Molecular Neurobiology

, Volume 53, Issue 5, pp 3113–3123 | Cite as

Education and Risk of Dementia: Dose-Response Meta-Analysis of Prospective Cohort Studies

  • Wei Xu
  • Lan TanEmail author
  • Hui-Fu Wang
  • Meng-Shan Tan
  • Lin Tan
  • Jie-Qiong Li
  • Qing-Fei Zhao
  • Jin-Tai YuEmail author


Educational level has been regarded as one of the most widely accepted risk factors in the epidemiological studies for dementia, despite with discordant qualitative results. However, the dose-response relation between education and incident dementia was still unknown. To quantitatively evaluate the association between exposure level to high and low education and risk of dementia, we searched PubMed, EMBASE, and the Cochrane Library up to November 2014 and references of retrieved literatures. Specific prospective cohort studies, in which educational attainment was categorized into at least three levels, were included. Newcastle-Ottawa scale was used to assess the quality of included studies. Fifteen prospective cohort studies with 55655 for low education and eight prospective cohort studies with 20172 for high education were included. In the qualitative analysis, both low and high education showed a dose-response trend with risk of dementia and Alzheimer’s disease (AD). In the quantitative analysis, the dementia risk was reduced by 7 % for per year increase in education (RR, 0.93; 95 % CI, 0.92–0.94; p for overall trend = 0.000; p for nonlinearity = 0.0643). Nonetheless, we did not find statistically significant association between per year decrease in education and dementia (RR, 1.03; 95 % CI, 0.96–1.10; p for overall trend = 0.283; p for nonlinearity = 0.0041) or AD (RR, 1.03; 95 % CI, 0.97–1.10; p for overall trend = 0.357; p for nonlinearity = 0.0022). Both low and high education showed a trend of dose-response relation with risk of dementia and AD. The dementia risk was reduced by 7 % for per year increase in education.


Education Dementia Meta-analysis Risk factor 



This work was supported by grants from the National Natural Science Foundation of China (81471309, 81171209), the Shandong Provincial Outstanding Medical Academic Professional Program, Qingdao Key Health Discipline Development Fund, and Qingdao Outstanding Health Professional Development Fund.

Conflicts of Interest

The authors declare no conflicts of interest.

Supplementary material

12035_2015_9211_MOESM1_ESM.pdf (995 kb)
ESM 1 (PDF 995 kb)


  1. 1.
    Hurd MD, Martorell P, Delavande A, Mullen KJ, Langa KM (2013) Monetary costs of dementia in the United States. N Engl J Med 368(14):1326–1334. doi: 10.1056/NEJMsa1204629 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Brodaty H, Breteler MM, Dekosky ST, Dorenlot P, Fratiglioni L, Hock C, Kenigsberg PA, Scheltens P et al (2011) The world of dementia beyond 2020. J Am Geriatr Soc 59(5):923–927. doi: 10.1111/j.1532-5415.2011.03365.x CrossRefPubMedGoogle Scholar
  3. 3.
    Jiang T, Yu JT, Tian Y, Tan L (2013) Epidemiology and etiology of Alzheimer’s disease: from genetic to non-genetic factors. Curr Alzheimer Res 10(8):852–867CrossRefPubMedGoogle Scholar
  4. 4.
    Christensen K, Thinggaard M, Oksuzyan A, Steenstrup T, Andersen-Ranberg K, Jeune B, McGue M, Vaupel JW (2013) Physical and cognitive functioning of people older than 90 years: a comparison of two Danish cohorts born 10 years apart. Lancet 382(9903):1507–1513. doi: 10.1016/S0140-6736(13)60777-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Matthews FE, Arthur A, Barnes LE, Bond J, Jagger C, Robinson L, Brayne C, Medical Research Council Cognitive F et al (2013) A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of England: results of the Cognitive Function and Ageing Study I and II. Lancet 382(9902):1405–1412. doi: 10.1016/S0140-6736(13)61570-6 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    de la Fuente-Fernandez R (2006) Impact of neuroprotection on incidence of Alzheimer’s disease. PLoS One 1:e52. doi: 10.1371/journal.pone.0000052 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cobb JL, Wolf PA, Au R, White R, D’Agostino RB (1995) The effect of education on the incidence of dementia and Alzheimer’s disease in the Framingham Study. Neurology 45(9):1707–1712CrossRefPubMedGoogle Scholar
  8. 8.
    McDowell I, Xi G, Lindsay J, Tierney M (2007) Mapping the connections between education and dementia. J Clin Exp Neuropsychol 29(2):127–141. doi: 10.1080/13803390600582420 CrossRefPubMedGoogle Scholar
  9. 9.
    Ott A, van Rossum CT, van Harskamp F, van de Mheen H, Hofman A, Breteler MM (1999) Education and the incidence of dementia in a large population-based study: the Rotterdam Study. Neurology 52(3):663–666CrossRefPubMedGoogle Scholar
  10. 10.
    Crooks VC, Lubben J, Petitti DB, Little D, Chiu V (2008) Social network, cognitive function, and dementia incidence among elderly women. Am J Public Health 98(7):1221–1227. doi: 10.2105/ajph.2007.115923 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bermejo-Pareja F, Benito-Leon J, Vega S, Medrano MJ, Roman GC (2008) Incidence and subtypes of dementia in three elderly populations of central Spain. J Neurol Sci 264(1–2):63–72. doi: 10.1016/j.jns.2007.07.021 CrossRefPubMedGoogle Scholar
  12. 12.
    Karp A, Kareholt I, Qiu C, Bellander T, Winblad B, Fratiglioni L (2004) Relation of education and occupation-based socioeconomic status to incident Alzheimer’s disease. Am J Epidemiol 159(2):175–183CrossRefPubMedGoogle Scholar
  13. 13.
    Kuller LH, Lopez OL, Newman A, Beauchamp NJ, Burke G, Dulberg C, Fitzpatrick A, Fried L et al (2003) Risk factors for dementia in the cardiovascular health cognition study. Neuroepidemiology 22(1):13–22CrossRefPubMedGoogle Scholar
  14. 14.
    Lindsay J, Laurin D, Verreault R, Hebert R, Helliwell B, Hill GB, McDowell I (2002) Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156(5):445–453CrossRefPubMedGoogle Scholar
  15. 15.
    Letenneur L, Launer LJ, Andersen K, Dewey ME, Ott A, Copeland JR, Dartigues JF, Kragh-Sorensen P et al (2000) Education and the risk for Alzheimer’s disease: sex makes a difference. EURODEM pooled analyses. EURODEM Incidence Research Group. Am J Epidemiol 151(11):1064–1071CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang M, Katzman R, Yu E, Liu W, Xiao SF, Yan H (1998) A preliminary analysis of incidence of dementia in Shanghai, China. Psychiatry Clin Neurosci 52(Suppl):S291–S294CrossRefPubMedGoogle Scholar
  17. 17.
    Schmand B, Smit J, Lindeboom J, Smits C, Hooijer C, Jonker C, Deelman B (1997) Low education is a genuine risk factor for accelerated memory decline and dementia. J Clin Epidemiol 50(9):1025–1033CrossRefPubMedGoogle Scholar
  18. 18.
    Al Hazzouri AZ, Haan MN, Neuhaus JM, Pletcher M, Peralta CA, Lopez L, Perez Stable EJ (2013) Cardiovascular risk score, cognitive decline, and dementia in older Mexican Americans: the role of sex and education. J Am Heart Assoc 2(2):e004978CrossRefGoogle Scholar
  19. 19.
    Ravona-Springer R, Beeri MS, Goldbourt U (2013) Satisfaction with current status at work and lack of motivation to improve it during midlife is associated with increased risk for dementia in subjects who survived thirty-seven years later. J Alzheimers Dis JAD 36(4):769–780. doi: 10.3233/jad-122422 PubMedGoogle Scholar
  20. 20.
    Sasaki Y, Marioni R, Kasai M, Ishii H, Yamaguchi S, Meguro K (2011) Chronic kidney disease: a risk factor for dementia onset: a population-based study. The Osaki-Tajiri Project. J Am Geriatr Soc 59(7):1175–1181. doi: 10.1111/j.1532-5415.2011.03477.x CrossRefPubMedGoogle Scholar
  21. 21.
    Kukull WA, Higdon R, Bowen JD, McCormick WC, Teri L, Schellenberg GD, van Belle G, Jolley L et al (2002) Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol 59(11):1737–1746CrossRefPubMedGoogle Scholar
  22. 22.
    Li S, Yan F, Li G, Chen C, Zhang W, Liu J, Jia X, Shen Y (2007) Is the dementia rate increasing in Beijing? Prevalence and incidence of dementia 10 years later in an urban elderly population. Acta Psychiatr Scand 115(1):73–79. doi: 10.1111/j.1600-0447.2006.00859.x CrossRefPubMedGoogle Scholar
  23. 23.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8(5):336–341. doi: 10.1016/j.ijsu.2010.02.007 CrossRefPubMedGoogle Scholar
  24. 24.
    Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283(15):2008–2012CrossRefPubMedGoogle Scholar
  25. 25.
    Green S, McDonald S (2005) Cochrane Collaboration: more than systematic reviews? Intern Med J 35(1):3–4. doi: 10.1111/j.1445-5994.2004.00747.x CrossRefPubMedGoogle Scholar
  26. 26.
    Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ (Clinical research ed) 327(7414):557–560. doi: 10.1136/bmj.327.7414.557 CrossRefGoogle Scholar
  27. 27.
    DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188CrossRefPubMedGoogle Scholar
  28. 28.
    Greenland S, Longnecker MP (1992) Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 135(11):1301–1309CrossRefPubMedGoogle Scholar
  29. 29.
    Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D (2012) Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 175(1):66–73. doi: 10.1093/aje/kwr265 CrossRefPubMedGoogle Scholar
  30. 30.
    Zhu K, van Hilten JJ, Marinus J (2014) Predictors of dementia in Parkinson’s disease; findings from a 5-year prospective study using the SCOPA-COG. Parkinsonism Relat Disord 20(9):980–985. doi: 10.1016/j.parkreldis.2014.06.006 CrossRefPubMedGoogle Scholar
  31. 31.
    Katz MJ, Lipton RB, Hall CB, Zimmerman ME, Sanders AE, Verghese J, Dickson DW, Derby CA (2012) Age-specific and sex-specific prevalence and incidence of mild cognitive impairment, dementia, and Alzheimer dementia in blacks and whites: a report from the Einstein Aging Study. Alzheimer Dis Assoc Disord 26(4):335–343. doi: 10.1097/WAD.0b013e31823dbcfc CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Geerlings MI, Schoevers RA, Beekman AT, Jonker C, Deeg DJ, Schmand B, Ader HJ, Bouter LM et al (2000) Depression and risk of cognitive decline and Alzheimer’s disease. Results of two prospective community-based studies in The Netherlands. Br J Psychiatry J Ment Sci 176:568–575CrossRefGoogle Scholar
  33. 33.
    Evans DA, Hebert LE, Beckett LA, Scherr PA, Albert MS, Chown MJ, Pilgrim DM, Taylor JO (1997) Education and other measures of socioeconomic status and risk of incident Alzheimer disease in a defined population of older persons. Arch Neurol 54(11):1399–1405CrossRefPubMedGoogle Scholar
  34. 34.
    Wilson RS, Bennett DA, Bienias JL, Aggarwal NT, Mendes De Leon CF, Morris MC, Schneider JA, Evans DA (2002) Cognitive activity and incident AD in a population-based sample of older persons. Neurology 59(12):1910–1914CrossRefPubMedGoogle Scholar
  35. 35.
    Gureje O, Ogunniyi A, Kola L, Abiona T (2011) Incidence of and risk factors for dementia in the Ibadan study of aging. J Am Geriatr Soc 59(5):869–874. doi: 10.1111/j.1532-5415.2011.03374.x CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kaup AR, Simonsick EM, Harris TB, Satterfield S, Metti AL, Ayonayon HN, Rubin SM, Yaffe K (2013) Older adults with limited literacy are at increased risk for likely dementia. J Gerontol A: Biol Med Sci. doi: 10.1093/gerona/glt176 Google Scholar
  37. 37.
    Bennett DA, Schneider JA, Wilson RS, Bienias JL, Arnold SE (2005) Education modifies the association of amyloid but not tangles with cognitive function. Neurology 65(6):953–955. doi: 10.1212/01.wnl.0000176286.17192.69 CrossRefPubMedGoogle Scholar
  38. 38.
    Rolstad S, Nordlund A, Eckerstrom C, Gustavsson MH, Blennow K, Olesen PJ, Zetterberg H, Wallin A (2010) High education may offer protection against tauopathy in patients with mild cognitive impairment. J Alzheimers Dis JAD 21(1):221–228. doi: 10.3233/JAD-2010-091012 CrossRefPubMedGoogle Scholar
  39. 39.
    Foubert-Samier A, Catheline G, Amieva H, Dilharreguy B, Helmer C, Allard M, Dartigues JF (2012) Education, occupation, leisure activities, and brain reserve: a population-based study. Neurobiology of aging 33(2):423 e415–425. doi: 10.1016/j.neurobiolaging.2010.09.023 CrossRefGoogle Scholar
  40. 40.
    Liu Y, Julkunen V, Paajanen T, Westman E, Wahlund LO, Aitken A, Sobow T, Mecocci P et al (2012) Education increases reserve against Alzheimer’s disease—evidence from structural MRI analysis. Neuroradiology 54(9):929–938. doi: 10.1007/s00234-012-1005-0 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ibrahim CV, Demirkan A, Isaacs A, Amin N, Van Swieten J, Oostra B, Van Duijn C (2012) Phosphosphingolipid levels are associated with cognitive function and level of education in healthy subjects. Alzheimers Dement 8(4):P275CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Wei Xu
    • 1
  • Lan Tan
    • 1
    • 2
    Email author
  • Hui-Fu Wang
    • 2
  • Meng-Shan Tan
    • 1
  • Lin Tan
    • 3
  • Jie-Qiong Li
    • 1
  • Qing-Fei Zhao
    • 1
  • Jin-Tai Yu
    • 1
    • 4
    Email author
  1. 1.Department of Neurology, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoChina
  2. 2.Department of Neurology, Qingdao Municipal HospitalNanjing Medical University, NanjingQingdaoChina
  3. 3.Department of Neurology, Qingdao Municipal Hospital, College of Medicine and PharmaceuticsOcean University of ChinaQingdaoChina
  4. 4.Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations