Molecular Neurobiology

, Volume 53, Issue 3, pp 1540–1550 | Cite as

Normalization of Reverse Transcription Quantitative PCR Data During Ageing in Distinct Cerebral Structures

  • G. Bruckert
  • D. Vivien
  • F. Docagne
  • B. D. Roussel


Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a routine method in many laboratories. Normalization of data from experimental conditions is critical for data processing and is usually achieved by the use of a single reference gene. Nevertheless, as pointed by the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, several reference genes should be used for reliable normalization. Ageing is a physiological process that results in a decline of many expressed genes. Reliable normalization of RT-qPCR data becomes crucial when studying ageing. Here, we propose a RT-qPCR study from four mouse brain regions (cortex, hippocampus, striatum and cerebellum) at different ages (from 8 weeks to 22 months) in which we studied the expression of nine commonly used reference genes. With the use of two different algorithms, we found that all brain structures need at least two genes for a good normalization step. We propose specific pairs of gene for efficient data normalization in the four brain regions studied. These results underline the importance of reliable reference genes for specific brain regions in ageing.


RT-qPCR Ageing Normalization geNorm Normfinder 



We would like to thank the Basse-Normandie region for funding Bruckert G and Dr Roussel BD and its credits for the laboratory.

Supplementary material

12035_2015_9114_MOESM1_ESM.docx (24 kb)
Supplementary table 1An intragroup analysis was performed using the Mann and Whitney non-parametric test (Grap Prism software) on the raw data for each genes studied in the cortex, hippocampus, striatum and cerebellum. *: p < 0.05; **: p < 0.01; ***: p < 0.001. (DOCX 23 kb)


  1. 1.
    Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250. doi:10.1158/0008-5472.CAN-04-0496 CrossRefPubMedGoogle Scholar
  2. 2.
    Bustin SA, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley G, Wittwer CT, Schjerling P, Day PJ, Abreu M, Aguado B, Beaulieu JF, Beckers A, Bogaert S, Browne JA, Carrasco-Ramiro F, Ceelen L, Ciborowski K, Cornillie P, Coulon S, Cuypers A, De Brouwer S, De Ceuninck L, De Craene J, De Naeyer H, De Spiegelaere W, Deckers K, Dheedene A, Durinck K, Ferreira-Teixeira M, Fieuw A, Gallup JM, Gonzalo-Flores S, Goossens K, Heindryckx F, Herring E, Hoenicka H, Icardi L, Jaggi R, Javad F, Karampelias M, Kibenge F, Kibenge M, Kumps C, Lambertz I, Lammens T, Markey A, Messiaen P, Mets E, Morais S, Mudarra-Rubio A, Nakiwala J, Nelis H, Olsvik PA, Perez-Novo C, Plusquin M, Remans T, Rihani A, Rodrigues-Santos P, Rondou P, Sanders R, Schmidt-Bleek K, Skovgaard K, Smeets K, Tabera L, Toegel S, Van Acker T, Van den Broeck W, Van der Meulen J, Van Gele M, Van Peer G, Van Poucke M, Van Roy N, Vergult S, Wauman J, Tshuikina-Wiklander M, Willems E, Zaccara S, Zeka F, Vandesompele J (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10(11):1063–1067. doi:10.1038/nmeth.2697 CrossRefPubMedGoogle Scholar
  3. 3.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome biology 3 (7):RESEARCH0034Google Scholar
  4. 4.
    Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6(4):279–284. doi:10.1038/sj.gene.6364190 CrossRefPubMedGoogle Scholar
  5. 5.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. doi:10.1373/clinchem.2008.112797 CrossRefPubMedGoogle Scholar
  6. 6.
    Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT, Kwak Y, Lipps DB (2010) Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 34(5):721–733. doi:10.1016/j.neubiorev.2009.10.005 CrossRefPubMedGoogle Scholar
  7. 7.
    Baltes PB, Lindenberger U (1997) Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychol Aging 12(1):12–21CrossRefPubMedGoogle Scholar
  8. 8.
    Ganesh SK, Arnett DK, Assimes TL, Basson CT, Chakravarti A, Ellinor PT, Engler MB, Goldmuntz E, Herrington DM, Hershberger RE, Hong Y, Johnson JA, Kittner SJ, McDermott DA, Meschia JF, Mestroni L, O'Donnell CJ, Psaty BM, Vasan RS, Ruel M, Shen WK, Terzic A, Waldman SA (2013) Genetics and genomics for the prevention and treatment of cardiovascular disease: update: a scientific statement from the American Heart Association. Circulation 128(25):2813–2851. doi:10.1161/01.cir.0000437913.98912.1d CrossRefPubMedGoogle Scholar
  9. 9.
    Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651. doi:10.1016/j.bcp.2013.12.024 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Hindle JV (2010) Ageing, neurodegeneration and Parkinson's disease. Age Ageing 39(2):156–161. doi:10.1093/ageing/afp223 CrossRefPubMedGoogle Scholar
  11. 11.
    Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29(1):23–39CrossRefPubMedGoogle Scholar
  12. 12.
    Harrison DC, Medhurst AD, Bond BC, Campbell CA, Davis RP, Philpott KL (2000) The use of quantitative RT-PCR to measure mRNA expression in a rat model of focal ischemia—caspase-3 as a case study. Brain Res Mol Brain Res 75(1):143–149CrossRefPubMedGoogle Scholar
  13. 13.
    Foldager CB, Munir S, Ulrik-Vinther M, Soballe K, Bunger C, Lind M (2009) Validation of suitable house keeping genes for hypoxia-cultured human chondrocytes. BMC Mol Biol 10:94. doi:10.1186/1471-2199-10-94 CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang DM (1996) Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem 66(3):928–935CrossRefPubMedGoogle Scholar
  15. 15.
    Ghani M, Sato C, Rogaeva E (2013) Segmental duplications in genome-wide significant loci and housekeeping genes; warning for GAPDH and ACTB. Neurobiol Aging 34(6):1710 e1711–1714. doi:10.1016/j.neurobiolaging.2012.11.006 CrossRefGoogle Scholar
  16. 16.
    Sieber MW, Guenther M, Kohl M, Witte OW, Claus RA, Frahm C (2010) Inter-age variability of bona fide unvaried transcripts normalization of quantitative PCR data in ischemic stroke. Neurobiol Aging 31(4):654–664. doi:10.1016/j.neurobiolaging.2008.05.023 CrossRefPubMedGoogle Scholar
  17. 17.
    Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19. doi:10.1186/gb-2007-8-2-r19 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Roussel BD, Macrez R, Jullienne A, Agin V, Maubert E, Dauphinot L, Potier MC, Plawinski L, Castel H, Hommet Y, Munuera J, Montaner J, Yepes M, Ali C, Vivien D (2009) Age and albumin D site-binding protein control tissue plasminogen activator levels: neurotoxic impact. Brain 132(Pt 8):2219–2230. doi:10.1093/brain/awp162 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Cacquevel M, Launay S, Castel H, Benchenane K, Cheenne S, Buee L, Moons L, Delacourte A, Carmeliet P, Vivien D (2007) Ageing and amyloid-beta peptide deposition contribute to an impaired brain tissue plasminogen activator activity by different mechanisms. Neurobiol Dis 27(2):164–173. doi:10.1016/j.nbd.2007.04.004 CrossRefPubMedGoogle Scholar
  20. 20.
    Obiang P, Maubert E, Bardou I, Nicole O, Launay S, Bezin L, Vivien D, Agin V (2011) Enriched housing reverses age-associated impairment of cognitive functions and tPA-dependent maturation of BDNF. Neurobiol Learn Mem 96(2):121–129. doi:10.1016/j.nlm.2011.03.004 CrossRefPubMedGoogle Scholar
  21. 21.
    Bustin SA, Nolan T (2004) Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech: JBT 15(3):155–166PubMedCentralPubMedGoogle Scholar
  22. 22.
    Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. BioTechn 29(2):332–337Google Scholar
  23. 23.
    Orset C, Macrez R, Young AR, Panthou D, Angles-Cano E, Maubert E, Agin V, Vivien D (2007) Mouse model of in situ thromboembolic stroke and reperfusion. Stroke 38(10):2771–2778. doi:10.1161/STROKEAHA.107.487520 CrossRefPubMedGoogle Scholar
  24. 24.
    Duty S, Jenner P (2011) Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164(4):1357–1391. doi:10.1111/j.1476-5381.2011.01426.x CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Seeman P, Seeman N (2011) Alzheimer's disease: beta-amyloid plaque formation in human brain. Synapse 65(12):1289–1297. doi:10.1002/syn.20957 CrossRefPubMedGoogle Scholar
  26. 26.
    Forster MJ, Morris P, Sohal RS (2003) Genotype and age influence the effect of caloric intake on mortality in mice. FASEB J : Off Publ Fed Am Soc Exp Biol 17(6):690–692. doi:10.1096/fj.02-0533fje Google Scholar
  27. 27.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  28. 28.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • G. Bruckert
    • 1
  • D. Vivien
    • 1
  • F. Docagne
    • 1
  • B. D. Roussel
    • 1
  1. 1.INSERM, INSERM U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, GIP CYCERONUniversity Caen Basse NormandieCaenFrance

Personalised recommendations