Molecular Neurobiology

, Volume 53, Issue 5, pp 3462–3476 | Cite as

Hydrogen-Rich Saline Attenuated Subarachnoid Hemorrhage-Induced Early Brain Injury in Rats by Suppressing Inflammatory Response: Possible Involvement of NF-κB Pathway and NLRP3 Inflammasome

  • Anwen Shao
  • Haijian Wu
  • Yuan Hong
  • Sheng Tu
  • Xuejun Sun
  • Qun Wu
  • Qiong ZhaoEmail author
  • Jianmin ZhangEmail author
  • Jifang Sheng


Early brain injury (EBI), highlighted with inflammation and apoptosis, occurring within 72 h after subarachnoid hemorrhage (SAH), is associated with the prognosis of SAH. Recent studies have revealed that hydrogen-rich saline (HS) exerted multiple neuroprotective properties in many neurological diseases including SAH, involved to anti-oxidative and anti-apoptotic effect. We have previously reported that HS could attenuate neuronal apoptosis as well as vasospasm. However, the underlying mechanism of HS on inflammation in SAH-induced EBI remains unclear. In this study, we explored the influence of HS on nuclear factor-κB (NF-κB) pathway and nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome at early stage after SAH, by injecting HS intraperitoneally to SAH rats. One hundred and twenty-nine SD rats were randomly divided into four groups: sham group, SAH group, SAH+vehicle group, and SAH+HS group. SAH model was conducted using endovascular perforation method; all rats were sacrificed at 24 h after SAH. Protein level of pIκBα, cytosolic and nuclear p65, NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, interleukin-1β (IL-1β), and cleaved caspase-3 were measured by western blot. mRNA level of IL-1β, interleukin-6 (IL-6), tumor necrosis factor-c (TNF-α) were evaluated by RT-PCR. Cellular injury and death was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Nissl staining, respectively. Our results showed that pIκBα, nuclear p65, NLRP3, ASC, caspase-1, IL-1β, cleaved caspase-3 proteins, as well as the mRNA of IL-1β, IL-6, and TNF-ɑ increased at 24 h after SAH, while cytosolic p65 decreased. TUNEL and Nissl staining presented severe cellular injury at 24 h post-SAH. However, after HS administration, the changes mentioned above were reversed. In conclusion, HS may inhibit inflammation in EBI and improve neurobehavioral outcome after SAH, partially via inactivation of NF-κB pathway and NLRP3 inflammasome.

Graphical Abstract

Schematic representation of the mechanism of HS-mediated anti-inflammatory effect in EBI after SAH. The NF-κB inflammatory pathway and NLRP3 inflammasome are involved in the anti-neuroinflammatory effect of HS post-SAH. SAH-induced oxidative stress enhances the activation of NF-κB, thus promoting the translocation of p65 subunit into nucleus and increasing the mRNA level of its downstream proinflammatory cytokines (IL-1β, IN-6, TNF-α) and NLRP3. Elevated expression of NLRP3 mRNA increases the assembly of NLRP3 inflammasome. In addition, oxidative stress after SAH stimulates the activation of NLRP3 inflammasome, therefore, promoting caspase-1 activation and the cleavage of pro-IL-1β into mature IL-1β. Finally, activation of NF-κB pathway and NLRP3 inflammasome contribute to the inflammation response and cellular injury in EBI after SAH. HS treatment reversed the detrimental effect mentioned above via inactivation of NF-κB pathway and NLRP3 inflammasome. NF-κB nuclear factor-κB, IκB inhibitor of NF-κB, IKK Iκ kinase, NLRP3 nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3, ASC apoptosis-associated speck-like protein containing a caspase recruitment domain


Hydrogen Subarachnoid hemorrhage Early brain injury Inflammation Nuclear factor κB NLRP3 inflammasome 



Subarachnoid hemorrhage


Early brain injury


Reactive oxygen species


Hydrogen-rich saline


Nuclear factor-κB


Inhibitor of NF-κB


Iκ kinase


Nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3


Apoptosis-associated speck-like protein containing a caspase recruitment domain




Terminal deoxynucleotidyl transferase dUTP nick end labeling


Delayed ischemic neurological deficit



This study was supported by Zhenni Guo from the First Norman Bethune Hospital of Jilin University and Lusha Tong from the Second Affiliated Hospital, School of Medicine, Zhejiang University. This work was supported by grant 81171096, 81371369, and 81371433 from the National Natural Science Foundation of China. This study was also supported by Grant 2011KYA49 from Health department of Zhejiang province (Zhao Qiong).

