal.pone.0002718 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Herman AM, Khandelwal PJ, Stanczyk BB, Rebeck GW, Moussa CE (2011) β-amyloid triggers ALS-associated TDP-43 pathology in AD models. Brain Res 1386:191–199. doi: 10.1016/j.brainres.2011.02.052 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Xu G, Stevens SM Jr, Moore BD, McClung S, Borchelt DR (2013) Cytosolic proteins lose solubility as amyloid deposits in a transgenic mouse model of Alzheimer-type amyloidosis. Hum Mol Genet 22(14):2765–2774. doi: 10.1093/hmg/ddt121 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fang YS, Tsai KJ, Chang YJ, Kao P, Woods R, Kuo PH, Wu CC, Liao JY et al (2014) Full-length TDP-43 forms toxic amyloid oligomers that are present in frontotemporal lobar dementia-TDP patients. Nat Commun 5:4824. doi: 10.1038/ncomms5824 CrossRefPubMedGoogle Scholar
  53. 53.
    De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV (2012) Alzheimer’s disease. Subcell Biochem 65:329–352. doi: 10.1007/978-94-007-5416-4_14 CrossRefPubMedGoogle Scholar
  54. 54.
    Higashi S, Iseki E, Yamamoto R, Minegishi M, Hino H, Fujisawa K, Togo T, Katsuse O et al (2007) Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184:284–294. doi: 10.1016/j.brainres.2007.09.048 CrossRefPubMedGoogle Scholar
  55. 55.
    Robinson AC, Thompson JC, Weedon L, Rollinson S, Pickering-Brown S, Snowden JS, Davidson YS, Mann DM (2014) No interaction between tau and TDP-43 pathologies in either frontotemporal lobar degeneration or motor neurone disease. Neuropathol Appl Neurobiol 40(7):844–854. doi: 10.1111/nan.12155 CrossRefPubMedGoogle Scholar
  56. 56.
    Yarchoan M, Toledo JB, Lee EB, Arvanitakis Z, Kazi H, Han LY, Louneva N, Lee VM et al (2014) Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer’s disease and tauopathies. Acta Neuropathol 128(5):679–689. doi: 10.1007/s00401-014-1328-5 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Liachko NF, McMillan PJ, Strovas TJ, Loomis E, Greenup L, Murrell JR, Ghetti B, Raskind MA et al (2014) The tau tubulin kinases TTBK1/2 promote accumulation of pathological TDP-43. PLoS Genet 10(12), e1004803. doi: 10.1371/journal.pgen.1004803 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Youmans KL, Wolozin B (2012) TDP-43: a new player on the AD field? Exp Neurol 237(1):90–95. doi: 10.1016/j.expneurol.2012.05.018 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Latta CH, Brothers HM, Wilcock DM (2014) Neuroinflammation in Alzheimer’s disease; a source of heterogeneity and target for personalized therapy. Neuroscience. doi: 10.1016/j.neuroscience.2014.09.061 PubMedPubMedCentralGoogle Scholar
  60. 60.
    Kumar-Singh S (2011) Progranulin and TDP-43: mechanistic links and future directions. J Mol Neurosci 45(3):561–573. doi: 10.1007/s12031-011-9625-0 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Martens LH, Zhang J, Barmada SJ, Zhou P, Kamiya S, Sun B, Min SW, Gan L et al (2012) Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Invest 122(11):3955–3959. doi: 10.1172/JCI63113 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Herman AM, Khandelwal PJ, Rebeck GW, Moussa CE (2012) Wild type TDP-43 induces neuro-inflammation and alters APP metabolism in lentiviral gene transfer models. Exp Neurol 235(1):297–305. doi: 10.1016/j.expneurol.2012.02.011 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Murata H, Hattori T, Maeda H, Takashiba S, Takigawa M, Kido J, Nagata T (2014) Identification of transactivation-responsive DNA-binding protein 43 (TARDBP43; TDP-43) as a novel factor for TNF-alpha expression upon lipopolysaccharide stimulation in human monocytes. J Periodontal Res. doi: 10.1111/jre.12227 PubMedGoogle Scholar
  64. 64.
    Brettschneider J, Libon DJ, Toledo JB, Xie SX, McCluskey L, Elman L, Geser F, Lee VM et al (2012) Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol 123(3):395–407. doi: 10.1007/s00401-011-0932-x CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Scheff SW, Neltner JH, Nelson PT (2014) Is synaptic loss a unique hallmark of Alzheimer’s disease? Biochem Pharmacol 88(4):517–528. doi: 10.1016/j.bcp.2013.12.028 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Hazelett DJ, Chang JC, Lakeland DL, Morton DB (2012) Comparison of parallel high-throughput RNA sequencing between knockout of TDP-43 and its overexpression reveals primarily nonreciprocal and nonoverlapping gene expression changes in the central nervous system of Drosophila. G3 (Bethesda) 2(7):789–802. doi: 10.1534/g3.112.002998 CrossRefPubMedCentralGoogle Scholar
  67. 67.
    Medina DX, Orr ME, Oddo S (2014) Accumulation of C-terminal fragments of transactive response DNA-binding protein 43 leads to synaptic loss and cognitive deficits in human TDP-43 transgenic mice. Neurobiol Aging 35(1):79–87. doi: 10.1016/j.neurobiolaging.2013.07.006 CrossRefPubMedGoogle Scholar
  68. 68.
    Narayanan RK, Mangelsdorf M, Panwar A, Butler TJ, Noakes PG, Wallace RH (2013) Identification of RNA bound to the TDP-43 ribonucleoprotein complex in the adult mouse brain. Amyotroph Lateral Scler Frontotemporal Degener 14(4):252–260. doi: 10.3109/21678421.2012.734520 CrossRefPubMedGoogle Scholar
  69. 69.
    Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K (2013) Amyotrophic lateral sclerosis–a model of corticofugal axonal spread. Nat Rev Neurol 9(12):708–714. doi: 10.1038/nrneurol.2013.221 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Gulino R, Forte S, Parenti R, Gulisano M (2015) TDP-43 as a modulator of synaptic plasticity in a mouse model of spinal motoneuron degeneration. CNS Neurol Disord Drug Targets 14(1):55–60CrossRefPubMedGoogle Scholar
  71. 71.
    Godena VK, Romano G, Romano M, Appocher C, Klima R, Buratti E, Baralle FE, Feiguin F (2011) TDP-43 regulates Drosophila neuromuscular junctions growth by modulating Futsch/MAP1B levels and synaptic microtubules organization. PLoS One 6(3), e17808. doi: 10.1371/journal.pone.0017808 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Alami NH, Smith RB, Carrasco MA, Williams LA, Winborn CS, Han SS, Kiskinis E, Winborn B et al (2014) Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81(3):536–543. doi: 10.1016/j.neuron.2013.12.018 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Diaper DC, Adachi Y, Sutcliffe B, Humphrey DM, Elliott CJ, Stepto A, Ludlow ZN, Vanden Broeck L et al (2013) Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes. Hum Mol Genet 22(8):1539–1557. doi: 10.1093/hmg/ddt005 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Colca JR, Feinstein DL (2012) Altering mitochondrial dysfunction as an approach to treating Alzheimer’s disease. Adv Pharmacol 64:155–176. doi: 10.1016/B978-0-12-394816-8.00005-2 CrossRefPubMedGoogle Scholar
  75. 75.
    Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci 120(Pt 5):838–848. doi: 10.1242/jcs.03381 CrossRefPubMedGoogle Scholar
  76. 76.
    Galindo MF, Ikuta I, Zhu X, Casadesus G, Jordan J (2010) Mitochondrial biology in Alzheimer’s disease pathogenesis. J Neurochem 114(4):933–945. doi: 10.1111/j.1471-4159.2010.06814.x PubMedGoogle Scholar
  77. 77.
    Sasaki S, Takeda T, Shibata N, Kobayashi M (2010) Alterations in subcellular localization of TDP-43 immunoreactivity in the anterior horns in sporadic amyotrophic lateral sclerosis. Neurosci Lett 478(2):72–76. doi: 10.1016/j.neulet.2010.04.068 CrossRefPubMedGoogle Scholar
  78. 78.
    Stoica R, De Vos KJ, Paillusson S, Mueller S, Sancho RM, Lau KF, Vizcay-Barrena G, Lin WL et al (2014) ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat Commun 5:3996. doi: 10.1038/ncomms4996 PubMedPubMedCentralGoogle Scholar
  79. 79.
    Yamashita T, Kwak S (2014) The molecular link between inefficient GluA2 Q/R site-RNA editing and TDP-43 pathology in motor neurons of sporadic amyotrophic lateral sclerosis patients. Brain Res 1584:28–38. doi: 10.1016/j.brainres.2013.12.011 CrossRefPubMedGoogle Scholar
  80. 80.
    Braun RJ, Sommer C, Carmona-Gutierrez D, Khoury CM, Ring J, Buttner S, Madeo F (2011) Neurotoxic 43-kDa TAR DNA-binding protein (TDP-43) triggers mitochondrion-dependent programmed cell death in yeast. J Biol Chem 286(22):19958–19972. doi: 10.1074/jbc.M110.194852 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Lu J, Duan W, Guo Y, Jiang H, Li Z, Huang J, Hong K, Li C (2012) Mitochondrial dysfunction in human TDP-43 transfected NSC34 cell lines and the protective effect of dimethoxy curcumin. Brain Res Bull 89(5–6):185–190. doi: 10.1016/j.brainresbull.2012.09.005 CrossRefPubMedGoogle Scholar
  82. 82.
    Stribl C, Samara A, Trumbach D, Peis R, Neumann M, Fuchs H, Gailus-Durner V, Hrabe de Angelis M et al (2014) Mitochondrial dysfunction and decrease in body weight of a transgenic knock-in mouse model for TDP-43. J Biol Chem 289(15):10769–10784. doi: 10.1074/jbc.M113.515940 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Caccamo A, Magri A, Oddo S (2010) Age-dependent changes in TDP-43 levels in a mouse model of Alzheimer disease are linked to Abeta oligomers accumulation. Mol Neurodegener 5:51. doi: 10.1186/1750-1326-5-51 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Caragounis A, Price KA, Soon CP, Filiz G, Masters CL, Li QX, Crouch PJ, White AR (2010) Zinc induces depletion and aggregation of endogenous TDP-43. Free Radic Biol Med 48(9):1152–1161. doi: 10.1016/j.freeradbiomed.2010.01.035 CrossRefPubMedGoogle Scholar
  85. 85.
    Sheng B, Gong K, Niu Y, Liu L, Yan Y, Lu G, Zhang L, Hu M et al (2009) Inhibition of gamma-secretase activity reduces Abeta production, reduces oxidative stress, increases mitochondrial activity and leads to reduced vulnerability to apoptosis: implications for the treatment of Alzheimer’s disease. Free Radic Biol Med 46(10):1362–1375. doi: 10.1016/j.freeradbiomed.2009.02.018 CrossRefPubMedGoogle Scholar
  86. 86.
    Wang W, Li L, Lin WL, Dickson DW, Petrucelli L, Zhang T, Wang X (2013) The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Hum Mol Genet 22(23):4706–4719. doi: 10.1093/hmg/ddt319 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Tadic V, Prell T, Lautenschlaeger J, Grosskreutz J (2014) The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. Front Cell Neurosci 8:147. doi: 10.3389/fncel.2014.00147 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Vaccaro A, Patten SA, Ciura S, Maios C, Therrien M, Drapeau P, Kabashi E, Parker JA (2012) Methylene blue protects against TDP-43 and FUS neuronal toxicity in C. elegans and D. rerio. PLoS One 7(7), e42117. doi: 10.1371/journal.pone.0042117 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Vaccaro A, Patten SA, Aggad D, Julien C, Maios C, Kabashi E, Drapeau P, Parker JA (2013) Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiol Dis 55:64–75. doi: 10.1016/j.nbd.2013.03.015 CrossRefPubMedGoogle Scholar
  90. 90.
    Armstrong GA, Drapeau P (2013) Calcium channel agonists protect against neuromuscular dysfunction in a genetic model of TDP-43 mutation in ALS. J Neurosci 33(4):1741–1752. doi: 10.1523/JNEUROSCI.4003-12.2013 CrossRefPubMedGoogle Scholar
  91. 91.
    Joardar A, Menzl J, Podolsky TC, Manzo E, Estes PS, Ashford S, Zarnescu DC (2014) PPAR gamma activation is neuroprotective in a Drosophila model of ALS based on TDP-43. Hum Mol Genet. doi: 10.1093/hmg/ddu587 PubMedPubMedCentralGoogle Scholar
  92. 92.
    Wang IF, Tsai KJ, Shen CK (2013) Autophagy activation ameliorates neuronal pathogenesis of FTLD-U mice: a new light for treatment of TARDBP/TDP-43 proteinopathies. Autophagy 9(2):239–240. doi: 10.4161/auto.22526 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Neurology, Qingdao Municipal HospitalDalian Medical UniversityQingdaoChina
  2. 2.Department of Neurology, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoChina
  3. 3.Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations