Advertisement

Molecular Neurobiology

, Volume 53, Issue 4, pp 2339–2353 | Cite as

HO-1 Signaling Activation by Pterostilbene Treatment Attenuates Mitochondrial Oxidative Damage Induced by Cerebral Ischemia Reperfusion Injury

  • Yang Yang
  • Jiayi Wang
  • Yue Li
  • Chongxi Fan
  • Shuai Jiang
  • Lei Zhao
  • Shouyin Di
  • Zhenlong Xin
  • Bodong Wang
  • Guiling Wu
  • Xia Li
  • Zhiqing Li
  • Xu Gao
  • Yushu DongEmail author
  • Yan QuEmail author
Article

Abstract

Ischemia reperfusion (IR) injury (IRI) is harmful to the cerebral system and causes mitochondrial oxidative stress. The antioxidant response element (ARE)-mediated antioxidant pathway plays an important role in maintaining the redox status of the brain. Heme oxygenase-1 (HO-1), combined with potent AREs in the promoter of HO-1, is a highly effective therapeutic target for protection against cerebral IRI. Pterostilbene (PTE), a natural dimethylated analog of resveratrol from blueberries, is a strong natural antioxidant. PTE has been shown to be beneficial for some nervous system diseases and may regulate HO-1 signaling. This study was designed to investigate the protective effects of PTE on cerebral IRI and to elucidate potential mechanisms underlying those effects. Mouse brains and cultured HT22 neuron cells were subjected to IRI. Prior to this procedure, the brains or cells were exposed to PTE in the absence or presence of the HO-1 inhibitor ZnPP or HO-1 small interfering RNA (siRNA). PTE conferred a cerebral protective effect, as shown by increased neurological scores, viable neurons and decreased brain edema as well as a decreased ion content and apoptotic ratio in vivo. PTE also increased the cell viability and decreased the lactate dehydrogenase (LDH) leakage and apoptotic ratio in vitro. ZnPP and HO-1 siRNA both blocked PTE-mediated cerebral protection by inhibiting HO-1 signaling and further inhibited two HO-1 signaling-related antioxidant molecules: NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione S-transferases (GSTs), which are induced by PTE. PTE also promoted a well-preserved mitochondrial membrane potential (MMP), mitochondria complex I activity, and mitochondria complex IV activity, increased the mitochondrial cytochrome c level, and decreased the cytosolic cytochrome c level. However, this PTE-elevated mitochondrial function was reversed by ZnPP or HO-1 siRNA treatment. In summary, our results demonstrate that PTE treatment attenuates cerebral IRI by reducing IR-induced mitochondrial oxidative damage through the activation of HO-1 signaling.

Keyword

Ischemia reperfusion Pterostilbene HO-1 signaling Mitochondrial oxidative damage Cerebral protection 

Notes

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (81222015) and the New Century Talent Supporting Project by Chinese education ministry (NCET-12-1004).

Conflict of Interest

The grants from the authors have no disclosures to declare.

References

  1. 1.
    Green AR (2008) Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly. Br J Pharmacol 153(Suppl 1):S325–338. doi: 10.1038/sj.bjp.0707594 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Grotta JC (2014) tPA for stroke: important progress in achieving faster treatment. JAMA 311(16):1615–1617. doi: 10.1001/jama.2014.3322 CrossRefPubMedGoogle Scholar
  3. 3.
    Yang Y, Duan W, Lin Y, Yi W, Liang Z, Yan J, Wang N, Deng C et al (2013) SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med 65:667–679. doi: 10.1016/j.freeradbiomed.2013.07.007 CrossRefPubMedGoogle Scholar
  4. 4.
    Guo J, Duckles SP, Weiss JH, Li X, Krause DN (2012) 17beta-Estradiol prevents cell death and mitochondrial dysfunction by an estrogen receptor-dependent mechanism in astrocytes after oxygen-glucose deprivation/reperfusion. Free Radic Biol Med 52(11-12):2151–2160. doi: 10.1016/j.freeradbiomed.2012.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Thompson JW, Narayanan SV, Perez-Pinzon MA (2012) Redox signaling pathways involved in neuronal ischemic preconditioning. Curr Neuropharmacol 10(4):354–369. doi: 10.2174/157015912804143577 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yang Y, Duan W, Li Y, Yan J, Yi W, Liang Z, Wang N, Yi D et al (2013) New role of silent information regulator 1 in cerebral ischemia. Neurobiol Aging 34(12):2879–2888. doi: 10.1016/j.neurobiolaging.2013.06.008 CrossRefPubMedGoogle Scholar
  7. 7.
    Hougaard KD, Hjort N, Zeidler D, Sorensen L, Norgaard A, Hansen TM, von Weitzel-Mudersbach P, Simonsen CZ et al (2014) Remote ischemic perconditioning as an adjunct therapy to thrombolysis in patients with acute ischemic stroke: a randomized trial. Stroke 45(1):159–167. doi: 10.1161/STROKEAHA.113.001346 CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang HP, Sun YY, Chen XM, Yuan LB, Su BX, Ma R, Zhao RN, Dong HL et al (2014) The neuroprotective effects of isoflurane preconditioning in a murine transient global cerebral ischemia-reperfusion model: the role of the Notch signaling pathway. Neuromolecular Med 16(1):191–204. doi: 10.1007/s12017-013-8273-7 CrossRefPubMedGoogle Scholar
  9. 9.
    McCormack D, McFadden D (2013) A review of pterostilbene antioxidant activity and disease modification. Oxid Med Cell Longev 2013:575482. doi: 10.1155/2013/575482 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yang Y, Yan X, Duan W, Yan J, Yi W, Liang Z, Wang N, Li Y et al (2013) Pterostilbene exerts antitumor activity via the Notch1 signaling pathway in human lung adenocarcinoma cells. PLoS One 8(5), e62652. doi: 10.1371/journal.pone.0062652 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ruiz MJ, Fernandez M, Pico Y, Manes J, Asensi M, Carda C, Asensio G, Estrela JM (2009) Dietary administration of high doses of pterostilbene and quercetin to mice is not toxic. J Agric Food Chem 57(8):3180–3186. doi: 10.1021/jf803579e CrossRefPubMedGoogle Scholar
  12. 12.
    Cichocki M, Paluszczak J, Szaefer H, Piechowiak A, Rimando AM, Baer-Dubowska W (2008) Pterostilbene is equally potent as resveratrol in inhibiting 12-O-tetradecanoylphorbol-13-acetate activated NFkappaB, AP-1, COX-2, and iNOS in mouse epidermis. Mol Nutr Food Res 52(Suppl 1):S62–70. doi: 10.1002/mnfr.200700466 PubMedGoogle Scholar
  13. 13.
    Chang J, Rimando A, Pallas M, Camins A, Porquet D, Reeves J, Shukitt-Hale B, Smith MA et al (2012) Low-dose pterostilbene, but not resveratrol, is a potent neuromodulator in aging and Alzheimer’s disease. Neurobiol Aging 33(9):2062–2071. doi: 10.1016/j.neurobiolaging.2011.08.015 CrossRefPubMedGoogle Scholar
  14. 14.
    Li N, Ma Z, Li M, Xing Y, Hou Y (2014) Natural potential therapeutic agents of neurodegenerative diseases from the traditional herbal medicine Chinese dragon’s blood. J Ethnopharmacol 152(3):508–521. doi: 10.1016/j.jep.2014.01.032 CrossRefPubMedGoogle Scholar
  15. 15.
    Rimando AM, Pan Z, Polashock JJ, Dayan FE, Mizuno CS, Snook ME, Liu CJ, Baerson SR (2012) In planta production of the highly potent resveratrol analogue pterostilbene via stilbene synthase and O-methyltransferase co-expression. Plant Biotechnol J 10(3):269–283. doi: 10.1111/j.1467-7652.2011.00657.x CrossRefPubMedGoogle Scholar
  16. 16.
    Estrela JM, Ortega A, Mena S, Rodriguez ML, Asensi M (2013) Pterostilbene: biomedical applications. Crit Rev Clin Lab Sci 50(3):65–78. doi: 10.3109/10408363.2013.805182 CrossRefPubMedGoogle Scholar
  17. 17.
    Hou Y, Xie G, Miao F, Ding L, Mou Y, Wang L, Su G, Chen G et al (2014) Pterostilbene attenuates lipopolysaccharide-induced learning and memory impairment possibly via inhibiting microglia activation and protecting neuronal injury in mice. Prog Neuropsychopharmacol Biol Psychiatry 54:92–102. doi: 10.1016/j.pnpbp.2014.03.015 CrossRefPubMedGoogle Scholar
  18. 18.
    Al Rahim M, Rimando AM, Silistreli K, El-Alfy AT (2013) Anxiolytic action of pterostilbene: involvement of hippocampal ERK phosphorylation. Planta Med 79(9):723–730. doi: 10.1055/s-0032-1328553 CrossRefPubMedGoogle Scholar
  19. 19.
    Cherniack EP (2012) A berry thought-provoking idea: the potential role of plant polyphenols in the treatment of age-related cognitive disorders. Br J Nutr 108(5):794–800. doi: 10.1017/S0007114512000669 CrossRefPubMedGoogle Scholar
  20. 20.
    Yan W, Fang Z, Yang Q, Dong H, Lu Y, Lei C, Xiong L (2013) SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain. J Cereb Blood Flow Metab 33(3):396–406. doi: 10.1038/jcbfm.2012.179 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Perez-de-Puig I, Martin A, Gorina R, de la Rosa X, Martinez E, Planas AM (2013) Induction of hemeoxygenase-1 expression after inhibition of hemeoxygenase activity promotes inflammation and worsens ischemic brain damage in mice. Neuroscience 243:22–32. doi: 10.1016/j.neuroscience.2013.03.046 CrossRefPubMedGoogle Scholar
  22. 22.
    Chao XD, Ma YH, Luo P, Cao L, Lau WB, Zhao BC, Han F, Liu W et al (2013) Up-regulation of heme oxygenase-1 attenuates brain damage after cerebral ischemia via simultaneous inhibition of superoxide production and preservation of NO bioavailability. Exp Neurol 239:163–169. doi: 10.1016/j.expneurol.2012.09.020 CrossRefPubMedGoogle Scholar
  23. 23.
    Wang YF, Gu YT, Qin GH, Zhong L, Meng YN (2013) Curcumin ameliorates the permeability of the blood-brain barrier during hypoxia by upregulating heme oxygenase-1 expression in brain microvascular endothelial cells. J Mol Neurosci 51(2):344–351. doi: 10.1007/s12031-013-9989-4 CrossRefPubMedGoogle Scholar
  24. 24.
    Chen G, Fang Q, Zhang J, Zhou D, Wang Z (2011) Role of the Nrf2-ARE pathway in early brain injury after experimental subarachnoid hemorrhage. J Neurosci Res 89(4):515–523. doi: 10.1002/jnr.22577 CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang J, Zhu Y, Zhou D, Wang Z, Chen G (2010) Recombinant human erythropoietin (rhEPO) alleviates early brain injury following subarachnoid hemorrhage in rats: possible involvement of Nrf2-ARE pathway. Cytokine 52(3):252–257. doi: 10.1016/j.cyto.2010.08.011 CrossRefPubMedGoogle Scholar
  26. 26.
    Shin JH, Kim SW, Jin Y, Kim ID, Lee JK (2012) Ethyl pyruvate-mediated Nrf2 activation and hemeoxygenase 1 induction in astrocytes confer protective effects via autocrine and paracrine mechanisms. Neurochem Int 61(1):89–99. doi: 10.1016/j.neuint.2012.04.005 CrossRefPubMedGoogle Scholar
  27. 27.
    Ren J, Fan C, Chen N, Huang J, Yang Q (2011) Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in rats. Neurochem Res 36(12):2352–2362. doi: 10.1007/s11064-011-0561-8 CrossRefPubMedGoogle Scholar
  28. 28.
    Bhakkiyalakshmi E, Shalini D, Sekar TV, Rajaguru P, Paulmurugan R, Ramkumar KM (2014) Therapeutic potential of pterostilbene against pancreatic beta-cell apoptosis mediated through Nrf2. Br J Pharmacol 171(7):1747–1757. doi: 10.1111/bph.12577 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chiou YS, Tsai ML, Nagabhushanam K, Wang YJ, Wu CH, Ho CT, Pan MH (2011) Pterostilbene is more potent than resveratrol in preventing azoxymethane (AOM)-induced colon tumorigenesis via activation of the NF-E2-related factor 2 (Nrf2)-mediated antioxidant signaling pathway. J Agric Food Chem 59(6):2725–2733. doi: 10.1021/jf2000103 CrossRefPubMedGoogle Scholar
  30. 30.
    Quincozes-Santos A, Bobermin LD, Latini A, Wajner M, Souza DO, Goncalves CA, Gottfried C (2013) Resveratrol protects C6 astrocyte cell line against hydrogen peroxide-induced oxidative stress through heme oxygenase 1. PLoS One 8(5), e64372. doi: 10.1371/journal.pone.0064372 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ding J, Yu HL, Ma WW, Xi YD, Zhao X, Yuan LH, Feng JF, Xiao R (2013) Soy isoflavone attenuates brain mitochondrial oxidative stress induced by beta-amyloid peptides 1-42 injection in lateral cerebral ventricle. J Neurosci Res 91(4):562–567. doi: 10.1002/jnr.23163 CrossRefPubMedGoogle Scholar
  32. 32.
    Colin-Gonzalez AL, Orozco-Ibarra M, Chanez-Cardenas ME, Rangel-Lopez E, Santamaria A, Pedraza-Chaverri J, Barrera-Oviedo D, Maldonado PD (2013) Heme oxygenase-1 (HO-1) upregulation delays morphological and oxidative damage induced in an excitotoxic/pro-oxidant model in the rat striatum. Neuroscience 231:91–101. doi: 10.1016/j.neuroscience.2012.11.031 CrossRefPubMedGoogle Scholar
  33. 33.
    Dal-Cim T, Molz S, Egea J, Parada E, Romero A, Budni J, Martin de Saavedra MD, del Barrio L et al (2012) Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3beta pathway. Neurochem Int 61(3):397–404. doi: 10.1016/j.neuint.2012.05.021 CrossRefPubMedGoogle Scholar
  34. 34.
    Wang J, Jin H, Hua Y, Keep RF, Xi G (2012) Role of protease-activated receptor-1 in brain injury after experimental global cerebral ischemia. Stroke 43(9):2476–2482. doi: 10.1161/STROKEAHA.112.661819 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhou C, Tu J, Zhang Q, Lu D, Zhu Y, Zhang W, Yang F, Brann DW et al (2011) Delayed ischemic postconditioning protects hippocampal CA1 neurons by preserving mitochondrial integrity via Akt/GSK3beta signaling. Neurochem Int 59(6):749–758. doi: 10.1016/j.neuint.2011.08.008 CrossRefPubMedGoogle Scholar
  36. 36.
    Cui Y, Zhang H, Ji M, Jia M, Chen H, Yang J, Duan M (2014) Hydrogen-rich saline attenuates neuronal ischemia-reperfusion injury by protecting mitochondrial function in rats. J Surg Res. doi: 10.1016/j.jss.2014.05.060 Google Scholar
  37. 37.
    Ye R, Kong X, Yang Q, Zhang Y, Han J, Zhao G (2011) Ginsenoside Rd attenuates redox imbalance and improves stroke outcome after focal cerebral ischemia in aged mice. Neuropharmacology 61(4):815–824. doi: 10.1016/j.neuropharm.2011.05.029 CrossRefPubMedGoogle Scholar
  38. 38.
    Gaur V, Aggarwal A, Kumar A (2009) Protective effect of naringin against ischemic reperfusion cerebral injury: possible neurobehavioral, biochemical and cellular alterations in rat brain. Eur J Pharmacol 616(1–3):147–154. doi: 10.1016/j.ejphar.2009.06.056 CrossRefPubMedGoogle Scholar
  39. 39.
    Sottocasa GL, Kuylenstierna B, Ernster L, Bergstrand A (1967) An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol 32(2):415–438CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dinkova-Kostova AT, Talalay P (2010) NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 501(1):116–123. doi: 10.1016/j.abb.2010.03.019 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gang GT, Hwang JH, Kim YH, Noh JR, Kim KS, Jeong JY, Choi DE, Lee KW et al (2014) Protection of NAD(P)H:quinone oxidoreductase 1 against renal ischemia/reperfusion injury in mice. Free Radic Biol Med 67:139–149. doi: 10.1016/j.freeradbiomed.2013.10.817 CrossRefPubMedGoogle Scholar
  42. 42.
    Kwon J, Han E, Bui CB, Shin W, Lee J, Lee S, Choi YB, Lee AH et al (2012) Assurance of mitochondrial integrity and mammalian longevity by the p62-Keap1-Nrf2-Nqo1 cascade. EMBO Rep 13(2):150–156. doi: 10.1038/embor.2011.246 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hwang JH, Kim YH, Noh JR, Gang GT, Kim KS, Chung HK, Tadi S, Yim YH et al (2014) The protective role of NAD(P)H:quinone oxidoreductase 1 on acetaminophen-induced liver injury is associated with prevention of adenosine triphosphate depletion and improvement of mitochondrial dysfunction. Arch Toxicol. doi: 10.1007/s00204-014-1340-5 PubMedGoogle Scholar
  44. 44.
    Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360(Pt 1):1–16CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Meyer DA, Torres-Altoro MI, Tan Z, Tozzi A, di Filippo M, DiNapoli V, Plattner F, Kansy JW et al (2014) Ischemic stroke injury is mediated by aberrant Cdk5. J Neurosci 34(24):8259–8267. doi: 10.1523/JNEUROSCI.4368-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88. doi: 10.1146/annurev.pharmtox.45.120403.095857 CrossRefPubMedGoogle Scholar
  47. 47.
    Ulziikhishig E, Lee KK, Hossain QS, Higa Y, Imaizumi N, Aniya Y (2010) Inhibition of mitochondrial membrane bound-glutathione transferase by mitochondrial permeability transition inhibitors including cyclosporin A. Life Sci 86(19–20):726–732. doi: 10.1016/j.lfs.2010.03.002 CrossRefPubMedGoogle Scholar
  48. 48.
    Takizawa S, Hirabayashi H, Matsushima K, Tokuoka K, Shinohara Y (1998) Induction of heme oxygenase protein protects neurons in cortex and striatum, but not in hippocampus, against transient forebrain ischemia. J Cereb Blood Flow Metab 18(5):559–569. doi: 10.1097/00004647-199805000-00011 CrossRefPubMedGoogle Scholar
  49. 49.
    Panahian N, Yoshiura M, Maines MD (1999) Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J Neurochem 72(3):1187–1203CrossRefPubMedGoogle Scholar
  50. 50.
    Moreira TJ, Cebere A, Cebers G, Ostenson CG, Efendic S, Liljequist S (2007) Reduced HO-1 protein expression is associated with more severe neurodegeneration after transient ischemia induced by cortical compression in diabetic Goto-Kakizaki rats. J Cereb Blood Flow Metab 27(10):1710–1723. doi: 10.1038/sj.jcbfm.9600479 CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang L, Zhou G, Song W, Tan X, Guo Y, Zhou B, Jing H, Zhao S et al (2012) Pterostilbene protects vascular endothelial cells against oxidized low-density lipoprotein-induced apoptosis in vitro and in vivo. Apoptosis 17(1):25–36. doi: 10.1007/s10495-011-0653-6 CrossRefPubMedGoogle Scholar
  52. 52.
    Acharya JD, Ghaskadbi SS (2013) Protective effect of Pterostilbene against free radical mediated oxidative damage. BMC Complement Altern Med 13:238. doi: 10.1186/1472-6882-13-238 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yang Yang
    • 1
    • 4
  • Jiayi Wang
    • 1
  • Yue Li
    • 3
  • Chongxi Fan
    • 5
  • Shuai Jiang
    • 1
  • Lei Zhao
    • 1
  • Shouyin Di
    • 5
  • Zhenlong Xin
    • 1
  • Bodong Wang
    • 1
  • Guiling Wu
    • 1
  • Xia Li
    • 1
  • Zhiqing Li
    • 2
  • Xu Gao
    • 2
  • Yushu Dong
    • 2
  • Yan Qu
    • 1
  1. 1.Department of Neurosurgery, Xijing HospitalThe Fourth Military Medical UniversityXi’anChina
  2. 2.Department of NeurosurgeryGeneral Hospital of Shenyang Military Area CommandShenyangChina
  3. 3.Department of Air LogisticsThe 463rd Hospital of PLAShenyangChina
  4. 4.Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi’anChina
  5. 5.Department of Thoracic Surgery, Tangdu HospitalThe Fourth Military Medical UniversityXi’anChina

Personalised recommendations