Molecular Neurobiology

, Volume 53, Issue 3, pp 1824–1842 | Cite as

GM1 Ganglioside: Past Studies and Future Potential

  • Massimo Aureli
  • Laura Mauri
  • Maria Grazia Ciampa
  • Alessandro Prinetti
  • Gino Toffano
  • Cynthia Secchieri
  • Sandro SonninoEmail author


Gangliosides (sialic acid-containing glycosphingolipids) are abundant in neurons of all animal species and play important roles in many cell physiological processes, including differentiation, memory control, cell signaling, neuronal protection, neuronal recovery, and apoptosis. Gangliosides also function as anchors or entry points for various toxins, bacteria, viruses, and autoantibodies. GM1, a ganglioside component of mammalian brains, is present mainly in neurons. GM1 is one of the best studied gangliosides, and our understanding of its properties is extensive. Simple and rapid procedures are available for preparation of GM1 as a natural compound on a large scale, or as a derivative containing an isotopic radionuclide or a specific probe. Great research interest in the properties of GM1 arose from the discovery in the early 1970s of its role as receptor for the bacterial toxin responsible for cholera pathogenesis.


GM1 GM1 Chemistry and Physico-chemistry GM1 and Cholera toxin Cellular organization of GM1 Neurotrophic and neuroprotective properties of GM1 GM1 and the neurodegenerative diseases GM1 and GBS 


Conflict of Interest



  1. 1.
    Kuhn R, Wiegandt H (1963) Die Konstitution der Ganglio-N-tetraose und des Gangliosids GI. Chem Ber 96:866–880. doi: 10.1002/cber.19630960329 CrossRefGoogle Scholar
  2. 2.
    Chester MA (1998) IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of glycolipids—recommendations 1997. Eur J Biochem 257:293–8PubMedCrossRefGoogle Scholar
  3. 3.
    Schauer R (1982) Sialic acids, chemistry, metabolism, and function. Springer-Verlag, WienCrossRefGoogle Scholar
  4. 4.
    Svennerholm L (1980) Ganglioside designation. Adv Exp Med Biol 125:11PubMedCrossRefGoogle Scholar
  5. 5.
    Karlsson KA (1970) On the chemistry and occurrence of sphingolipid long-chain bases. Chem Phys Lipids 5:6–43PubMedCrossRefGoogle Scholar
  6. 6.
    Sonnino S, Chigorno V (2000) Ganglioside molecular species containing C18- and C20-sphingosine in mammalian nervous tissues and neuronal cell cultures. Biochim Biophys Acta 1469:63–77PubMedCrossRefGoogle Scholar
  7. 7.
    Palestini P, Sonnino S, Tettamanti G (1991) Lack of the ganglioside molecular species containing the C20-long-chain bases in human, rat, mouse, rabbit, cat, dog, and chicken brains during prenatal life. J Neurochem 56:2048–50PubMedCrossRefGoogle Scholar
  8. 8.
    Carter HE, Glick FJ, Norris WP, Phillips GE (1947) Biochemistry of the sphingolipides: III. Structure of sphingosine. J Biol Chem 170:285–294Google Scholar
  9. 9.
    Carter HE, Rothfus JA, Gigg R (1961) Biochemistry of the sphingolipids: XII. Conversion of cerebrosides to ceramides and sphingosine; structure of Gaucher cerebroside. J Lipid Res 2:228–234Google Scholar
  10. 10.
    Ghidoni R, Sonnino S, Tettamanti G, Baumann N, Reuter G, Schauer R (1980) Isolation and characterization of a trisialoganglioside from mouse brain, containing 9-O-acetyl-N-acetylneuraminic acid. J Biol Chem 255:6990–5PubMedGoogle Scholar
  11. 11.
    Riboni L, Sonnino S, Acquotti D, Malesci A, Ghidoni R, Egge H, Mingrino S, Tettamanti G (1986) Natural occurrence of ganglioside lactones. Isolation and characterization of GD1b inner ester from adult human brain. J Biol Chem 261:8514–9PubMedGoogle Scholar
  12. 12.
    Tettamanti G, Bonali F, Marchesini S, Zambotti V (1973) A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta 296:160–70PubMedCrossRefGoogle Scholar
  13. 13.
    Svennerholm L, Fredman P (1980) A procedure for the quantitative isolation of brain gangliosides. Biochim Biophys Acta 617:97–109PubMedCrossRefGoogle Scholar
  14. 14.
    Iwamori M, Nagai Y (1978) A new chromatographic approach to the resolution of individual gangliosides. Ganglioside mapping. Biochim Biophys Acta 528:257–67PubMedCrossRefGoogle Scholar
  15. 15.
    Koul O, Prada-Maluf M, McCluer RH, Ullman MD (1991) Rapid isolation of monosialogangliosides from bovine brain gangliosides by selective-overload chromatography. J Lipid Res 32:1712–5PubMedGoogle Scholar
  16. 16.
    Fronza G, Kirschner G, Acquotti D, Bassi R, Tagliavacca L, Sonnino S (1988) Synthesis and structural characterization of the dilactone derivative of GD1a ganglioside. Carbohydr Res 182:31–40PubMedCrossRefGoogle Scholar
  17. 17.
    Sonnino SRL, Acquotti D, Fronza G, Kirschner G, Ghidoni R, Tettamanti G (1988) Biochemistry of gangliosides lactones. In: Ledeen RW, Hogan EL, Tettamanti G, Yates AJ, Yu RK (eds) New trends in ganglioside research: neurochemical and neuroregenerative aspects. Fidia Research Series, Liviana Press, Padova, p 14, 47–61Google Scholar
  18. 18.
    Acquotti D, Cantu L, Ragg E, Sonnino S (1994) Geometrical and conformational properties of ganglioside GalNAc-GD1a, IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer. Eur J Biochem 225:271–88PubMedCrossRefGoogle Scholar
  19. 19.
    Svennerholm L, Mansson JE, Li YT (1973) Isolation and structural determination of a novel ganglioside, a disialosylpentahexosylceramide from human brain. J Biol Chem 248:740–2PubMedGoogle Scholar
  20. 20.
    Sonnino S, Ghidoni R, Gazzotti G, Kirschner G, Galli G, Tettamanti G (1984) High performance liquid chromatography preparation of the molecular species of GM1 and GD1a gangliosides with homogeneous long chain base composition. J Lipid Res 25:620–9PubMedGoogle Scholar
  21. 21.
    Gazzotti G, Sonnino S, Ghidoni R, Kirschner G, Tettamanti G (1984) Analytical and preparative high-performance liquid chromatography of gangliosides. J Neurosci Res 12:179–92. doi: 10.1002/jnr.490120206 PubMedCrossRefGoogle Scholar
  22. 22.
    Sonnino S, Acquotti D, Kirschner G, Uguaglianza A, Zecca L, Rubino F, Tettamanti G (1992) Preparation of lyso-GM1 (II3Neu5AcGgOse4-long chain bases) by a one-pot reaction. J Lipid Res 33:1221–6PubMedGoogle Scholar
  23. 23.
    Sonnino S, Kirschner G, Ghidoni R, Acquotti D, Tettamanti G (1985) Preparation of GM1 ganglioside molecular species having homogeneous fatty acid and long chain base moieties. J Lipid Res 26:248–57PubMedGoogle Scholar
  24. 24.
    Neuenhofer S, Schwarzmann G, Egge H, Sandhoff K (1985) Synthesis of lysogangliosides. Biochemistry 24:525–32PubMedCrossRefGoogle Scholar
  25. 25.
    Holmgren J, Mansson JE, Svennerholm L (1974) Tissue receptor for cholera exotoxin: structural requirements of G11 ganglioside in toxin binding and inactivation. Med Biol 52:229–33PubMedGoogle Scholar
  26. 26.
    Tayot JL, Tardy M (1980) Isolation of cholera toxin by affinity chromatography on porous silica beads with covalently coupled ganglioside GM1. Adv Exp Med Biol 125:471–8PubMedCrossRefGoogle Scholar
  27. 27.
    Palestini P, Allietta M, Sonnino S, Tettamanti G, Thompson TE, Tillack TW (1995) Gel phase preference of ganglioside GM1 at low concentration in two-component, two-phase phosphatidylcholine bilayers depends upon the ceramide moiety. Biochim Biophys Acta 1235:221–30PubMedCrossRefGoogle Scholar
  28. 28.
    Sonnino S, Acquotti D, Fronza G, Cantu L, Chigorno V, Pitto M, Kirschner G, Tettamanti G (1988) Semisynthetic preparation of N-glycolylneuraminic acid containing GM1 ganglioside: chemical characterization, physico-chemical properties and some biochemical features. Chem Phys Lipids 46:181–91PubMedCrossRefGoogle Scholar
  29. 29.
    Campanero-Rhodes MA, Smith A, Chai W, Sonnino S, Mauri L, Childs RA, Zhang Y, Ewers H, Helenius A, Imberty A, Feizi T (2007) N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J Virol 81:12846–58. doi: 10.1128/JVI. 01311-07 PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Sonnino S, Nicolini M, Chigorno V (1996) Preparation of radiolabeled gangliosides. Glycobiology 6:479–87PubMedCrossRefGoogle Scholar
  31. 31.
    Sonnino S, Chigorno V, Tettamanti G (2000) Preparation of radioactive gangliosides, 3H or 14C isotopically labeled at oligosaccharide or ceramide moieties. Methods Enzymol 311:639–56PubMedCrossRefGoogle Scholar
  32. 32.
    Sonnino S, Chigorno V, Acquotti D, Pitto M, Kirschner G, Tettamanti G (1989) A photoreactive derivative of radiolabeled GM1 ganglioside: preparation and use to establish the involvement of specific proteins in GM1 uptake by human fibroblasts in culture. Biochemistry 28:77–84PubMedCrossRefGoogle Scholar
  33. 33.
    Mauri L, Prioni S, Loberto N, Chigorno V, Prinetti A, Sonnino S (2004) Synthesis of radioactive and photoactivable ganglioside derivatives for the study of ganglioside–protein interactions. Glycoconj J 20:11–23. doi: 10.1023/B:GLYC.0000016738.37102.03 PubMedCrossRefGoogle Scholar
  34. 34.
    Palestini P, Pitto M, Tedeschi G, Ferraretto A, Parenti M, Brunner J, Masserini M (2000) Tubulin anchoring to glycolipid-enriched, detergent-resistant domains of the neuronal plasma membrane. J Biol Chem 275:9978–85PubMedCrossRefGoogle Scholar
  35. 35.
    Prioni S, Mauri L, Loberto N, Casellato R, Chigorno V, Karagogeos D, Prinetti A, Sonnino S (2004) Interactions between gangliosides and proteins in the exoplasmic leaflet of neuronal plasma membranes: a study performed with a tritium-labeled GM1 derivative containing a photoactivable group linked to the oligosaccharide chain. Glycoconj J 21:461–70. doi: 10.1007/s10719-004-5536-4 PubMedCrossRefGoogle Scholar
  36. 36.
    Acquotti D, Sonnino S, Masserini M, Casella L, Fronza G, Tettamanti G (1986) A new chemical procedure for the preparation of gangliosides carrying fluorescent or paramagnetic probes on the lipid moiety. Chem Phys Lipids 40:71–86PubMedCrossRefGoogle Scholar
  37. 37.
    Schwarzmann G, Arenz C, Sandhoff K (2014) Labeled chemical biology tools for investigating sphingolipid metabolism, trafficking and interaction with lipids and proteins. Biochim Biophys Acta 1841:1161–73. doi: 10.1016/j.bbalip.2013.12.011 PubMedCrossRefGoogle Scholar
  38. 38.
    Ledeen RW (1978) Ganglioside structures and distribution: are they localized at the nerve ending? J Supramol Struct 8:1–17. doi: 10.1002/jss.400080102 PubMedCrossRefGoogle Scholar
  39. 39.
    Svennerholm L (1964) The gangliosides. J Lipid Res 5:145–55PubMedGoogle Scholar
  40. 40.
    Wiegandt H (1968) The structure and the function of gangliosides. Angew Chem Int Ed Engl 7:87–96. doi: 10.1002/anie.196800871 PubMedCrossRefGoogle Scholar
  41. 41.
    Yu R, Yanagisawa M, Ariga T (2007) Glycosphingolipid structures. Compr Glycosci 1:73–122CrossRefGoogle Scholar
  42. 42.
    Riboni L, Malesci A, Gaini SM, Sonnino S, Ghidoni R, Tettamanti G (1984) Ganglioside pattern of normal human brain, from samples obtained at surgery. A study especially referred to alkali labile species. J Biochem 96:1943–6PubMedCrossRefGoogle Scholar
  43. 43.
    Yu RK, Ledeen RW (1970) Gas–liquid chromatographic assay of lipid-bound sialic acids: measurement of gangliosides in brain of several species. J Lipid Res 11:506–516PubMedGoogle Scholar
  44. 44.
    Haverkamp J, Veh RW, Sander M, Schauer R, Kamerling JP, Vliegenthart JG (1977) Demonstration of 9-O-acetyl-N-acetylneuraminic acid in brain gangliosides from various vertebrates including man. Hoppe Seylers Z Physiol Chem 358:1609–12PubMedCrossRefGoogle Scholar
  45. 45.
    Hurd CD (1970) The acidities of ascorbic and sialic acids. J Chem Educ 47:481–2PubMedCrossRefGoogle Scholar
  46. 46.
    Cantu L, Corti M, Sonnino S, Tettamanti G (1986) Light scattering measurements on gangliosides: dependence of micellar properties on molecular structure and temperature. Chem Phys Lipids 41:315–28PubMedCrossRefGoogle Scholar
  47. 47.
    Sonnino S, Prinetti A, Mauri L, Chigorno V, Tettamanti G (2006) Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev 106:2111–25. doi: 10.1021/cr0100446 PubMedCrossRefGoogle Scholar
  48. 48.
    Sonnino S, Mauri L, Chigorno V, Prinetti A (2007) Gangliosides as components of lipid membrane domains. Glycobiology 17:1R–13R. doi: 10.1093/glycob/cwl052 PubMedCrossRefGoogle Scholar
  49. 49.
    Sonnino S, Cantu L, Corti M, Acquotti D, Venerando B (1994) Aggregative properties of gangliosides in solution. Chem Phys Lipids 71:21–45PubMedCrossRefGoogle Scholar
  50. 50.
    Corti M, Degiorgio V, Ghidoni R, Sonnino S, Tettamanti G (1980) Laser-light scattering investigation of the micellar properties of gangliosides. Chem Phys Lipids 26:225–38PubMedCrossRefGoogle Scholar
  51. 51.
    Ulrich-Bott B, Wiegandt H (1984) Micellar properties of glycosphingolipids in aqueous media. J Lipid Res 25:1233–45PubMedGoogle Scholar
  52. 52.
    Saqr HE, Pearl DK, Yates AJ (1993) A review and predictive models of ganglioside uptake by biological membranes. J Neurochem 61:395–411PubMedCrossRefGoogle Scholar
  53. 53.
    Tomasi M, Roda LG, Ausiello C, D’Agnolo G, Venerando B, Ghidoni R, Sonnino S, Tettamanti G (1980) Interaction of GMI ganglioside with bovine serum albumin: formation and isolation of multiple complexes. Eur J Biochem 111:315–24PubMedCrossRefGoogle Scholar
  54. 54.
    Venerando B, Roberti S, Sonnino S, Fiorilli A, Tettamanti G (1982) Interactions of ganglioside GM1 with human and fetal calf sera. Formation of ganglioside–serum albumin complexes. Biochim Biophys Acta 692:18–26PubMedCrossRefGoogle Scholar
  55. 55.
    Cantu L, Corti M, Salina P (1991) Direct measurement of the formation time of mixed micelles. J Phys Chem 95:5981–5983. doi: 10.1021/j100168a048 CrossRefGoogle Scholar
  56. 56.
    Acquotti D, Poppe L, Dabrowski J, Vonderlieth CW, Sonnino S, Tettamanti G (1990) 3-Dimensional structure of the oligosaccharide chain of gm1 ganglioside revealed by a distance-mapping procedure — a rotating and laboratory frame nuclear overhauser enhancement investigation of native glycolipid in dimethyl-sulfoxide and in water dodecylphosphocholine solutions. J Am Chem Soc 112:7772–7778. doi: 10.1021/Ja00177a043 CrossRefGoogle Scholar
  57. 57.
    Brocca P, Bernardi A, Raimondi L, Sonnino S (2000) Modeling ganglioside headgroups by conformational analysis and molecular dynamics. Glycoconj J 17:283–99PubMedCrossRefGoogle Scholar
  58. 58.
    Brocca P, Berthault P, Sonnino S (1998) Conformation of the oligosaccharide chain of G(M1) ganglioside in a carbohydrate-enriched surface. Biophys J 74:309–18. doi: 10.1016/S0006-3495(98)77788-4 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Brocca P, Acquotti D, Sonnino S (1996) Nuclear Overhauser effect investigation on GM1 ganglioside containing N-glycolyl-neuraminic acid (II3Neu5GcGgOse4Cer). Glycoconj J 13:57–62PubMedCrossRefGoogle Scholar
  60. 60.
    Brocca P, Acquotti D, Sonnino S (1993) 1H-NMR study on ganglioside amide protons: evidence that the deuterium exchange kinetics are affected by the preparation of samples. Glycoconj J 10:441–6PubMedCrossRefGoogle Scholar
  61. 61.
    Casellato R, Brocca P, Li SC, Li YT, Sonnino S (1995) Isolation and structural characterization of N-acetyl- and N-glycolylneuraminic-acid-containing GalNAc-GD1a isomers, IV4GalNAcIV3Neu5AcII3Neu5GcGgOse4Cer and IV4GalNAcIV3Neu5GcII3Neu5AcGgOse4Cer, from bovine brain. Eur J Biochem 234:786–93PubMedCrossRefGoogle Scholar
  62. 62.
    Poppe L, van Halbeek H, Acquotti D, Sonnino S (1994) Carbohydrate dynamics at a micellar surface: GD1a headgroup transformations revealed by NMR spectroscopy. Biophys J 66:1642–52. doi: 10.1016/S0006-3495(94)80956-7 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mauri L, Casellato R, Ciampa MG, Uekusa Y, Kato K, Kaida K, Motoyama M, Kusunoki S, Sonnino S (2012) Anti-GM1/GD1a complex antibodies in GBS sera specifically recognize the hybrid dimer GM1–GD1a. Glycobiology 22:352–60. doi: 10.1093/glycob/cwr139 PubMedCrossRefGoogle Scholar
  64. 64.
    Bach D, Sela B, Miller IR (1982) Compositional aspects of lipid hydration. Chem Phys Lipids 31:381–94PubMedCrossRefGoogle Scholar
  65. 65.
    Holmgren J, Lonnroth I, Svennerholm L (1973) Tissue receptor for cholera exotoxin: postulated structure from studies with GM1 ganglioside and related glycolipids. Infect Immun 8:208–14PubMedPubMedCentralGoogle Scholar
  66. 66.
    Sixma TK, Kalk KH, van Zanten BA, Dauter Z, Kingma J, Witholt B, Hol WG (1993) Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol 230:890–918. doi: 10.1006/jmbi.1993.1209 PubMedCrossRefGoogle Scholar
  67. 67.
    Falnes PO, Sandvig K (2000) Penetration of protein toxins into cells. Curr Opin Cell Biol 12:407–13PubMedCrossRefGoogle Scholar
  68. 68.
    Wernick NL, Chinnapen DJ, Cho JA, Lencer WI (2010) Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum. Toxins (Basel) 2:310–25. doi: 10.3390/toxins2030310 CrossRefGoogle Scholar
  69. 69.
    Orlandi PA, Fishman PH (1998) Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 141:905–15PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Torgersen ML, Skretting G, van Deurs B, Sandvig K (2001) Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci 114:3737–47PubMedGoogle Scholar
  71. 71.
    Kirkham M, Fujita A, Chadda R, Nixon SJ, Kurzchalia TV, Sharma DK, Pagano RE, Hancock JF, Mayor S, Parton RG (2005) Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol 168:465–76. doi: 10.1083/jcb.200407078 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Masserini M, Freire E, Palestini P, Calappi E, Tettamanti G (1992) Fuc-GM1 ganglioside mimics the receptor function of GM1 for cholera toxin. Biochemistry 31:2422–6PubMedCrossRefGoogle Scholar
  73. 73.
    Kuziemko GM, Stroh M, Stevens RC (1996) Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry 35:6375–84. doi: 10.1021/bi952314i PubMedCrossRefGoogle Scholar
  74. 74.
    Wu GS, Ledeen R (1988) Quantification of gangliotetraose gangliosides with cholera toxin. Anal Biochem 173:368–75PubMedCrossRefGoogle Scholar
  75. 75.
    Cambron LD, Leskawa KC (1990) A sensitive method to quantitate gangliosides of the gangliotetraose series directly on chromatograms using peroxidase conjugated cholera toxin. Stain Technol 65:293–7PubMedCrossRefGoogle Scholar
  76. 76.
    Davidsson P, Fredman P, Svennerholm L (1989) Gangliosides and sulphatide in human cerebrospinal fluid: quantitation with immunoaffinity techniques. J Chromatogr 496:279–89PubMedCrossRefGoogle Scholar
  77. 77.
    Hansson HA, Holmgren J, Svennerholm L (1977) Ultrastructural localization of cell membrane GM1 ganglioside by cholera toxin. Proc Natl Acad Sci U S A 74:3782–6PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Spiegel S (1988) Gangliosides are biomodulators of cell growth. In: Ledeen RW, Hogan EL, Tettamanti G, Yates AJ, Yu RK (eds) New trends in ganglioside research: neurochemical and neurodegenerative aspects. Liviana Press, PadovaGoogle Scholar
  79. 79.
    Wang F, Buckley NE, Olivera A, Goodemote KA, Su Y, Spiegel S (1996) Involvement of sphingolipids metabolites in cellular proliferation modulated by ganglioside GM1. Glycoconj J 13:937–45PubMedCrossRefGoogle Scholar
  80. 80.
    Spiegel S (1990) Cautionary note on the use of the B subunit of cholera toxin as a ganglioside GM1 probe: detection of cholera toxin A subunit in B subunit preparations by a sensitive adenylate cyclase assay. J Cell Biochem 42:143–52. doi: 10.1002/jcb.240420305 PubMedCrossRefGoogle Scholar
  81. 81.
    Stoll BJ, Holmgren J, Bardhan PK, Huq I, Greenough WB 3rd, Fredman P, Svennerholm L (1980) Binding of intraluminal toxin in cholera: trial of GM1 ganglioside charcoal. Lancet 2:888–91PubMedCrossRefGoogle Scholar
  82. 82.
    Glass RI, Holmgren J, Khan MR, Hossain KM, Huq MI, Greenough WB (1984) A randomized, controlled trial of the toxin-blocking effects of B subunit in family members of patients with cholera. J Infect Dis 149:495–500PubMedCrossRefGoogle Scholar
  83. 83.
    Cantu L, Del Favero E, Sonnino S, Prinetti A (2011) Gangliosides and the multiscale modulation of membrane structure. Chem Phys Lipids 164:796–810. doi: 10.1016/j.chemphyslip.2011.09.005 PubMedCrossRefGoogle Scholar
  84. 84.
    Svennerholm L, Bostrom K, Jungbjer B, Olsson L (1994) Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J Neurochem 63:1802–11PubMedCrossRefGoogle Scholar
  85. 85.
    Prinetti A, Chigorno V, Mauri L, Loberto N, Sonnino S (2007) Modulation of cell functions by glycosphingolipid metabolic remodeling in the plasma membrane. J Neurochem 103(Suppl 1):113–25. doi: 10.1111/j.1471-4159.2007.04714.x PubMedCrossRefGoogle Scholar
  86. 86.
    Tettamanti G, Preti A, Lombardo A, Bonali F, Zambotti V (1973) Parallelism of subcellular location of major particulate neuraminidase and gangliosides in rabbit brain cortex. Biochim Biophys Acta 306:466–77PubMedCrossRefGoogle Scholar
  87. 87.
