Molecular Neurobiology

, Volume 53, Issue 4, pp 2435–2450 | Cite as

Environmental Enrichment Improves Behavior, Cognition, and Brain Functional Markers in Young Senescence-Accelerated Prone Mice (SAMP8)

  • Christian Griñan-Ferré
  • David Pérez-Cáceres
  • Sofía Martínez Gutiérrez-Zetina
  • Antoni Camins
  • Verónica Palomera-Avalos
  • Daniel Ortuño-Sahagún
  • M. Teresa Rodrigo
  • M. Pallàs
Article

Abstract

The environment in which organisms live can greatly influence their development. Consequently, environmental enrichment (EE) is progressively recognized as an important component in the improvement of brain function and development. It has been demonstrated that rodents raised under EE conditions exhibit favorable neuroanatomical effects that improve their learning, spatial memory, and behavioral performance. Here, by using senescence-accelerated prone mice (SAMP8) and these as a model of adverse genetic conditions for brain development, we determined the effect of EE by raising these mice during early life under favorable conditions. We found a better generalized performance of SAMP8 under EE in the results of four behavioral and learning tests. In addition, we demonstrated broad molecular correlation in the hippocampus by an increase in NeuN and Ki67 expression, as well as an increase in the expression of neurotrophic factors, such as pleiotrophin (PTN) and brain-derived neurotrophic factor (BDNF), with a parallel decrease in neurodegenerative markers such as GSK3, amyloid-beta precursor protein, and phosphorylated beta-catenin, and a reduction of SBDP120, Bax, GFAP, and interleukin-6 (IL-6), resulting in a neuroprotective panorama. Globally, it can be concluded that EE applied to SAMP8 at young ages resulted in epigenetic regulatory mechanisms that give rise to significant beneficial effects at the molecular, cellular, and behavioral levels during brain development, particularly in the hippocampus.

Keywords

Neurodenegeration Behavior Learning Enriched environment Neurogenesis Apoptosis Inflammation Hippocampus Neurotrophin Tau kinases Aging Cognition 

Supplementary material

12035_2015_9210_MOESM1_ESM.pptx (2.1 mb)
ESM 1(PPTX 2196 kb)
12035_2015_9210_MOESM2_ESM.docx (20 kb)
ESM 2(DOCX 19 kb)
12035_2015_9210_MOESM3_ESM.docx (17 kb)
ESM 3(DOCX 17 kb)

References

  1. 1.
    Krech D, Rosenzweig M, Bennett E (1962) Relations between chemistry and problem-solving among rats raised in enriched and impoverished environments. J Comp Physiol Psychol 55:801–807CrossRefPubMedGoogle Scholar
  2. 2.
    Bloomsmith MA, Brent LY, Schapiro SJ (1991) Guidelines for developing and managing an environmental enrichment program for nonhuman primates. Lab Anim Sci 41(4):372–377PubMedGoogle Scholar
  3. 3.
    Fernández-Teruel A, Giménez-Llort L, Escorihuela RM, Gil L, Aguilar R, Steimer T, Tobeña A (2002) Early-life handling stimulation and environmental enrichment: are some of their effects mediated by similar neural mechanisms? Pharmacol Biochem Behav 73(1):233–245CrossRefPubMedGoogle Scholar
  4. 4.
    Mohammed AH, Zhu SW, Darmopil S, Hjerling-Leffler J, Ernfors P, Winblad B, Diamond MC, Eriksson PS et al (2002) Environmental enrichment and the brain. Prog Brain Res 138:109–133CrossRefPubMedGoogle Scholar
  5. 5.
    Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7(9):697–709CrossRefPubMedGoogle Scholar
  6. 6.
    Petrosini L, De Bartolo P, Foti F, Gelfo F, Cutuli D, Leggio MG, Mandolesi L (2009) On whether the environmental enrichment may provide cognitive and brain reserves. Brain Res Rev 61(2):221–239. doi:10.1016/j.brainresrev.2009.07.002 CrossRefPubMedGoogle Scholar
  7. 7.
    Kuzumaki N, Ikegami D, Tamura R, Hareyama N, Imai S, Narita M, Torigoe K, Niikura K et al (2011) Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus 21(2):127–132CrossRefPubMedGoogle Scholar
  8. 8.
    van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1(3):191–198CrossRefPubMedGoogle Scholar
  9. 9.
    Solinas M, Thiriet N, Chauvet C, Jaber M (2010) Prevention and treatment of drug addiction by environmental enrichment. Prog Neurobiol 92(4):572–592CrossRefPubMedGoogle Scholar
  10. 10.
    Laviola G, Hannan AJ, Macrì S, Solinas M, Jaber M (2008) Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol Dis 31(2):159–168CrossRefPubMedGoogle Scholar
  11. 11.
    Yuan Z, Wang M, Yan B, Gu P, Jiang X, Yang X, Cui D (2012) An enriched environment improves cognitive performance in mice from the senescence- accelerated prone mouse 8 strain. Neural Regen Res 7(23):1797–1804PubMedPubMedCentralGoogle Scholar
  12. 12.
    Rampon C, Jiang CH, Dong H, Tang YP, Lockhart DJ, Schultz PG, Tsien JZ, Hu Y (2000) Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci U S A 97(23):12880–12884CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Singhal G, Jaehne EJ, Corrigan F, Baune BT (2014) Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment. Front Cell Neurosci 8:97CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Day JJ, Sweatt JD (2011) Cognitive neuroepigenetics: a role for epigenetic mechanisms in learning and memory. Neurobiol Learn Mem 96:2–12CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mikaelsson MA, Miller CA (2011) The path to epigenetic treatment of memory disorders. Neurobiol Learn Mem 96:13–18CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Miller CA, Sweatt JD (2007) Covalent modification of DNA regulates memory formation. Neuron 53(6):857–869CrossRefPubMedGoogle Scholar
  17. 17.
    Miller CA, Campbell SL, Sweatt JD (2008) DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiol Learn Mem 89:599–603CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gupta-Agarwal S, Jarome TJ, Fernandez J, Lubin FD (2014) NMDA receptor- and ERK-dependent histone methylation changes in the lateral amygdala bidirectionally regulate fear memory formation. Learn Mem 21(7):351–362. doi:10.1101/lm.035105.114 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lazarov O, Marr RA (2010) Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 223(2):267–281. doi:10.1016/j.expneurol.2009.08.009 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pallàs M, Camins A, Smith MA, Perry G, Lee HG, Casadesus G (2008) From aging to Alzheimer’s disease: unveiling “the switch” with the senescence-accelerated mouse model (SAMP8). J Alzheimers Dis 15(4):615–624PubMedGoogle Scholar
  21. 21.
    Takeda T (2009) Senescence-accelerated mouse (SAM) with special references to neurodegeneration models, SAMP8 and SAMP10 mice. Neurochem Res 34:639–659CrossRefPubMedGoogle Scholar
  22. 22.
    Morley JE, Armbrecht HJ, Farr SA, Kumar VB (2012) The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer’s disease. Biochim Biophys Acta 1822(5):650–656CrossRefPubMedGoogle Scholar
  23. 23.
    Nomura Y, Okuma Y (1999) Age-related defects in lifespan and learning ability in SAMP8 mice. Neurobiol Aging 20(2):111–115Google Scholar
  24. 24.
    Morley JE, Farr SA, Kumar VB, Armbrecht HJ (2012) The SAMP8 mouse: a model to develop therapeutic interventions for Alzheimer’s disease. Curr Pharm Des 18(8):1123–1130CrossRefPubMedGoogle Scholar
  25. 25.
    Canudas AM, Gutierrez-Cuesta J, Rodríguez MI, Acuña-Castroviejo D, Sureda FX, Camins A, Pallàs M (2005) Hyperphosphorylation of microtubule-associated protein tau in senescence-accelerated mouse (SAM). Mech Ageing Dev 126(12):1300–1304CrossRefPubMedGoogle Scholar
  26. 26.
    Cristòfol R, Porquet D, Corpas R, Coto-Montes A, Serret J, Camins A, Pallàs M, Sanfeliu C (2012) Neurons from senescence-accelerated SAMP8 mice are protected against frailty by the sirtuin 1 promoting agents melatonin and resveratrol. J Pineal Res 52(3):271–281CrossRefPubMedGoogle Scholar
  27. 27.
    Sureda FX, Gutierrez-Cuesta J, Romeu M, Mulero M, Canudas AM, Camins A, Mallol J, Pallàs M (2006) Changes in oxidative stress parameters and neurodegeneration markers in the brain of the senescence-accelerated mice SAMP-8. Exp Gerontol 41(4):360–367Google Scholar
  28. 28.
    Brown RE, Corey SC, Moore AK (1999) Differences in measures of exploration and fear in MHC-congenic C57BL/6J and B6-H-2K mice. Behav Genet 26:263–271CrossRefGoogle Scholar
  29. 29.
    Hall CS (1934) Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. J Comp Psych 18(3):385–403CrossRefGoogle Scholar
  30. 30.
    Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1. Behavioral data. Behav Brain Res 31:47–59CrossRefPubMedGoogle Scholar
  31. 31.
    del Valle J, Bayod S, Camins A, Beas-Zárate C, Velázquez-Zamora DA, González-Burgos I, Pallàs M (2012) Dendritic spine abnormalities in hippocampal CA1 pyramidal neurons underlying memory deficits in the SAMP8 mouse model of Alzheimer’s disease. J Alzheimers Dis 32(1):233–240PubMedGoogle Scholar
  32. 32.
    Morris RGM (1981) Spatial localization does not requiere the presence of local cues. Learn Motiv 12:239–260CrossRefGoogle Scholar
  33. 33.
    Crawley JN (2004) Designing mouse behavioral tasks relevant to autistic-like behaviors. Ment Retard Dev Disabil Res Rev 10(4):248–258CrossRefPubMedGoogle Scholar
  34. 34.
    Young RJ (2003) Environmental enrichment for captive animals. UFAW Animal Welfare Series, Blackwell Publishers, UKCrossRefGoogle Scholar
  35. 35.
    Bruel-Jungerman E, Laroche S, Rampon C (2005) New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci 21(2):513–521CrossRefPubMedGoogle Scholar
  36. 36.
    Gobbo OL, O’Mara SM (2004) Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behav Brain Res 152(2):231–241CrossRefPubMedGoogle Scholar
  37. 37.
    Cheng XR, Zhou WX, Zhang YX (2014) The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer’s disease animal model. Ageing Res Rev 13:13–37CrossRefPubMedGoogle Scholar
  38. 38.
    Alvarez-López MJ, Molina-Martínez P, Castro-Freire M, Cosín-Tomás M, Cristòfol R, Párrizas M, Escorihuela RM, Pallàs M et al (2014) Rcor2 underexpression in senescent mice: a target for inflammaging? J Neuroinflammation 23:11–126. doi:10.1186/1742-2094-11-126 Google Scholar
  39. 39.
    Blanke ML, VanDongen AMJ (2009) Activation Mechanisms of the NMDA Receptor. In: Van Dongen AM (ed) Biology of the NMDA Receptor. Chapter 13. Frontiers in neuroscience. CRC Press, Boca RatonGoogle Scholar
  40. 40.
    Sheng M (2001) The postsynaptic NMDA-receptor–PSD-95 signaling complex in excitatory synapses of the brain. J Cell Sci 114(Pt 7):1251PubMedGoogle Scholar
  41. 41.
    Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116(1):201–211PubMedGoogle Scholar
  42. 42.
    Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322CrossRefPubMedGoogle Scholar
  43. 43.
    Wang Y, Qiu B, Liu J, Zhu WG, Zhu S (2014) Cocaine- and amphetamine-regulated transcript facilitates the neurite outgrowth in cortical neurons after oxygen and glucose deprivation through PTN-dependent pathway. Neuroscience 277C:103–110CrossRefGoogle Scholar
  44. 44.
    Gombash SE, Manfredsson FP, Mandel RJ, Collier TJ, Fischer DL, Kemp CJ, Kuhn NM, Wohlgenant SL et al (2014) Neuroprotective potential of pleiotrophin overexpression in the striatonigral pathway compared with overexpression in both the striatonigral and nigrostriatal pathways. Gene Ther 21(7):682–693. doi:10.1038/gt.2014.42 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    González-Castillo C, Ortuño-Sahagún D, Guzmán-Brambila C, Pallàs M, Rojas-Mayorquín AE (2015) Pleiotrophin as a central nervous system neuromodulator, evidences from the hippocampus. Front Cell Neurosci 8:443Google Scholar
  46. 46.
    Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hu YS, Long N, Pigino G, Brady ST, Lazarov O (2013) Molecular mechanisms of environmental enrichment: impairments in Akt/GSK3β, neurotrophin-3 and CREB signaling. PLoS One 8(5), e64460CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Noble EE, Billington CJ, Kotz CM, Wang C (2008) The lighter side of BDNF. Am J Physiol Regul Integr Comp Physiol 300(5):R1053–R1069. doi:10.1152/ajpregu.00776.2010
  49. 49.
    Zhang Z, Larner SF, Liu MC, Zheng W, Hayes RL, Wang KK (2009) Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis 14(11):1289–1298CrossRefPubMedGoogle Scholar
  50. 50.
    Gutierrez-Cuesta J, Tajes M, Jiménez A, Coto-Montes A, Camins A, Pallàs M (2008) Evaluation of potential pro-survival pathways regulated by melatonin in a murine senescence model. J Pineal Res 45(4):497–505. doi:10.1111/j.1600-079X.2008.00626.x CrossRefPubMedGoogle Scholar
  51. 51.
    Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribé E, Dalfó E, Avila J (2005) Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr Alzheimer Res 2(1):3–18CrossRefPubMedGoogle Scholar
  52. 52.
    Nistor M, Don M, Parekh M, Sarsoza F, Goodus M, Lopez GE, Kawas C, Leverenz J et al (2007) Alpha- and beta-secretase activity as a function of age and beta-amyloid in Down syndrome and normal brain. Neurobiol Aging 28(10):1493–1506CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Quintanilla RA, Orellana DI, González-Billault C, Maccioni RB (2004) Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res 295(1):245–257CrossRefPubMedGoogle Scholar
  54. 54.
    Cosín-Tomás M, Alvarez-López MJ, Sanchez-Roige S, Lalanza JF, Bayod S, Sanfeliu C, Pallàs M, Escorihuela RM et al (2014) Epigenetic alterations in hippocampus of SAMP8 senescent mice and modulation by voluntary physical exercise. Front Aging Neurosci 20:6–51. doi:10.3389/fnagi.2014.00051

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christian Griñan-Ferré
    • 1
  • David Pérez-Cáceres
    • 2
  • Sofía Martínez Gutiérrez-Zetina
    • 1
  • Antoni Camins
    • 1
  • Verónica Palomera-Avalos
    • 1
  • Daniel Ortuño-Sahagún
    • 3
  • M. Teresa Rodrigo
    • 2
  • M. Pallàs
    • 1
  1. 1.Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Biomedicine (IBUB)Universitat de BarcelonaBarcelonaSpain
  2. 2.Animal Experimentation Unit, Faculty of PharmacyUniversity of BarcelonaBarcelonaSpain
  3. 3.Instituto de Investigación en Ciencias Biomédicas (IICB), CUCSUniversidad de GuadalajaraGuadalajaraMexico

Personalised recommendations