Compliance with Ethical Standards

All experimental protocols involving animals (including all surgical procedure) were approved by the Institutional Animal Care and Use Committee (IACUC) of Zhejiang University. All rat experimental procedures were performed in accordance with the Regulations for the Administration of Affairs Concerning Experimental Animals approved by the State Council of People’s Republic of China.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.


  1. 1.
    Bian LH, Liu YF, Nichols LT, Wang CX, Wang YL, Liu GF, Wang WJ, Zhao XQ (2012) Epidemiology of subarachnoid hemorrhage, patterns of management, and outcomes in China: a hospital-based multicenter prospective study. CNS Neurosci Ther 18(11):895–902. doi: 10.1111/cns.12001 CrossRefPubMedGoogle Scholar
  2. 2.
    van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. Lancet 369(9558):306–318. doi: 10.1016/S0140-6736(07)60153-6 CrossRefPubMedGoogle Scholar
  3. 3.
    Venti M (2012) Subarachnoid and intraventricular hemorrhage. Front Neurol Neurosci 30:149–153. doi: 10.1159/000333625 CrossRefPubMedGoogle Scholar
  4. 4.
    Zoerle T, Ilodigwe DC, Wan H, Lakovic K, Sabri M, Ai J, Macdonald RL (2012) Pharmacologic reduction of angiographic vasospasm in experimental subarachnoid hemorrhage: systematic review and meta-analysis. J Cereb Blood Flow Metab 32(9):1645–1658. doi: 10.1038/jcbfm.2012.57 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Crowley RW, Medel R, Dumont AS, Ilodigwe D, Kassell NF, Mayer SA, Ruefenacht D, Schmiedek P et al (2011) Angiographic vasospasm is strongly correlated with cerebral infarction after subarachnoid hemorrhage. Stroke 42(4):919–923. doi: 10.1161/STROKEAHA.110.597005 CrossRefPubMedGoogle Scholar
  6. 6.
    Macdonald RL, Pluta RM, Zhang JH (2007) Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol 3(5):256–263. doi: 10.1038/ncpneuro0490 CrossRefPubMedGoogle Scholar
  7. 7.
    Baldwin ME, Macdonald RL, Huo D, Novakovic RL, Goldenberg FD, Frank JI, Rosengart AJ (2004) Early vasospasm on admission angiography in patients with aneurysmal subarachnoid hemorrhage is a predictor for in-hospital complications and poor outcome. Stroke 35(11):2506–2511. doi: 10.1161/ CrossRefPubMedGoogle Scholar
  8. 8.
    Crowley RW, Medel R, Kassell NF, Dumont AS (2008) New insights into the causes and therapy of cerebral vasospasm following subarachnoid hemorrhage. Drug Discov Today 13(5–6):254–260. doi: 10.1016/j.drudis.2007.11.010 CrossRefPubMedGoogle Scholar
  9. 9.
    Sen J, Belli A, Albon H, Morgan L, Petzold A, Kitchen N (2003) Triple-H therapy in the management of aneurysmal subarachnoid haemorrhage. Lancet Neurol 2(10):614–621CrossRefPubMedGoogle Scholar
  10. 10.
    Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I et al (2011) Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol 10(7):618–625. doi: 10.1016/S1474-4422(11)70108-9 CrossRefPubMedGoogle Scholar
  11. 11.
    Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I et al (2012) Randomized trial of clazosentan in patients with aneurysmal subarachnoid hemorrhage undergoing endovascular coiling. Stroke 43(6):1463–1469. doi: 10.1161/STROKEAHA.111.648980 CrossRefPubMedGoogle Scholar
  12. 12.
    Shen J, Pan JW, Fan ZX, Xiong XX, Zhan RY (2013) Dissociation of vasospasm-related morbidity and outcomes in patients with aneurysmal subarachnoid hemorrhage treated with clazosentan: a meta-analysis of randomized controlled trials. J Neurosurg 119(1):180–189. doi: 10.3171/2013.3.JNS121436 CrossRefPubMedGoogle Scholar
