Molecular Neurobiology

, Volume 53, Issue 3, pp 1949–1958 | Cite as

Pseudocatalytic Antiaggregation Activity of Antibodies: Immunoglobulins can Influence α-Synuclein Aggregation at Substoichiometric Concentrations

  • Leonid Breydo
  • Dave Morgan
  • Vladimir N. UverskyEmail author


Protein aggregation is involved in a variety of diseases. Alteration of the aggregation pathway, either to produce less toxic structures or to increase aggregate clearance, is a promising therapeutic route. Both active and passive immunization has been used for this purpose. However, the mechanism of action of antibodies on protein aggregates is not completely clear especially given poor ability of antibodies to cross blood–brain barrier. Here, we have shown that antibodies can interfere with protein aggregation at substoichiometric concentrations (as low as 1:1000 antibody to protein ratio). This is an indication that antibodies interact with aggregation intermediates in chaperone-like manner altering the aggregation pathways at very low antibody levels. This observation supports earlier suggestions that antibodies can inhibit aggregation by interaction with low abundance aggregation intermediates.


Parkinson’s disease Antibodies Protein aggregation α-Synuclein 



This work was supported by the USF Health Byrd Alzheimer's Institute. DGM is supported by NIH NS76308.


  1. 1.
    Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Invest 115(6):1449–1457CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Breydo L, Wu JW, Uversky VN (2012) Alpha-synuclein misfolding and Parkinson’s disease. Biochim Biophys Acta 1822(2):261–285CrossRefPubMedGoogle Scholar
  3. 3.
    Uversky VN, Eliezer D (2009) Biophysics of Parkinson’s disease: structure and aggregation of alpha-synuclein. Curr Protein Pept Sci 10(5):483–499CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Uversky VN (2008) Alpha-synuclein misfolding and neurodegenerative diseases. Curr Protein Pept Sci 9(5):507–540CrossRefPubMedGoogle Scholar
  5. 5.
    Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103(1):17–37PubMedGoogle Scholar
  6. 6.
    Uversky VN (2003) A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 21(2):211–234CrossRefPubMedGoogle Scholar
  7. 7.
    Bae EJ, Lee HJ, Rockenstein E, Ho DH, Park EB, Yang NY, Desplats P, Masliah E, Lee SJ (2012) Antibody-aided clearance of extracellular alpha-synuclein prevents cell-to-cell aggregate transmission. J Neurosci Off J Soc Neurosci 32(39):13454–13469CrossRefGoogle Scholar
  8. 8.
    Masliah E, Rockenstein E, Mante M, Crews L, Spencer B, Adame A, Patrick C, Trejo M, Ubhi K, Rohn TT, Mueller-Steiner S, Seubert P, Barbour R, McConlogue L, Buttini M, Games D, Schenk D (2011) Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One 6(4):e19338CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lindstrom V, Ihse E, Fagerqvist T, Bergstrom J, Nordstrom E, Moller C, Lannfelt L, Ingelsson M (2014) Immunotherapy targeting alpha-synuclein, with relevance for future treatment of Parkinson’s disease and other Lewy body disorders. Immunotherapy 6(2):141–153CrossRefPubMedGoogle Scholar
  10. 10.
    Nasstrom T, Goncalves S, Sahlin C, Nordstrom E, Screpanti Sundquist V, Lannfelt L, Bergstrom J, Outeiro TF, Ingelsson M (2011) Antibodies against alpha-synuclein reduce oligomerization in living cells. PLoS One 6(10):e27230CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lee HJ, Bae EJ, Lee SJ (2014) Extracellular alpha–synuclein-a novel and crucial factor in Lewy body diseases. Nat Rev Neurol 10(2):92–98CrossRefPubMedGoogle Scholar
  12. 12.
    Hard T, Lendel C (2012) Inhibition of amyloid formation. J Mol Biol 421(4–5):441–465CrossRefPubMedGoogle Scholar
  13. 13.
    Habicht G, Haupt C, Friedrich RP, Hortschansky P, Sachse C, Meinhardt J, Wieligmann K, Gellermann GP, Brodhun M, Gotz J, Halbhuber KJ, Rocken C, Horn U, Fandrich M (2007) Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing Abeta protofibrils. Proc Natl Acad Sci U S A 104(49):19232–19237CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ladiwala AR, Bhattacharya M, Perchiacca JM, Cao P, Raleigh DP, Abedini A, Schmidt AM, Varkey J, Langen R, Tessier PM (2012) Rational design of potent domain antibody inhibitors of amyloid fibril assembly. Proc Natl Acad Sci U S A 109(49):19965–19970CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang XP, Zhang JH, Wang YJ, Feng Y, Zhang X, Sun XX, Li JL, Du XT, Lambert MP, Yang SG, Zhao M, Klein WL, Liu RT (2009) Conformation-dependent single-chain variable fragment antibodies specifically recognize beta-amyloid oligomers. FEBS Lett 583(3):579–584CrossRefPubMedGoogle Scholar
  16. 16.
    Lafaye P, Achour I, England P, Duyckaerts C, Rougeon F (2009) Single-domain antibodies recognize selectively small oligomeric forms of amyloid beta, prevent Abeta-induced neurotoxicity and inhibit fibril formation. Mol Immunol 46(4):695–704CrossRefPubMedGoogle Scholar
  17. 17.
    Dumoulin M, Last AM, Desmyter A, Decanniere K, Canet D, Larsson G, Spencer A, Archer DB, Sasse J, Muyldermans S, Wyns L, Redfield C, Matagne A, Robinson CV, Dobson CM (2003) A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme. Nature 424(6950):783–788CrossRefPubMedGoogle Scholar
  18. 18.
    Legleiter J, Lotz GP, Miller J, Ko J, Ng C, Williams GL, Finkbeiner S, Patterson PH, Muchowski PJ (2009) Monoclonal antibodies recognize distinct conformational epitopes formed by polyglutamine in a mutant huntingtin fragment. J Biol Chem 284(32):21647–21658CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    McLaurin J, Cecal R, Kierstead ME, Tian X, Phinney AL, Manea M, French JE, Lambermon MH, Darabie AA, Brown ME, Janus C, Chishti MA, Horne P, Westaway D, Fraser PE, Mount HT, Przybylski M, St George-Hyslop P (2002) Therapeutically effective antibodies against amyloid-beta peptide target amyloid-beta residues 4–10 and inhibit cytotoxicity and fibrillogenesis. Nat Med 8(11):1263–1269CrossRefPubMedGoogle Scholar
  20. 20.
    Subramanian S, Madhavadas S, Balasubramanian P (2009) Influence of conformational antibodies on dissociation of fibrillar amyloid beta (A beta 1–42) in vitro. Indian J Exp Biol 47(5):309–313PubMedGoogle Scholar
  21. 21.
    Mamikonyan G, Necula M, Mkrtichyan M, Ghochikyan A, Petrushina I, Movsesyan N, Mina E, Kiyatkin A, Glabe CG, Cribbs DH, Agadjanyan MG (2007) Anti-abeta1 11 antibody binds to different beta-amyloid species, inhibits fibril formation, and disaggregates preformed fibrils but not the most toxic oligomers. J Biol Chem 282(31):22376–22386CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Solomon B, Koppel R, Frankel D, Hanan-Aharon E (1997) Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc Natl Acad Sci U S A 94(8):4109–4112CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Buell AK, Galvagnion C, Gaspar R, Sparr E, Vendruscolo M, Knowles TP, Linse S, Dobson CM (2014) Solution conditions determine the relative importance of nucleation and growth processes in alpha-synuclein aggregation. Proc Natl Acad Sci U S AGoogle Scholar
  24. 24.
    Holmes BB, DeVos SL, Kfoury N, Li M, Jacks R, Yanamandra K, Ouidja MO, Brodsky FM, Marasa J, Bagchi DP, Kotzbauer PT, Miller TM, Papy-Garcia D, Diamond MI (2013) Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc Natl Acad Sci U S A 110(33):E3138–E3147CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bolen DW, Rose GD (2008) Structure and energetics of the hydrogen-bonded backbone in protein folding. Annu Rev Biochem 77:339–362CrossRefPubMedGoogle Scholar
  26. 26.
    Canchi DR, Garcia AE (2013) Cosolvent effects on protein stability. Annu Rev Phys Chem 64:273–293CrossRefPubMedGoogle Scholar
  27. 27.
    Giasson BI, Jakes R, Goedert M, Duda JE, Leight S, Trojanowski JQ, Lee VM (2000) A panel of epitope-specific antibodies detects protein domains distributed throughout human alpha-synuclein in Lewy bodies of Parkinson’s disease. J Neurosci Res 59(4):528–533CrossRefPubMedGoogle Scholar
  28. 28.
    Necula M, Kayed R, Milton S, Glabe CG (2007) Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J Biol Chem 282(14):10311–10324CrossRefPubMedGoogle Scholar
  29. 29.
    Breydo L, Reddy KD, Piai A, Felli IC, Pierattelli R, Uversky VN (2014) The crowd you’re in with: effects of different types of crowding agents on protein aggregation. Biochim Biophys Acta 1844(2):346–357CrossRefPubMedGoogle Scholar
  30. 30.
    Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276(14):10737–10744CrossRefPubMedGoogle Scholar
  31. 31.
    Wu JW, Breydo L (2014) Conformation-dependent antibodies as tools for characterization of amyloid protein aggregates. In: Uversky VN, Lyubchenko YL (eds) Bionanoimaging in protein misfolding and aggregation. Elsevier, New YorkGoogle Scholar
  32. 32.
    Morgado I, Wieligmann K, Bereza M, Ronicke R, Meinhardt K, Annamalai K, Baumann M, Wacker J, Hortschansky P, Malesevic M, Parthier C, Mawrin C, Schiene-Fischer C, Reymann KG, Stubbs MT, Balbach J, Gorlach M, Horn U, Fandrich M (2012) Molecular basis of beta-amyloid oligomer recognition with a conformational antibody fragment. Proc Natl Acad Sci U S A 109(31):12503–12508CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Haupt C, Morgado I, Kumar ST, Parthier C, Bereza M, Hortschansky P, Stubbs MT, Horn U, Fandrich M (2011) Amyloid fibril recognition with the conformational B10 antibody fragment depends on electrostatic interactions. J Mol Biol 405(2):341–348CrossRefPubMedGoogle Scholar
  34. 34.
    Sultan A, Raman B, Rao Ch M, Tangirala R (2013) The extracellular chaperone haptoglobin prevents serum fatty acid-promoted amyloid fibril formation of beta2-microglobulin, resistance to lysosomal degradation, and cytotoxicity. J Biol Chem 288(45):32326–32342CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mansson C, Kakkar V, Monsellier E, Sourigues Y, Harmark J, Kampinga HH, Melki R, Emanuelsson C (2014) DNAJB6 is a peptide-binding chaperone which can suppress amyloid fibrillation of polyglutamine peptides at substoichiometric molar ratios. Cell Stress Chaperones 19(2):227–239CrossRefPubMedGoogle Scholar
  36. 36.
    Knight SD, Presto J, Linse S, Johansson J (2013) The BRICHOS domain, amyloid fibril formation, and their relationship. Biochemistry 52(43):7523–7531CrossRefPubMedGoogle Scholar
  37. 37.
    Luo J, Warmlander SK, Graslund A, Abrahams JP (2014) Non-chaperone proteins can inhibit aggregation and cytotoxicity of Alzheimer amyloid beta peptide. J Biol Chem 289(40):27766–27775CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Leonid Breydo
    • 1
    • 2
  • Dave Morgan
    • 2
    • 3
  • Vladimir N. Uversky
    • 1
    • 2
    • 4
    • 5
    • 6
    Email author
  1. 1.Department of Molecular MedicineMorsani College of Medicine, University of South FloridaTampaUSA
  2. 2.Byrd Alzheimer InstituteMorsani College of Medicine, University of South FloridaTampaUSA
  3. 3.Department of Molecular Pharmacology and Physiology, Morsani College of MedicineUniversity of South FloridaTampaUSA
  4. 4.Department of Biological Sciences, Faculty of ScienceKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  5. 5.Institute for Biological InstrumentationRussian Academy of SciencesPushchinoRussian Federation
  6. 6.Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of CytologyRussian Academy of SciencesSt. PetersburgRussian Federation

Personalised recommendations