    Yu RK, Saito M (1989) Structure and localization of gangliosides. Plenum, New YorkCrossRefGoogle Scholar
  88. 88.
    Ichikawa N, Iwabuchi K, Kurihara H, Ishii K, Kobayashi T, Sasaki T, Hattori N, Mizuno Y, Hozumi K, Yamada Y, Arikawa-Hirasawa E (2009) Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. J Cell Sci 122:289–99. doi: 10.1242/jcs.030338 PubMedCrossRefGoogle Scholar
  89. 89.
    Forman DS, Ledeen RW (1972) Axonal transport of gangliosides in the goldfish optic nerve. Science 177:630–3PubMedCrossRefGoogle Scholar
  90. 90.
    Sofer A, Schwarzmann G, Futerman AH (1996) The internalization of a short acyl chain analogue of ganglioside GM1 in polarized neurons. J Cell Sci 109(Pt 8):2111–9PubMedGoogle Scholar
  91. 91.
    Ledeen RW, Parsons SM, Diebler MF, Sbaschnig-Agler M, Lazereg S (1988) Ganglioside composition of synaptic vesicles from Torpedo electric organ. J Neurochem 51:1465–9PubMedCrossRefGoogle Scholar
  92. 92.
    Mobius W, Herzog V, Sandhoff K, Schwarzmann G (1999) Gangliosides are transported from the plasma membrane to intralysosomal membranes as revealed by immuno-electron microscopy. Biosci Rep 19:307–16PubMedCrossRefGoogle Scholar
  93. 93.
    Mobius W, Herzog V, Sandhoff K, Schwarzmann G (1999) Intracellular distribution of a biotin-labeled ganglioside, GM1, by immunoelectron microscopy after endocytosis in fibroblasts. J Histochem Cytochem 47:1005–14PubMedCrossRefGoogle Scholar
  94. 94.
    Kimura N, Yanagisawa K (2007) Endosomal accumulation of GM1 ganglioside-bound amyloid beta-protein in neurons of aged monkey brains. Neuroreport 18:1669–73. doi: 10.1097/WNR.0b013e3282f0d2ab PubMedCrossRefGoogle Scholar
  95. 95.
    Saslowsky DE, te Welscher YM, Chinnapen DJ, Wagner JS, Wan J, Kern E, Lencer WI (2013) Ganglioside GM1-mediated transcytosis of cholera toxin bypasses the retrograde pathway and depends on the structure of the ceramide domain. J Biol Chem 288:25804–9. doi: 10.1074/jbc.M113.474957 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Chinnapen DJ, Hsieh WT, te Welscher YM, Saslowsky DE, Kaoutzani L, Brandsma E, D’Auria L, Park H, Wagner JS, Drake KR, Kang M, Benjamin T, Ullman MD, Costello CE, Kenworthy AK, Baumgart T, Massol RH, Lencer WI (2012) Lipid sorting by ceramide structure from plasma membrane to ER for the cholera toxin receptor ganglioside GM1. Dev Cell 23:573–86. doi: 10.1016/j.devcel.2012.08.002 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Iglesias-Bartolome R, Trenchi A, Comin R, Moyano AL, Nores GA, Daniotti JL (2009) Differential endocytic trafficking of neuropathy-associated antibodies to GM1 ganglioside and cholera toxin in epithelial and neural cells. Biochim Biophys Acta 1788:2526–40. doi: 10.1016/j.bbamem.2009.09.018 PubMedCrossRefGoogle Scholar
  98. 98.
    Sofer A, Futerman AH (1996) Rate of retrograde transport of cholera toxin from the plasma membrane to the Golgi apparatus and endoplasmic reticulum decreases during neuronal development. J Neurochem 67:2134–40PubMedCrossRefGoogle Scholar
  99. 99.
    Chigorno V, Valsecchi M, Acquotti D, Sonnino S, Tettamanti G (1990) Formation of a cytosolic ganglioside–protein complex following administration of photoreactive ganglioside GM1 to human fibroblasts in culture. FEBS Lett 263:329–31PubMedCrossRefGoogle Scholar
  100. 100.
    Sonnino S, Chigorno V, Valsecchi M, Pitto M, Tettamanti G (1992) Specific ganglioside–cell protein interactions: a study performed with GM1 ganglioside derivative containing photoactivable azide and rat cerebellar granule cells in culture. Neurochem Int 20:315–21PubMedCrossRefGoogle Scholar
  101. 101.
    Sonnino S, Ghidoni R, Fiorilli A, Venerando B, Tettamanti G (1984) Cytosolic gangliosides of rat brain: their fractionation into protein-bound complexes of different ganglioside compositions. J Neurosci Res 12:193–204. doi: 10.1002/jnr.490120207 PubMedCrossRefGoogle Scholar
  102. 102.
    Sanyal SN (1987) Evidence for the presence of a glycosphingolipid-transfer protein in rat brain cytosol. Biochem Cell Biol 65:493–500PubMedCrossRefGoogle Scholar
  103. 103.
    Lauria I, van Uum J, Mjumjunov-Crncevic E, Walrafen D, Spitta L, Thiele C, Lang T (2013) GLTP mediated non-vesicular GM1 transport between native membranes. PLoS One 8:e59871. doi: 10.1371/journal.pone.0059871 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Waugh MG (2013) Raft-like membranes from the trans-Golgi network and endosomal compartments. Nat Protoc 8:2429–39. doi: 10.1038/nprot.2013.148 PubMedCrossRefGoogle Scholar
  105. 105.
    Russo D, Capasso S, Sticco L, De Gregorio R, Bellenchi G, Persico M, DElla Ragione F, Matarazzo M, D’Angelo G (2014) Glycosphingolipids dependent regulatory circuits controlling gene expression. EMBO workshop: cellular imaging of lipids, Vico Equense, pp 56Google Scholar
  106. 106.
    Sano R, Annunziata I, Patterson A, Moshiach S, Gomero E, Opferman J, Forte M, d’Azzo A (2009) GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Mol Cell 36:500–11. doi: 10.1016/j.molcel.2009.10.021 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Matyas GR, Morre DJ (1987) Subcellular distribution and biosynthesis of rat liver gangliosides. Biochim Biophys Acta 921:599–614PubMedCrossRefGoogle Scholar
  108. 108.
    Wu G, Lu ZH, Ledeen RW (1995) GM1 ganglioside in the nuclear membrane modulates nuclear calcium homeostasis during neurite outgrowth. J Neurochem 65:1419–22PubMedCrossRefGoogle Scholar
  109. 109.
    Lucki NC, Sewer MB (2012) Nuclear sphingolipid metabolism. Annu Rev Physiol 74:131–51. doi: 10.1146/annurev-physiol-020911-153321 PubMedCrossRefGoogle Scholar
  110. 110.
    Ledeen RW, Wu G (2006) Gangliosides of the nuclear membrane: a crucial locus of cytoprotective modulation. J Cell Biochem 97:893–903. doi: 10.1002/jcb.20731 PubMedCrossRefGoogle Scholar
  111. 111.
    Sonnino S, Prinetti A (2010) Lipids and membrane lateral organization. Front Physiol 1:153. doi: 10.3389/fphys.2010.00153 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Sonnino S, Prinetti A (2013) Membrane domains and the “lipid raft” concept. Curr Med Chem 20:4–21PubMedGoogle Scholar
  113. 113.
    Pascher I (1976) Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455:433–51PubMedCrossRefGoogle Scholar
  114. 114.
    Pandit SA, Jakobsson E, Scott HL (2004) Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine. Biophys J 87:3312–22. doi: 10.1529/biophysj.104.046078 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Mombelli E, Morris R, Taylor W, Fraternali F (2003) Hydrogen-bonding propensities of sphingomyelin in solution and in a bilayer assembly: a molecular dynamics study. Biophys J 84:1507–17. doi: 10.1016/S0006-3495(03)74963-7 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Sastry PS (1985) Lipids of nervous tissue: composition and metabolism. Prog Lipid Res 24:69–176PubMedCrossRefGoogle Scholar
  117. 117.
    Acquotti D, Poppe L, Dabrowski J, von der Lieth GW, Sonnino S, Tettamanti G (1990) Three-dimensional structure of the oligosaccaride chain of gm1 ganglioside revealed by a distance-mapping procedure: a rotating and laboratory frame nuclear overhauser enhancement investigation of native glycolipid in dimethyl sulfoxide and in water-dodecylphosphocholine solutions. J Am Chem Soc 112:7772–7778CrossRefGoogle Scholar
  118. 118.
    Brocca P, Cantu L, Sonnino S (1995) Aggregation properties of semisynthetic GD1a ganglioside (IV3Neu5AcII3Neu5AcGgOse4Cer) containing an acetyl group as acyl moiety. Chem Phys Lipids 77:41–9PubMedCrossRefGoogle Scholar
  119. 119.
    Masserini M, Freire E (1986) Thermotropic characterization of phosphatidylcholine vesicles containing ganglioside GM1 with homogeneous ceramide chain length. Biochemistry 25:1043–9PubMedCrossRefGoogle Scholar
  120. 120.
    Masserini M, Palestini P, Venerando B, Fiorilli A, Acquotti D, Tettamanti G (1988) Interactions of proteins with ganglioside-enriched microdomains on the membrane: the lateral phase separation of molecular species of GD1a ganglioside, having homogeneous long-chain base composition, is recognized by Vibrio cholerae sialidase. Biochemistry 27:7973–8PubMedCrossRefGoogle Scholar
  121. 121.
    Masserini M, Palestini P, Freire E (1989) Influence of glycolipid oligosaccharide and long-chain base composition on the thermotropic properties of dipalmitoylphosphatidylcholine large unilamellar vesicles containing gangliosides. Biochemistry 28:5029–34PubMedCrossRefGoogle Scholar
  122. 122.
    Rock P, Allietta M, Young WW Jr, Thompson TE, Tillack TW (1991) Ganglioside GM1 and asialo-GM1 at low concentration are preferentially incorporated into the gel phase in two-component, two-phase phosphatidylcholine bilayers. Biochemistry 30:19–25PubMedCrossRefGoogle Scholar
  123. 123.
    Ferraretto A, Pitto M, Palestini P, Masserini M (1997) Lipid domains in the membrane: thermotropic properties of sphingomyelin vesicles containing GM1 ganglioside and cholesterol. Biochemistry 36:9232–6PubMedCrossRefGoogle Scholar
  124. 124.
    Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32. doi: 10.1038/nmeth.1291 PubMedCrossRefGoogle Scholar
  125. 125.
    Eggeling C, Mueller V, Ringemann C, Sahl Steffen J, Leutenegger M, Schwarzmann G, Belov V, SchÃnle A, Hell SW (2010) Exploring membrane dynamics by fluorescence nanoscopy. Biophys J 98:619aCrossRefGoogle Scholar
  126. 126.
    Eggeling C, Ringemann C, Medda R, Hein B, Hell SW (2009) High-resolution far-field fluorescence STED microscopy reveals nanoscale details of molecular membrane dynamics. Biophys J 96:197aCrossRefGoogle Scholar
  127. 127.
    Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–62. doi: 10.1038/nature07596 PubMedCrossRefGoogle Scholar
  128. 128.
    Lingwood D, Ries J, Schwille P, Simons K (2008) Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc Natl Acad Sci U S A 105:10005–10. doi: 10.1073/pnas.0804374105 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Kaiser HJ, Lingwood D, Levental I, Sampaio JL, Kalvodova L, Rajendran L, Simons K (2009) Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci U S A 106:16645–50. doi: 10.1073/pnas.0908987106 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Cantu L, Corti M, Sonnino S, Tettamanti G (1990) Evidence for spontaneous segregation phenomena in mixed micelles of gangliosides. Chem Phys Lipids 55:223–9PubMedCrossRefGoogle Scholar
  131. 131.
    Cantù L, Corti M, Casellato R, Acquotti D, Sonnino S (1991) Aggregation properties of GD1b, II3Neu5Ac2GgOse4Cer, and of GD1b-lactone, II3[alpha-Neu5Ac-(2-8, 1-9)-alpha-Neu5Ac]GgOse4Cer, in aqueous solution. Chem Phys Lipids 60:111–118PubMedCrossRefGoogle Scholar
  132. 132.
    Del Favero E, Brocca P, Motta S, Rondelli V, Sonnino S, Cantu L (2011) Nanoscale structural response of ganglioside-containing aggregates to the interaction with sialidase. J Neurochem 116:833–9. doi: 10.1111/j.1471-4159.2010.07031.x PubMedCrossRefGoogle Scholar
  133. 133.
    Vyas KA, Patel HV, Vyas AA, Schnaar RL (2001) Segregation of gangliosides GM1 and GD3 on cell membranes, isolated membrane rafts, and defined supported lipid monolayers. Biol Chem 382:241–50. doi: 10.1515/BC.2001.031 PubMedCrossRefGoogle Scholar
  134. 134.
    Vyas AA, Patel HV, Fromholt SE, Heffer-Lauc M, Vyas KA, Dang J, Schachner M, Schnaar RL (2002) Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration. Proc Natl Acad Sci U S A 99:8412–7. doi: 10.1073/pnas.072211699 99/12/8412 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Hakomori S, Handa K, Iwabuchi K, Yamamura S, Prinetti A (1998) New insights in glycosphingolipid function: “glycosignaling domain,” a cell surface assembly of glycosphingolipids with signal transducer molecules,involved in cell adhesion coupled with signaling. Glycobiology 8:xi–xixPubMedCrossRefGoogle Scholar
  136. 136.
    Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 1746:234–51PubMedCrossRefGoogle Scholar
  137. 137.
    Mayor S, Rothberg KG, Maxfield FR (1994) Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264:1948–51PubMedCrossRefGoogle Scholar
  138. 138.
    Jost P, Brooks UJ, Griffith OH (1973) Fluidity of phospholipid bilayers and membranes after exposure to osmium tetroxide and gluteraldehyde. J Mol Biol 76:313–8PubMedCrossRefGoogle Scholar
  139. 139.
    Fujita A, Cheng J, Hirakawa M, Furukawa K, Kusunoki S, Fujimoto T (2007) Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol Biol Cell 18:2112–22. doi: 10.1091/mbc.E07-01-0071 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Fujita A, Cheng J, Fujimoto T (2009) Segregation of GM1 and GM3 clusters in the cell membrane depends on the intact actin cytoskeleton. Biochim Biophys Acta 1791:388–96PubMedCrossRefGoogle Scholar
  141. 141.
    Thudichum JLW (1884) A treatise on the chemical constitution of the brain; based throughout upon original researches. Baillière, Tindall, and Cox, LondonGoogle Scholar
  142. 142.
    Klenk E (1935) Über die Natur der Phosphatide und anderer Lipide des Gehirns und der Leber bei der Niemann-Pick’schen Krankheit. Z Physiol Chem 235:128–143CrossRefGoogle Scholar
  143. 143.
    Klenk E (1939) Beiträge zur Chemie der Lipidosen. Z Physiol Chem 262:24–36CrossRefGoogle Scholar
  144. 144.
    Gottschalk A (1955) Structural relationship between sialic acid, neuraminic acid and 2-carboxy-pyrrole. Nature 176:881–882CrossRefGoogle Scholar
  145. 145.
    Zoli M, Benfenati F, Pich EM, Toffano G, Fuxe K, Agnati LF (1990) Aspects of neural plasticity in the central nervous system—IV. Chemical anatomical studies on the aging brain. Neurochem Int 16:437–49PubMedCrossRefGoogle Scholar
  146. 146.
    Tettamanti G, Meeting ISfN (1986) Gangliosides and neuronal plasticity. Liviana PressGoogle Scholar
  147. 147.
    Allende ML, Proia RL (2014) Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function. Glycoconj J 31:613–22. doi: 10.1007/s10719-014-9563-5 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Yamashita T, Wada R, Proia RL (2002) Early developmental expression of the gene encoding glucosylceramide synthase, the enzyme controlling the first committed step of glycosphingolipid synthesis. Biochim Biophys Acta 1573:236–40PubMedCrossRefGoogle Scholar
  149. 149.
    Wu G, Lu ZH, Kulkarni N, Amin R, Ledeen RW (2011) Mice lacking major brain gangliosides develop parkinsonism. Neurochem Res 36:1706–14. doi: 10.1007/s11064-011-0437-y PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Lipartiti M, Lazzaro A, Zanoni R, Mazzari S, Toffano G, Leon A (1991) Monosialoganglioside GM1 reduces NMDA neurotoxicity in neonatal rat brain. Exp Neurol 113:301–5PubMedCrossRefGoogle Scholar
  151. 151.
    Toffano G, Savoini G, Moroni F, Lombardi G, Calza L, Agnati LF (1983) GM1 ganglioside stimulates the regeneration of dopaminergic neurons in the central nervous system. Brain Res 261:163–6PubMedCrossRefGoogle Scholar
  152. 152.
    Agnati LF, Fuxe K, Benfenati F, Battistini N (1983) Neurotensin in vitro markedly reduces the affinity in subcortical limbic 3H-N-propylnorapomorphine binding sites. Acta Physiol Scand 119:459–61. doi: 10.1111/j.1748-1716.1983.tb07350.x PubMedCrossRefGoogle Scholar
  153. 153.
    Facci L, Leon A, Toffano G, Sonnino S, Ghidoni R, Tettamanti G (1984) Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1. J Neurochem 42:299–305PubMedCrossRefGoogle Scholar
  154. 154.
    Hadjiconstantinou M, Neff NH (1998) GM1 ganglioside: in vivo and in vitro trophic actions on central neurotransmitter systems. J Neurochem 70:1335–45PubMedCrossRefGoogle Scholar
  155. 155.
    Newburn EN, Duchemin AM, Neff NH, Hadjiconstantinou M (2014) GM1 ganglioside enhances Ret signaling in striatum. J Neurochem 130(4):541–54. doi: 10.1111/jnc.12760 PubMedCrossRefGoogle Scholar
  156. 156.
    Bachis A, Rabin SJ, Del Fiacco M, Mocchetti I (2002) Gangliosides prevent excitotoxicity through activation of TrkB receptor. Neurotox Res 4:225–34. doi: 10.1080/10298420290015836 PubMedCrossRefGoogle Scholar
  157. 157.
    Rabin SJ, Bachis A, Mocchetti I (2002) Gangliosides activate Trk receptors by inducing the release of neurotrophins. J Biol Chem 277:49466–72. doi: 10.1074/jbc.M203240200 PubMedCrossRefGoogle Scholar
  158. 158.
    Rabin SJ, Mocchetti I (1995) GM1 ganglioside activates the high-affinity nerve growth factor receptor trkA. J Neurochem 65:347–54PubMedCrossRefGoogle Scholar
  159. 159.
    Farooqui T, Franklin T, Pearl DK, Yates AJ (1997) Ganglioside GM1 enhances induction by nerve growth factor of a putative dimer of TrkA. J Neurochem 68:2348–55PubMedCrossRefGoogle Scholar
  160. 160.
    Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA (1995) Prevention of apoptotic neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors. J Biol Chem 270:3074–80PubMedCrossRefGoogle Scholar
  161. 161.
    Guirland C, Suzuki S, Kojima M, Lu B, Zheng JQ (2004) Lipid rafts mediate chemotropic guidance of nerve growth cones. Neuron 42:51–62PubMedCrossRefGoogle Scholar
  162. 162.
    Suzuki S, Numakawa T, Shimazu K, Koshimizu H, Hara T, Hatanaka H, Mei L, Lu B, Kojima M (2004) BDNF-induced recruitment of TrkB receptor into neuronal lipid rafts: roles in synaptic modulation. J Cell Biol 167:1205–15PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Hibbert AP, Kramer BM, Miller FD, Kaplan DR (2006) The localization, trafficking and retrograde transport of BDNF bound to p75NTR in sympathetic neurons. Mol Cell Neurosci 32:387–402PubMedCrossRefGoogle Scholar
  164. 164.
    Mihara T, Ueda A, Hirayama M, Takeuchi T, Yoshida S, Naito K, Yamamoto H, Mutoh T (2006) Detection of new anti-neutral glycosphingolipids antibodies and their effects on Trk neurotrophin receptors. FEBS Lett 580:4991–5PubMedCrossRefGoogle Scholar
  165. 165.
    Mojsilovic-Petrovic J, Jeong GB, Crocker A, Arneja A, David S, Russell DS, Kalb RG (2006) Protecting motor neurons from toxic insult by antagonism of adenosine A2a and Trk receptors. J Neurosci 26:9250–63PubMedCrossRefGoogle Scholar
  166. 166.
    Pereira DB, Chao MV (2007) The tyrosine kinase Fyn determines the localization of TrkB receptors in lipid rafts. J Neurosci 27:4859–69PubMedCrossRefGoogle Scholar
  167. 167.
    Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N (1995) Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci U S A 92:5087–91PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Duchemin AM, Ren Q, Neff NH, Hadjiconstantinou M (2008) GM1-induced activation of phosphatidylinositol 3-kinase: involvement of Trk receptors. J Neurochem 104:1466–77PubMedCrossRefGoogle Scholar
  169. 169.
    Duchemin AM, Ren Q, Mo L, Neff NH, Hadjiconstantinou M (2002) GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain. J Neurochem 81:696–707PubMedCrossRefGoogle Scholar
  170. 170.
    Mo L, Ren Q, Duchemin AM, Neff NH, Hadjiconstantinou M (2005) GM1 and ERK signaling in the aged brain. Brain Res 1054:125–34PubMedCrossRefGoogle Scholar
  171. 171.
    Mutoh T, Hamano T, Tokuda A, Kuriyama M (2000) Unglycosylated Trk protein does not co-localize nor associate with ganglioside GM1 in stable clone of PC12 cells overexpressing Trk (PCtrk cells). Glycoconj J 17:233–7PubMedCrossRefGoogle Scholar
  172. 172.
    Hasegawa T, Yamaguchi K, Wada T, Takeda A, Itoyama Y, Miyagi T (2000) Molecular cloning of mouse ganglioside sialidase and its increased expression in neuro2a cell differentiation. J Biol Chem 275:14778Google Scholar
  173. 173.
    Da Silva JS, Hasegawa T, Miyagi T, Dotti CG, Abad-Rodriguez J (2005) Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nat Neurosci 8:606–15PubMedCrossRefGoogle Scholar
  174. 174.
    Ueda A, Shima S, Miyashita T, Ito S, Ueda M, Kusunoki S, Asakura K, Mutoh T (2010) Anti-GM1 antibodies affect the integrity of lipid rafts. Mol Cell Neurosci 45:355–62. doi: 10.1016/j.mcn.2010.07.008 PubMedCrossRefGoogle Scholar
  175. 175.
    Piccinini M, Scandroglio F, Prioni S, Buccinna B, Loberto N, Aureli M, Chigorno V, Lupino E, DeMarco G, Lomartire A, Rinaudo MT, Sonnino S, Prinetti A (2010) Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Mol Neurobiol 41:314–40. doi: 10.1007/s12035-009-8096-6 PubMedCrossRefGoogle Scholar
  176. 176.
    Vance JE (2012) Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech 5:746–55. doi: 10.1242/dmm.010124 PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Sonnino S, Aureli M, Grassi S, Mauri L, Prioni S, Prinetti A (2013) Lipid rafts in neurodegeneration and neuroprotection. Mol Neurobiol 50(1):130–48. doi: 10.1007/s12035-013-8614-4 PubMedCrossRefGoogle Scholar
  178. 178.
    Assi E, Cazzato D, De Palma C, Perrotta C, Clementi E, Cervia D (2013) Sphingolipids and brain resident macrophages in neuroinflammation: an emerging aspect of nervous system pathology. Clin Dev Immunol 2013:8. doi: 10.1155/2013/309302 CrossRefGoogle Scholar
  179. 179.
    Kreutz F, Scherer E, Ferreira AK, Fd P, Pereira C, Santana F, de Souza WA, Salbego C, Trindade V (2013) Alterations on Na+, K + -ATPase and acetylcholinesterase activities induced by amyloid-β peptide in rat brain and gm1 ganglioside neuroprotective action. Neurochem Res 38:2342–2350. doi: 10.1007/s11064-013-1145-6 PubMedCrossRefGoogle Scholar
  180. 180.
    Schneider JS, Gollomp SM, Sendek S, Colcher A, Cambi F, Du W (2013) A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson’s disease patients. J Neurol Sci 324:140–148. doi: 10.1016/j.jns.2012.10.024 PubMedCrossRefGoogle Scholar
  181. 181.
    Teich AF, Arancio O (2012) Is the amyloid hypothesis of Alzheimer’s disease therapeutically relevant? Biochem J 446:165–77. doi: 10.1042/BJ20120653 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Fantini J, Carlus D, Yahi N (2011) The fusogenic tilted peptide (67–78) of alpha-synuclein is a cholesterol binding domain. Biochim Biophys Acta 1808:2343–51. doi: 10.1016/j.bbamem.2011.06.017 PubMedCrossRefGoogle Scholar
  183. 183.
    Fantini J, Yahi N (2013) The driving force of alpha-synuclein insertion and amyloid channel formation in the plasma membrane of neural cells: key role of ganglioside- and cholesterol-binding domains. Adv Exp Med Biol 991:15–26. doi: 10.1007/978-94-007-6331-9_2 PubMedCrossRefGoogle Scholar
  184. 184.
    Martinez Z, Zhu M, Han S, Fink AL (2007) GM1 specifically interacts with alpha-synuclein and inhibits fibrillation. Biochemistry 46:1868–77. doi: 10.1021/bi061749a PubMedCrossRefGoogle Scholar
  185. 185.
    Manna M, Mukhopadhyay C (2013) Binding, conformational transition and dimerization of amyloid-beta peptide on GM1-containing ternary membrane: insights from molecular dynamics simulation. PLoS One 8:e71308. doi: 10.1371/journal.pone.0071308 PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Beel AJ, Sakakura M, Barrett PJ, Sanders CR (2010) Direct binding of cholesterol to the amyloid precursor protein: an important interaction in lipid-Alzheimer’s disease relationships? Biochim Biophys Acta 1801:975–82. doi: 10.1016/j.bbalip.2010.03.008 PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Fantini J, Yahi N, Garmy N (2013) Cholesterol accelerates the binding of Alzheimer’s beta-amyloid peptide to ganglioside GM1 through a universal hydrogen-bond-dependent sterol tuning of glycolipid conformation. Front Physiol 4:120. doi: 10.3389/fphys.2013.00120 PubMedPubMedCentralGoogle Scholar
  188. 188.
    Di Scala C, Yahi N, Lelievre C, Garmy N, Chahinian H, Fantini J (2013) Biochemical identification of a linear cholesterol-binding domain within Alzheimer’s beta amyloid peptide. ACS Chem Neurosci 4:509–17. doi: 10.1021/cn300203a PubMedCrossRefGoogle Scholar
  189. 189.
    Ariga T, McDonald MP, Yu RK (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease—a review. J Lipid Res 49:1157–75. doi: 10.1194/jlr.R800007-JLR200 PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Svennerholm L, Gottfries CG (1994) Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J Neurochem 62:1039–47PubMedCrossRefGoogle Scholar
  191. 191.
    Kalanj S, Kracun I, Rosner H, Cosovic C (1991) Regional distribution of brain gangliosides in Alzheimer’s disease. Neurol Croat 40:269–81PubMedGoogle Scholar
  192. 192.
    Brooksbank BW, McGovern J (1989) Gangliosides in the brain in adult Down’s syndrome and Alzheimer’s disease. Mol Chem Neuropathol 11:143–56PubMedCrossRefGoogle Scholar
  193. 193.
    Kracun I, Rosner H, Drnovsek V, Heffer-Lauc M, Cosovic C, Lauc G (1991) Human brain gangliosides in development, aging and disease. Int J Dev Biol 35:289–95PubMedGoogle Scholar
  194. 194.
    Kracun I, Kalanj S, Talan-Hranilovic J, Cosovic C (1992) Cortical distribution of gangliosides in Alzheimer’s disease. Neurochem Int 20:433–8PubMedCrossRefGoogle Scholar
  195. 195.
    Crino PB, Ullman MD, Vogt BA, Bird ED, Volicer L (1989) Brain gangliosides in dementia of the Alzheimer type. Arch Neurol 46:398–401PubMedCrossRefGoogle Scholar
  196. 196.
    Molander-Melin M, Blennow K, Bogdanovic N, Dellheden B, Mansson JE, Fredman P (2005) Structural membrane alterations in Alzheimer brains found to be associated with regional disease development; increased density of gangliosides GM1 and GM2 and loss of cholesterol in detergent-resistant membrane domains. J Neurochem 92:171–82PubMedCrossRefGoogle Scholar
  197. 197.
    Chapman J, Sela BA, Wertman E, Michaelson DM (1988) Antibodies to ganglioside GM1 in patients with Alzheimer’s disease. Neurosci Lett 86:235–40PubMedCrossRefGoogle Scholar
  198. 198.
    Cordy JM, Hooper NM, Turner AJ (2006) The involvement of lipid rafts in Alzheimer’s disease. Mol Membr Biol 23:111–22. doi: 10.1080/09687860500496417 PubMedCrossRefGoogle Scholar
  199. 199.
    Vetrivel KS, Cheng H, Kim SH, Chen Y, Barnes NY, Parent AT, Sisodia SS, Thinakaran G (2005) Spatial segregation of gamma-secretase and substrates in distinct membrane domains. J Biol Chem 280:25892–900. doi: 10.1074/jbc.M503570200 PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Ehehalt R, Keller P, Haass C, Thiele C, Simons K (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160:113–23. doi: 10.1083/jcb.200207113 PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Kim SI, Yi JS, Ko YG (2006) Amyloid beta oligomerization is induced by brain lipid rafts. J Cell Biochem 99:878–89. doi: 10.1002/jcb.20978 PubMedCrossRefGoogle Scholar
  202. 202.
    Terzi E, Holzemann G, Seelig J (1995) Self-association of beta-amyloid peptide (1–40) in solution and binding to lipid membranes. J Mol Biol 252:633–42. doi: 10.1006/jmbi.1995.0525 PubMedCrossRefGoogle Scholar
  203. 203.
    Matsuzaki K (2007) Physicochemical interactions of amyloid beta-peptide with lipid bilayers. Biochim Biophys Acta 1768:1935–42. doi: 10.1016/j.bbamem.2007.02.009 PubMedCrossRefGoogle Scholar
  204. 204.
    Yanagisawa K, Odaka A, Suzuki N, Ihara Y (1995) GM1 ganglioside-bound amyloid beta-protein (A beta): a possible form of preamyloid in Alzheimer’s disease. Nat Med 1:1062–6PubMedCrossRefGoogle Scholar
  205. 205.
    Yanagisawa K, Ihara Y (1998) GM1 ganglioside-bound amyloid beta-protein in Alzheimer’s disease brain. Neurobiol Aging 19:S65–7PubMedCrossRefGoogle Scholar
  206. 206.
    Kakio A, Nishimoto S, Yanagisawa K, Kozutsumi Y, Matsuzaki K (2002) Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41:7385–90PubMedCrossRefGoogle Scholar
  207. 207.
    Hayashi H, Kimura N, Yamaguchi H, Hasegawa K, Yokoseki T, Shibata M, Yamamoto N, Michikawa M, Yoshikawa Y, Terao K, Matsuzaki K, Lemere CA, Selkoe DJ, Naiki H, Yanagisawa K (2004) A seed for Alzheimer amyloid in the brain. J Neurosci 24:4894–902. doi: 10.1523/JNEUROSCI.0861-04.2004 PubMedCrossRefGoogle Scholar
  208. 208.
    Wakabayashi M, Okada T, Kozutsumi Y, Matsuzaki K (2005) GM1 ganglioside-mediated accumulation of amyloid beta-protein on cell membranes. Biochem Biophys Res Commun 328:1019–23. doi: 10.1016/j.bbrc.2005.01.060 PubMedCrossRefGoogle Scholar
  209. 209.
    Utsumi M, Yamaguchi Y, Sasakawa H, Yamamoto N, Yanagisawa K, Kato K (2009) Up-and-down topological mode of amyloid beta-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters. Glycoconj J 26(8):999–1006. doi: 10.1007/s10719-008-9216-7 PubMedCrossRefGoogle Scholar
  210. 210.
    Yamamoto N, Matsubara T, Sato T, Yanagisawa K (2008) Age-dependent high-density clustering of GM1 ganglioside at presynaptic neuritic terminals promotes amyloid beta-protein fibrillogenesis. Biochim Biophys Acta 1778:2717–26. doi: 10.1016/j.bbamem.2008.07.028 PubMedCrossRefGoogle Scholar
  211. 211.
    Mizuno T, Nakata M, Naiki H, Michikawa M, Wang R, Haass C, Yanagisawa K (1999) Cholesterol-dependent generation of a seeding amyloid beta-protein in cell culture. J Biol Chem 274:15110–4PubMedCrossRefGoogle Scholar
  212. 212.
    Kakio A, Nishimoto SI, Yanagisawa K, Kozutsumi Y, Matsuzaki K (2001) Cholesterol-dependent formation of GM1 ganglioside-bound amyloid beta-protein, an endogenous seed for Alzheimer amyloid. J Biol Chem 276:24985–90. doi: 10.1074/jbc.M100252200 PubMedCrossRefGoogle Scholar
  213. 213.
    Yuyama K, Yamamoto N, Yanagisawa K (2008) Accelerated release of exosome-associated GM1 ganglioside (GM1) by endocytic pathway abnormality: another putative pathway for GM1-induced amyloid fibril formation. J Neurochem 105:217–24. doi: 10.1111/j.1471-4159.2007.05128.x PubMedCrossRefGoogle Scholar
  214. 214.
    Yamamoto N, Matsubara E, Maeda S, Minagawa H, Takashima A, Maruyama W, Michikawa M, Yanagisawa K (2007) A ganglioside-induced toxic soluble Abeta assembly. Its enhanced formation from Abeta bearing the Arctic mutation. J Biol Chem 282:2646–55. doi: 10.1074/jbc.M606202200 PubMedCrossRefGoogle Scholar
  215. 215.
    Rushworth JV, Griffiths HH, Watt NT, Hooper NM (2013) Prion protein-mediated toxicity of amyloid-beta oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem 288:8935–51. doi: 10.1074/jbc.M112.400358 PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Svennerholm L, Brane G, Karlsson I, Lekman A, Ramstrom I, Wikkelso C (2002) Alzheimer disease — effect of continuous intracerebroventricular treatment with GM1 ganglioside and a systematic activation programme. Dement Geriatr Cogn Disord 14:128–36PubMedCrossRefGoogle Scholar
  217. 217.
    Augustinsson LE, Blennow K, Blomstrand C, Brane G, Ekman R, Fredman P, Karlsson I, Kihlgren M, Lehmann W, Lekman A, Mansson JE, Ramstrom I, Wallin A, Wikkelso C, Gottfries CG, Svennerholm L (1997) Intracerebroventricular administration of GM1 ganglioside to presenile Alzheimer patients. Dement Geriatr Cogn Disord 8:26–33PubMedCrossRefGoogle Scholar
  218. 218.
    Favaron M, Manev H, Alho H, Bertolino M, Ferret B, Guidotti A, Costa E (1988) Gangliosides prevent glutamate and kainate neurotoxicity in primary neuronal cultures of neonatal rat cerebellum and cortex. Proc Natl Acad Sci U S A 85:7351–5PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Skaper SD, Facci L, Milani D, Leon A (1989) Monosialoganglioside GM1 protects against anoxia-induced neuronal death in vitro. Exp Neurol 106:297–305PubMedCrossRefGoogle Scholar
  220. 220.
    Ferrari G, Batistatou A, Greene LA (1993) Gangliosides rescue neuronal cells from death after trophic factor deprivation. J Neurosci 13:1879–87PubMedGoogle Scholar
  221. 221.
    Prinetti A, Iwabuchi K, Hakomori S (1999) Glycosphingolipid-enriched signaling domain in mouse neuroblastoma Neuro2a cells. Mechanism of ganglioside-dependent neuritogenesis. J Biol Chem 274:20916–24PubMedCrossRefGoogle Scholar
  222. 222.
    Toffano G, Agnati LF, Fuxe K, Aldinio C, Consolazione A, Valenti G, Savoini G (1984) Effect of GM1 ganglioside treatment on the recovery of dopaminergic nigro-striatal neurons after different types of lesion. Acta Physiol Scand 122:313–21. doi: 10.1111/j.1748-1716.1984.tb07515.x PubMedCrossRefGoogle Scholar
  223. 223.
    Toffano G, Savoini GE, Moroni F, Lombardi G, Calza L, Agnati LF (1984) Chronic GM1 ganglioside treatment reduces dopamine cell body degeneration in the substantia nigra after unilateral hemitransection in rat. Brain Res 296:233–9PubMedCrossRefGoogle Scholar
  224. 224.
    Cahn R, Borzeix MG, Aldinio C, Toffano G, Cahn J (1989) Influence of monosialoganglioside inner ester on neurologic recovery after global cerebral ischemia in monkeys. Stroke 20:652–6PubMedCrossRefGoogle Scholar
  225. 225.
    Illa I, Ortiz N, Gallard E, Juarez C, Grau JM, Dalakas MC (1995) Acute axonal Guillain-Barre syndrome with IgG antibodies against motor axons following parenteral gangliosides. Ann Neurol 38:218–24. doi: 10.1002/ana.410380214 PubMedCrossRefGoogle Scholar
  226. 226.
    Nobile-Orazio E, Carpo M, Scarlato G (1994) Gangliosides. Their role in clinical neurology. Drugs 47:576–85PubMedCrossRefGoogle Scholar
  227. 227.
    Day CJ, Semchenko EA, Korolik V (2012) Glycoconjugates play a key role in Campylobacter jejuni infection: interactions between host and pathogen. Front Cell Infect Microbiol 2:9. doi: 10.3389/fcimb.2012.00009 PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Yuki N (2012) Guillain-Barre syndrome and anti-ganglioside antibodies: a clinician-scientist’s journey. Proc Jpn Acad Ser B Phys Biol Sci 88:299–326PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Hughes RA, Cornblath DR (2005) Guillain–Barre syndrome. Lancet 366:1653–66. doi: 10.1016/S0140-6736(05)67665-9 PubMedCrossRefGoogle Scholar
  230. 230.
    Govoni V, Granieri E, Manconi M, Capone J, Casetta I (2003) Is there a decrease in Guillain–Barre syndrome incidence after bovine ganglioside withdrawal in Italy? A population-based study in the Local Health District of Ferrara, Italy. J Neurol Sci 216:99–103PubMedCrossRefGoogle Scholar
  231. 231.
    Govoni V, Granieri E, Tola MR, Paolino E, Casetta I, Fainardi E, Monetti VC (1997) Exogenous gangliosides and Guillain–Barre syndrome. An observational study in the local health district of Ferrara, Italy. Brain 120(Pt 7):1123–30PubMedCrossRefGoogle Scholar
  232. 232.
    de Souza FI, Cristante AF, Marcon RM, Ferreira R, Dos Santos GB, de Barros Filho TE (2013) Transdermal monosialoganglioside with laser in the treatment of spinal cord lesion in rats. Acta Ortop Bras 21:87–91. doi: 10.1590/S1413-78522013000200004 PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Rong X, Zhou W, Xiao-Wen C, Tao L, Tang J (2013) Ganglioside GM1 reduces white matter damage in neonatal rats. Acta Neurobiol Exp (Wars) 73:379–86Google Scholar
  234. 234.
    Zhu Y, Yang J, Jiao S, Ji T (2013) Ganglioside-monosialic acid (GM1) prevents oxaliplatin-induced peripheral neurotoxicity in patients with gastrointestinal tumors. World J Surg Oncol 11:19. doi: 10.1186/1477-7819-11-19 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Massimo Aureli
    • 1
  • Laura Mauri
    • 1
  • Maria Grazia Ciampa
    • 1
  • Alessandro Prinetti
    • 1
  • Gino Toffano
    • 2
  • Cynthia Secchieri
    • 2
  • Sandro Sonnino
    • 1
    Email author
  1. 1.Department of Medical Biotechnology and Translational MedicineUniversity of MilanSegrateItaly
  2. 2.FIDIA FarmaceuticiAbano TermeItaly

Personalised recommendations