  13. 13.
    Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH (2013) Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res 4(4):432–446. doi: 10.1007/s12975-013-0257-2 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Caner B, Hou J, Altay O, Fujii M, Zhang JH (2012) Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J Neurochem 123(Suppl 2):12–21. doi: 10.1111/j.1471-4159.2012.07939.x CrossRefPubMedGoogle Scholar
  15. 15.
    Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97(1):14–37. doi: 10.1016/j.pneurobio.2012.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sehba FA, Pluta RM, Zhang JH (2011) Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol 43(1):27–40. doi: 10.1007/s12035-010-8155-z CrossRefPubMedGoogle Scholar
  17. 17.
    Ducruet AF, Gigante PR, Hickman ZL, Zacharia BE, Arias EJ, Grobelny BT, Gorski JW, Mayer SA et al (2010) Genetic determinants of cerebral vasospasm, delayed cerebral ischemia, and outcome after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 30(4):676–688. doi: 10.1038/jcbfm.2009.278 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ayer RE, Zhang JH (2008) Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. Acta Neurochir Suppl 104:33–41CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang XS, Zhang X, Zhou ML, Zhou XM, Li N, Li W, Cong ZX, Sun Q et al (2014) Amelioration of oxidative stress and protection against early brain injury by astaxanthin after experimental subarachnoid hemorrhage. J Neurosurg 121(1):42–54. doi: 10.3171/2014.2.JNS13730 CrossRefPubMedGoogle Scholar
  20. 20.
    Kuo CP, Wen LL, Chen CM, Huh B, Cherng CH, Wong CS, Liaw WJ, Yeh CC et al (2013) Attenuation of neurological injury with early baicalein treatment following subarachnoid hemorrhage in rats. J Neurosurg 119(4):1028–1037. doi: 10.3171/2013.4.JNS121919 CrossRefPubMedGoogle Scholar
  21. 21.
    Wang Z, Ma C, Meng CJ, Zhu GQ, Sun XB, Huo L, Zhang J, Liu HX et al (2012) Melatonin activates the Nrf2-ARE pathway when it protects against early brain injury in a subarachnoid hemorrhage model. J Pineal Res 53(2):129–137. doi: 10.1111/j.1600-079X.2012.00978.x CrossRefPubMedGoogle Scholar
  22. 22.
    Sun X, Ji C, Hu T, Wang Z, Chen G (2013) Tamoxifen as an effective neuroprotectant against early brain injury and learning deficits induced by subarachnoid hemorrhage: possible involvement of inflammatory signaling. J Neuroinflammation 10:157. doi: 10.1186/1742-2094-10-157 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen S, Ma Q, Krafft PR, Hu Q, Rolland W 2nd, Sherchan P, Zhang J, Tang J et al (2013) P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiol Dis 58:296–307. doi: 10.1016/j.nbd.2013.06.011 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhou N, Xu T, Bai Y, Prativa S, Xu JZ, Li K, Han HB, Yan JH (2013) Protective effects of urinary trypsin inhibitor on vascular permeability following subarachnoid hemorrhage in a rat model. CNS Neurosci Ther 19(9):659–666. doi: 10.1111/cns.12122 CrossRefPubMedGoogle Scholar
  25. 25.
    Echigo R, Shimohata N, Karatsu K, Yano F, Kayasuga-Kariya Y, Fujisawa A, Ohto T, Kita Y et al (2012) Trehalose treatment suppresses inflammation, oxidative stress, and vasospasm induced by experimental subarachnoid hemorrhage. J Transl Med 10:80. doi: 10.1186/1479-5876-10-80 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wang Z, Zuo G, Shi XY, Zhang J, Fang Q, Chen G (2011) Progesterone administration modulates cortical TLR4/NF-kappaB signaling pathway after subarachnoid hemorrhage in male rats. Mediat Inflamm 2011:848309. doi: 10.1155/2011/848309 CrossRefGoogle Scholar
  27. 27.
    Suzuki H, Ayer R, Sugawara T, Chen W, Sozen T, Hasegawa Y, Kanamaru K, Zhang JH (2010) Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med 38(2):612–618. doi: 10.1097/CCM.0b013e3181c027ae CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J (2014) NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol 75(2):209–219. doi: 10.1002/ana.24070 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y, Shi W, Li F et al (2014) NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 34(4):660–667. doi: 10.1038/jcbfm.2013.242 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liu HD, Li W, Chen ZR, Hu YC, Zhang DD, Shen W, Zhou ML, Zhu L et al (2013) Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem Res 38(10):2072–2083. doi: 10.1007/s11064-013-1115-z CrossRefPubMedGoogle Scholar
  31. 31.
    Tarassishin L, Casper D, Lee SC (2014) Aberrant expression of interleukin-1beta and inflammasome activation in human malignant gliomas. PLoS One 9(7), e103432. doi: 10.1371/journal.pone.0103432 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Alcocer-Gomez E, de Miguel M, Casas-Barquero N, Nunez-Vasco J, Sanchez-Alcazar JA, Fernandez-Rodriguez A, Cordero MD (2014) NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav Immun 36:111–117. doi: 10.1016/j.bbi.2013.10.017 CrossRefPubMedGoogle Scholar
  33. 33.
    Bigford GE, Bracchi-Ricard VC, Keane RW, Nash MS, Bethea JR (2013) Neuroendocrine and cardiac metabolic dysfunction and NLRP3 inflammasome activation in adipose tissue and pancreas following chronic spinal cord injury in the mouse. ASN Neuro 5(4):243–255. doi: 10.1042/AN20130021 CrossRefPubMedGoogle Scholar
  34. 34.
    Tan MS, Yu JT, Jiang T, Zhu XC, Tan L (2013) The NLRP3 inflammasome in Alzheimer’s disease. Mol Neurobiol 48(3):875–882. doi: 10.1007/s12035-013-8475-x CrossRefPubMedGoogle Scholar
  35. 35.
    Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C, Pfister HW, Fontana A et al (2011) The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. J Immunol 187(10):5440–5451. doi: 10.4049/jimmunol.1100790 CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang X, Zhang JH, Chen XY, Hu QH, Wang MX, Jin R, Zhang QY, Wang W et al (2015) ROS-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxid Redox Signal. doi: 10.1089/ars.2014.5868 Google Scholar
  37. 37.
    Sercombe R, Dinh YR, Gomis P (2002) Cerebrovascular inflammation following subarachnoid hemorrhage. Jpn J Pharmacol 88(3):227–249CrossRefPubMedGoogle Scholar
  38. 38.
    Zhuang Z, Zhou ML, You WC, Zhu L, Ma CY, Sun XJ, Shi JX (2012) Hydrogen-rich saline alleviates early brain injury via reducing oxidative stress and brain edema following experimental subarachnoid hemorrhage in rabbits. BMC Neurosci 13:47. doi: 10.1186/1471-2202-13-47 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhuang Z, Sun XJ, Zhang X, Liu HD, You WC, Ma CY, Zhu L, Zhou ML et al (2013) Nuclear factor-kappaB/Bcl-XL pathway is involved in the protective effect of hydrogen-rich saline on the brain following experimental subarachnoid hemorrhage in rabbits. J Neurosci Res 91(12):1599–1608. doi: 10.1002/jnr.23281 CrossRefPubMedGoogle Scholar
  40. 40.
    Zhan Y, Chen C, Suzuki H, Hu Q, Zhi X, Zhang JH (2012) Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats. Crit Care Med 40(4):1291–1296. doi: 10.1097/CCM.0b013e31823da96d CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sugawara T, Ayer R, Jadhav V, Zhang JH (2008) A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 167(2):327–334. doi: 10.1016/j.jneumeth.2007.08.004 CrossRefPubMedGoogle Scholar
  42. 42.
    Sun Q, Cai J, Zhou J, Tao H, Zhang JH, Zhang W, Sun XJ (2011) Hydrogen-rich saline reduces delayed neurologic sequelae in experimental carbon monoxide toxicity. Crit Care Med 39(4):765–769. doi: 10.1097/CCM.0b013e318206bf44 CrossRefPubMedGoogle Scholar
  43. 43.
    Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y et al (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13(6):688–694. doi: 10.1038/nm1577 CrossRefPubMedGoogle Scholar
  44. 44.
    Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26(4):627–634, discussion 635 CrossRefPubMedGoogle Scholar
  45. 45.
    Shao A, Guo S, Tu S, Ammar AB, Tang J, Hong Y, Wu H, Zhang J (2014) Astragaloside IV alleviates early brain injury following experimental subarachnoid hemorrhage in rats. Int J Med Sci 11(10):1073–1081. doi: 10.7150/ijms.9282 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Shao A, Wang Z, Wu H, Dong X, Li Y, Tu S, Tang J, Zhao M et al (2014) Enhancement of autophagy by histone deacetylase inhibitor trichostatin a ameliorates neuronal apoptosis after subarachnoid hemorrhage in rats. Mol Neurobiol. doi: 10.1007/s12035-014-8986-0 Google Scholar
  47. 47.
    Lee JY, Sagher O, Keep R, Hua Y, Xi G (2009) Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery 65(2):331–343. doi: 10.1227/01.NEU.0000345649.78556.26, discussion 343 CrossRefPubMedGoogle Scholar
  48. 48.
    Kellogg EW 3rd, Fridovich I (1977) Liposome oxidation and erythrocyte lysis by enzymically generated superoxide and hydrogen peroxide. J Biol Chem 252(19):6721–6728PubMedGoogle Scholar
  49. 49.
    Misra HP, Fridovich I (1972) The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem 247(21):6960–6962PubMedGoogle Scholar
  50. 50.
    Skowronska M, Albrecht J (2013) Oxidative and nitrosative stress in ammonia neurotoxicity. Neurochem Int 62(5):731–737. doi: 10.1016/j.neuint.2012.10.013 CrossRefPubMedGoogle Scholar
  51. 51.
    Sorce S, Krause KH (2009) NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal 11(10):2481–2504. doi: 10.1089/ARS.2009.2578 CrossRefPubMedGoogle Scholar
  52. 52.
    Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58(1):39–46CrossRefPubMedGoogle Scholar
  53. 53.
    Zhang J, Wu Q, Song S, Wan Y, Zhang R, Tai M, Liu C (2014) Effect of hydrogen-rich water on acute peritonitis of rat models. Int Immunopharmacol 21(1):94–101. doi: 10.1016/j.intimp.2014.04.011 CrossRefPubMedGoogle Scholar
  54. 54.
    Yoritaka A, Takanashi M, Hirayama M, Nakahara T, Ohta S, Hattori N (2013) Pilot study of H(2) therapy in Parkinson’s disease: a randomized double-blind placebo-controlled trial. Mov Disord 28(6):836–839. doi: 10.1002/mds.25375 CrossRefPubMedGoogle Scholar
  55. 55.
    Finch CF, Zimmet PZ, Alberti KG (1990) Determining diabetes prevalence: a rational basis for the use of fasting plasma glucose concentrations? Diabet Med 7(7):603–610CrossRefPubMedGoogle Scholar
  56. 56.
    Manaenko A, Lekic T, Ma Q, Zhang JH, Tang J (2013) Hydrogen inhalation ameliorated mast cell-mediated brain injury after intracerebral hemorrhage in mice. Crit Care Med 41(5):1266–1275. doi: 10.1097/CCM.0b013e31827711c9 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Cai J, Kang Z, Liu WW, Luo X, Qiang S, Zhang JH, Ohta S, Sun X et al (2008) Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model. Neurosci Lett 441(2):167–172. doi: 10.1016/j.neulet.2008.05.077 CrossRefPubMedGoogle Scholar
  58. 58.
    Ji X, Liu W, Xie K, Liu W, Qu Y, Chao X, Chen T, Zhou J et al (2010) Beneficial effects of hydrogen gas in a rat model of traumatic brain injury via reducing oxidative stress. Brain Res 1354:196–205. doi: 10.1016/j.brainres.2010.07.038 CrossRefPubMedGoogle Scholar
  59. 59.
    Liu FT, Xu SM, Xiang ZH, Li XN, Li J, Yuan HB, Sun XJ (2014) Molecular hydrogen suppresses reactive astrogliosis related to oxidative injury during spinal cord injury in rats. CNS Neurosci Ther 20(8):778–786. doi: 10.1111/cns.12258 CrossRefPubMedGoogle Scholar
  60. 60.
    Liu H, Liang X, Wang D, Zhang H, Liu L, Chen H, Li Y, Duan Q et al (2015) Combination therapy with nitric oxide and molecular hydrogen in a murine model of acute lung injury. Shock. doi: 10.1097/SHK.0000000000000316 Google Scholar
  61. 61.
    Wang X, Yu P, YongYang LX, Jiang J, Liu D, Xue G (2015) Hydrogen-rich saline resuscitation alleviates inflammation induced by severe burn with delayed resuscitation. Burns 41(2):379–385. doi: 10.1016/j.burns.2014.07.012 CrossRefPubMedGoogle Scholar
  62. 62.
    Ren JD, Ma J, Hou J, Xiao WJ, Jin WH, Wu J, Fan KH (2014) Hydrogen-rich saline inhibits NLRP3 inflammasome activation and attenuates experimental acute pancreatitis in mice. Mediat Inflamm 2014:930894. doi: 10.1155/2014/930894 Google Scholar
  63. 63.
    You WC, Li W, Zhuang Z, Tang Y, Lu HC, Ji XJ, Shen W, Shi JX et al (2012) Biphasic activation of nuclear factor-kappa B in experimental models of subarachnoid hemorrhage in vivo and in vitro. Mediat Inflamm 2012:786242. doi: 10.1155/2012/786242 CrossRefGoogle Scholar
  64. 64.
    You WC, Wang CX, Pan YX, Zhang X, Zhou XM, Zhang XS, Shi JX, Zhou ML (2013) Activation of nuclear factor-kappaB in the brain after experimental subarachnoid hemorrhage and its potential role in delayed brain injury. PLoS One 8(3), e60290. doi: 10.1371/journal.pone.0060290 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhou ML, Shi JX, Hang CH, Cheng HL, Qi XP, Mao L, Chen KF, Yin HX (2007) Potential contribution of nuclear factor-kappaB to cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. J Cereb Blood Flow Metab 27(9):1583–1592. doi: 10.1038/sj.jcbfm.9600456 CrossRefPubMedGoogle Scholar
  66. 66.
    Li W, Ling HP, You WC, Liu HD, Sun Q, Zhou ML, Shen W, Zhao JB et al (2014) Elevated cerebral cortical CD24 levels in patients and mice with traumatic brain injury: a potential negative role in nuclear factor kappaB/inflammatory factor pathway. Mol Neurobiol 49(1):187–198. doi: 10.1007/s12035-013-8509-4 CrossRefPubMedGoogle Scholar
  67. 67.
    Dong H, Zhang W, Zeng X, Hu G, Zhang H, He S, Zhang S (2014) Histamine induces upregulated expression of histamine receptors and increases release of inflammatory mediators from microglia. Mol Neurobiol 49(3):1487–1500. doi: 10.1007/s12035-014-8697-6 CrossRefPubMedGoogle Scholar
  68. 68.
    Zhang S, Zis O, Ly PT, Wu Y, Zhang S, Zhang M, Cai F, Bucala R et al (2014) Down-regulation of MIF by NFkappaB under hypoxia accelerated neuronal loss during stroke. FASEB J 28(10):4394–4407. doi: 10.1096/fj.14-253625 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Dantas RO, Godoy RA, Oliveira RB, Villanova MG, Meneghelli UG, Troncon LE (1986) Effect of nifedipine on the lower esophageal sphincter pressure in chagasic patients. Braz J Med Biol Res 19(2):205–209PubMedGoogle Scholar
  70. 70.
    Shao AW, Wu HJ, Chen S, Ammar AB, Zhang JM, Hong Y (2014) Resveratrol attenuates early brain injury after subarachnoid hemorrhage through inhibition of NF-kappaB-dependent inflammatory/MMP-9 pathway. CNS Neurosci Ther 20(2):182–185. doi: 10.1111/cns.12194 CrossRefPubMedGoogle Scholar
  71. 71.
    Fassbender K, Hodapp B, Rossol S, Bertsch T, Schmeck J, Schutt S, Fritzinger M, Horn P et al (2001) Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry 70(4):534–537CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Larysz-Brysz M, Lewin-Kowalik J, Czuba Z, Kotulska K, Olakowska E, Marcol W, Liskiewicz A, Jedrzejowska-Szypulka H (2012) Interleukin-1beta increases release of endothelin-1 and tumor necrosis factor as well as reactive oxygen species by peripheral leukocytes during experimental subarachnoid hemorrhage. Curr Neurovasc Res 9(3):159–166CrossRefPubMedGoogle Scholar
  73. 73.
    Pradilla G, Chaichana KL, Hoang S, Huang J, Tamargo RJ (2010) Inflammation and cerebral vasospasm after subarachnoid hemorrhage. Neurosurg Clin N Am 21(2):365–379. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  74. 74.
    Uekawa K, Hasegawa Y, Ma M, Nakagawa T, Katayama T, Sueta D, Toyama K, Kataoka K et al (2014) Rosuvastatin ameliorates early brain injury after subarachnoid hemorrhage via suppression of superoxide formation and nuclear factor-kappa B activation in rats. J Stroke Cerebrovasc Dis 23(6):1429–1439. doi: 10.1016/j.jstrokecerebrovasdis.2013.12.004 CrossRefPubMedGoogle Scholar
  75. 75.
    Wang Z, Wu L, You W, Ji C, Chen G (2013) Melatonin alleviates secondary brain damage and neurobehavioral dysfunction after experimental subarachnoid hemorrhage: possible involvement of TLR4-mediated inflammatory pathway. J Pineal Res 55(4):399–408. doi: 10.1111/jpi.12087 PubMedGoogle Scholar
  76. 76.
    Saito A, Kamii H, Kato I, Takasawa S, Kondo T, Chan PH, Okamoto H, Yoshimoto T (2001) Transgenic CuZn-superoxide dismutase inhibits NO synthase induction in experimental subarachnoid hemorrhage. Stroke 32(7):1652–1657CrossRefPubMedGoogle Scholar
  77. 77.
    Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10(3):210–215. doi: 10.1038/nri2725 CrossRefPubMedGoogle Scholar
  78. 78.
    Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225. doi: 10.1038/nature09663 CrossRefPubMedGoogle Scholar
  79. 79.
    Wu J, Xu X, Li Y, Kou J, Huang F, Liu B, Liu K (2014) Quercetin, luteolin and epigallocatechin gallate alleviate TXNIP and NLRP3-mediated inflammation and apoptosis with regulation of AMPK in endothelial cells. Eur J Pharmacol 745:59–68. doi: 10.1016/j.ejphar.2014.09.046 CrossRefPubMedGoogle Scholar
  80. 80.
    Xiao J, Zhu Y, Liu Y, Tipoe GL, Xing F, So KF (2014) Lycium barbarum polysaccharide attenuates alcoholic cellular injury through TXNIP-NLRP3 inflammasome pathway. Int J Biol Macromol 69:73–78. doi: 10.1016/j.ijbiomac.2014.05.034 CrossRefPubMedGoogle Scholar
  81. 81.
    Yang SM, Ka SM, Wu HL, Yeh YC, Kuo CH, Hua KF, Shi GY, Hung YJ et al (2014) Thrombomodulin domain 1 ameliorates diabetic nephropathy in mice via anti-NF-kappaB/NLRP3 inflammasome-mediated inflammation, enhancement of NRF2 antioxidant activity and inhibition of apoptosis. Diabetologia 57(2):424–434. doi: 10.1007/s00125-013-3115-6 CrossRefPubMedGoogle Scholar
  82. 82.
    Abais JM, Xia M, Li G, Chen Y, Conley SM, Gehr TW, Boini KM, Li PL (2014) Nod-like receptor protein 3 (NLRP3) inflammasome activation and podocyte injury via thioredoxin-interacting protein (TXNIP) during hyperhomocysteinemia. J Biol Chem 289(39):27159–27168. doi: 10.1074/jbc.M114.567537 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Hong Y, Shao A, Wang J, Chen S, Wu H, McBride DW, Wu Q, Sun X et al (2014) Neuroprotective effect of hydrogen-rich saline against neurologic damage and apoptosis in early brain injury following subarachnoid hemorrhage: possible role of the Akt/GSK3beta signaling pathway. PLoS One 9(4), e96212. doi: 10.1371/journal.pone.0096212 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    van Bruggen R, Köker MY, Jansen M, van Houdt M, Roos D, Kuijpers TW, van den Berg TK (2010) Human NLRP3 inflammasome activation is Nox1-4 independent. Blood 115(26):5398–5400. doi: 10.1182/blood-2009-10-250803 CrossRefPubMedGoogle Scholar
  85. 85.
    Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9(8):847–856. doi: 10.1038/ni.1631 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Gabelloni ML, Sabbione F, Jancic C, Fuxman Bass J, Keitelman I, Iula L, Oleastro M, Geffner JR et al (2013) NADPH oxidase derived reactive oxygen species are involved in human neutrophil IL-1β secretion but not in inflammasome activation. Eur J Immunol 43(12):3324–3335. doi: 10.1002/eji.201243089 CrossRefPubMedGoogle Scholar
  87. 87.
    Hua KF, Yang SM, Kao TY, Chang JM, Chen HL, Tsai YJ, Chen A, Yang SS et al (2013) Osthole mitigates progressive IgA nephropathy by inhibiting reactive oxygen species generation and NF-kappaB/NLRP3 pathway. PLoS One 8(10), e77794. doi: 10.1371/journal.pone.0077794 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Zheng Y, Lilo S, Brodsky IE, Zhang Y, Medzhitov R, Marcu KB, Bliska JB (2011) A Yersinia effector with enhanced inhibitory activity on the NF-kappaB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages. PLoS Pathog 7(4), e1002026. doi: 10.1371/journal.ppat.1002026 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Anand PK, Malireddi RK, Kanneganti TD (2011) Role of the NLRP3 inflammasome in microbial infection. Front Microbiol 2:12. doi: 10.3389/fmicb.2011.00012 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Franchi L, Munoz-Planillo R, Nunez G (2012) Sensing and reacting to microbes through the inflammasomes. Nat Immunol 13(4):325–332. doi: 10.1038/ni.2231 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Anwen Shao
    • 1
  • Haijian Wu
    • 1
  • Yuan Hong
    • 1
  • Sheng Tu
    • 2
  • Xuejun Sun
    • 3
  • Qun Wu
    • 1
  • Qiong Zhao
    • 2
    Email author
  • Jianmin Zhang
    • 1
    • 4
    Email author
  • Jifang Sheng
    • 5
    • 6
  1. 1.Department of Neurosurgery, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Department of Thoracic Oncology, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  3. 3.Department of Diving MedicineThe Second Military Medical UniversityShanghaiChina
  4. 4.Brain Research InstituteZhejiang UniversityHangzhouChina
  5. 5.State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  6. 6.Department of Infectious Diseases, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations