Molecular Neurobiology

, Volume 53, Issue 2, pp 1124–1131 | Cite as

Glutamate Transporters/Na+, K+-ATPase Involving in the Neuroprotective Effect as a Potential Regulatory Target of Glutamate Uptake

  • Li-Nan Zhang
  • Yong-Jun Sun
  • Li-Xue Wang
  • Zi-Bin GaoEmail author


The glutamate (Glu) transporters GLAST and GLT-1, as the two most important transporters in brain tissue, transport Glu from the extracellular space into the cell protecting against Glu toxicity. Furthermore, GLAST and GLT-1 are sodium-dependent Glu transporters (GluTs) that rely on sodium and potassium gradients generated principally by Na+, K+-ATPase to generate ion gradients that drive Glu uptake. There is an interaction between Na+, K+-ATPase and GluTs to modulate Glu uptake, and Na+, K+-ATPase α, β or γ subunit can be directly coupled to GluTs, co-localizing with GLAST or GLT-1 in vivo to form a macromolecular complex and operate as a functional unit to regulate glutamatergic neurotransmission. Therefore, GluTs/Na+, K+-ATPase may be involved in the neuroprotective effect as a potential regulatory target of Glu uptake in neurodegenerative diseases induced by Glu-mediated neurotoxicity as the final common pathway.


Na+, K+-ATPase Glutamate transporter Coupling/uncoupling Glutamate uptake Interaction 



The authors acknowledge support from the Natural Science Foundation of China (NSFC 81402886), the Natural Science Foundation of Hebei Province (H2014208004, H2012208080), Hebei Education Department Science Foundation (QN2014093), and the Hebei University of Science and Technology Discipline Construction Office and the State Key Laboratory Breeding Base—Hebei Key Laboratory of Molecular Chemistry for Drug.

Conflict of Interest

The authors report no conflicts of interest.


  1. 1.
    Tanaka K (2013) Brain development and glutamate. Brain Nerve 65(10):1121–1132PubMedGoogle Scholar
  2. 2.
    Albright TD, Jessell TM, Kandel ER, Posner MI (2000) Neural science: a century of progress and the mysteries that remain. Cell 100:S1–S55CrossRefPubMedGoogle Scholar
  3. 3.
    Lerma J, Herranz AS, Herreras O, Abraira V, Martin del Rio R (1986) In vivo determination of extracellular concentration of amino acids in the rat hippocampus. A method based on brain dialysis and computerized analysis. Brain Res 384(1):145–155CrossRefPubMedGoogle Scholar
  4. 4.
    Nyitrai G, Kekesi KA, Juhasz G (2006) Extracellular level of GABA and Glu: in vivo microdialysis-HPLC measurements. Curr Top Med Chem 6(10):935–940CrossRefPubMedGoogle Scholar
  5. 5.
    Le Meur K, Galante M, Angulo MC, Audinat E (2007) Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus. J Physiol 580(Pt. 2):373–383PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Cavelier P, Hamann M, Rossi D, Mobbs P, Attwell D (2005) Tonic excitation and inhibition of neurons: ambient transmitter sources and computational consequences. Prog Biophys Mol Biol 87(1):3–16CrossRefPubMedGoogle Scholar
  7. 7.
    Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330(9):613–622CrossRefPubMedGoogle Scholar
  8. 8.
    Gegelashvili G, Schousboe A (1997) High affinity glutamate transporters: regulation of expression and activity. Mol Pharmacol 52(1):6–15PubMedGoogle Scholar
  9. 9.
    Massieu L, Garcia O (1998) The role of excitotoxicity and metabolic failure in the pathogenesis of neurological disorders. J Neurobiol 6(1):99–108Google Scholar
  10. 10.
    Herman MA, Jahr CE (2007) Extracellular glutamate concentration in hippocampal slice. J Neurosci 27(36):9736–9741PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13(3):713–725CrossRefPubMedGoogle Scholar
  12. 12.
    Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15(3 Pt 1):1835–1853PubMedGoogle Scholar
  13. 13.
    Chaudhry FA, Lehre KP, van Lookeren CM, Ottersen OP, Danbolt NC, Storm-Mathisen J (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15(3):711–720CrossRefPubMedGoogle Scholar
  14. 14.
    Amara SG, Fontana AC (2002) Excitatory amino acid transporters: keeping up with glutamate. Neurochem Int 41(5):313–318CrossRefPubMedGoogle Scholar
  15. 15.
    Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18(21):8751–8757PubMedGoogle Scholar
  16. 16.
    Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276(5319):1699–1702CrossRefPubMedGoogle Scholar
  17. 17.
    Robinson MB (1998) The family of sodium-dependent glutamate transporters: a focus on the GLT-1/EAAT2 subtype. Neurochem Int 33(6):479–491CrossRefPubMedGoogle Scholar
  18. 18.
    Harada T, Harada C, Nakamura K, Quah HM, Okumura A, Namekata K, Saeki T, Aihara M, Yoshida H, Mitani A, Tanaka K (2007) The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J Clin Invest 117(7):1763–1770PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Haugeto O, Ullensvang K, Levy LM, Chaudhry FA, Honore T, Nielsen M, Lehre KP, Danbolt NC (1996) Brain glutamate transporter proteins form homomultimers. J Biol Chem 271(44):27715–27722CrossRefPubMedGoogle Scholar
  20. 20.
    Larsson HP, Wang X, Lev B, Baconguis I, Caplan DA, Vyleta NP, Koch HP, Diez-Sampedro A, Noskov SY (2010) Evidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model. Proc Natl Acad Sci U S A 107(31):13912–13917PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na, K-ATPase. J Neurosci 29(25):8143–8155CrossRefPubMedGoogle Scholar
  22. 22.
    Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383(6601):634–637CrossRefPubMedGoogle Scholar
  23. 23.
    Trist DG (2000) Excitatory amino acid agonists and antagonists: pharmacology and therapeutic applications. Pharm Acta Helv 74(2–3):221–229CrossRefPubMedGoogle Scholar
  24. 24.
    Kaplan JH (2002) Biochemistry of Na, K-ATPase. Annu Rev Biochem 71:511–535CrossRefPubMedGoogle Scholar
  25. 25.
    Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275(5 Pt 2):F633–F650PubMedGoogle Scholar
  26. 26.
    Astrup J, Sorensen PM, Sorensen HR (1981) Oxygen and glucose consumption related to Na+-K+ transport in canine brain. Stroke 12(6):726–730CrossRefPubMedGoogle Scholar
  27. 27.
    Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, Andersen JP, Vilsen B, Nissen P (2007) Crystal structure of the sodium-potassium pump. Nature 450(7172):1043–1049CrossRefPubMedGoogle Scholar
  28. 28.
    Takeuchi A, Reyes N, Artigas P, Gadsby DC (2008) The ion pathway through the opened Na (+), K (+)-ATPase pump. Nature 456(7220):413–416PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Genda EN, Jackson JG, Sheldon AL, Locke SF, Greco TM, O’Donnell JC, Spruce LA, Xiao R, Guo W, Putt M, Seeholzer S, Ischiropoulos H, Robinson MB (2012) Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J Neurosci 31(50):18275–18288CrossRefGoogle Scholar
  30. 30.
    Stanimirovic DB, Ball R, Durkin JP (1997) Stimulation of glutamate uptake and Na, K-ATPase activity in rat astrocytes exposed to ischemia-like insults. Glia 19(2):123–134CrossRefPubMedGoogle Scholar
  31. 31.
    Corti C, Xuereb JH, Crepaldi L, Corsi M, Michielin F, Ferraguti F (2011) Altered levels of glutamatergic receptors and Na+/K+ ATPase-alpha1 in the prefrontal cortex of subjects with schizophrenia. Schizophr Res 128(1–3):7–14CrossRefPubMedGoogle Scholar
  32. 32.
    Pellerin L, Magistretti PJ (1996) Excitatory amino acids stimulate aerobic glycolysis in astrocytes via an activation of the Na+/K+ ATPase. Dev Neurosci 18(5–6):336–342CrossRefPubMedGoogle Scholar
  33. 33.
    Pellerin L, Magistretti PJ (1997) Glutamate uptake stimulates Na+, K+-ATPase activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain. J Neurochem 69(5):2132–2137CrossRefPubMedGoogle Scholar
  34. 34.
    Bernardinelli Y, Azarias G, Chatton JY (2006) In situ fluorescence imaging of glutamate-evoked mitochondrial Na+ responses in astrocytes. Glia 54(5):460–470CrossRefPubMedGoogle Scholar
  35. 35.
    Azarias G, Perreten H, Lengacher S, Poburko D, Demaurex N, Magistretti PJ, Chatton JY (2011) Glutamate transport decreases mitochondrial pH and modulates oxidative metabolism in astrocytes. J Neurosci 31(10):3550–3559CrossRefPubMedGoogle Scholar
  36. 36.
    Cholet N, Pellerin L, Magistretti PJ, Hamel E (2002) Similar perisynaptic glial localization for the Na+, K+-ATPase alpha 2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex. Cereb Cortex 12(5):515–525CrossRefPubMedGoogle Scholar
  37. 37.
    Palmada M, Centelles JJ (1998) Excitatory amino acid neurotransmission. Pathways for metabolism, storage and reuptake of glutamate in brain. Front Biosci 3:d701–d718PubMedGoogle Scholar
  38. 38.
    Daikhin Y, Yudkoff M (2000) Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 130(4S):1026S–1031SPubMedGoogle Scholar
  39. 39.
    Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98(3):641–653CrossRefPubMedGoogle Scholar
  40. 40.
    Plaitakis A, Latsoudis H, Spanaki C (2011) The human GLUD2 glutamate dehydrogenase and its regulation in health and disease. Neurochem Int 59(4):495–509CrossRefPubMedGoogle Scholar
  41. 41.
    Gegelashvili G, Danbolt NC, Schousboe A (1997) Neuronal soluble factors differentially regulate the expression of the GLT1 and GLAST glutamate transporters in cultured astroglia. J Neurochem 69(6):2612–2615CrossRefPubMedGoogle Scholar
  42. 42.
    Gegelashvili G, Dehnes Y, Danbolt NC, Schousboe A (2000) The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem Int 37(2–3):163–170CrossRefPubMedGoogle Scholar
  43. 43.
    Gegelashvili G, Robinson MB, Trotti D, Rauen T (2001) Regulation of glutamate transporters in health and disease. Prog Brain Res 132:267–286CrossRefPubMedGoogle Scholar
  44. 44.
    Swanson RA, Liu J, Miller JW, Rothstein JD, Farrell K, Stein BA, Longuemare MC (1997) Neuronal regulation of glutamate transporter subtype expression in astrocytes. J Neurosci 17(3):932–940PubMedGoogle Scholar
  45. 45.
    Kirischuk S, Parpura V, Verkhratsky A (2012) Sodium dynamics: another key to astroglial excitability? Trends Neurosci 35(8):497–506CrossRefPubMedGoogle Scholar
  46. 46.
    Abe K, Saito H (2000) Involvement of Na+-K+ pump in L-glutamate clearance by cultured rat cortical astrocytes. Biol Pharm Bull 23(9):1051–1054CrossRefPubMedGoogle Scholar
  47. 47.
    Kimelberg HK, Bowman C, Biddlecome S, Bourke RS (1979) Cation transport and membrane potential properties of primary astroglial cultures from neonatal rat brains. Brain Res 177(3):533–550CrossRefPubMedGoogle Scholar
  48. 48.
    Longuemare MC, Rose CR, Farrell K, Ransom BR, Waxman SG, Swanson RA (1999) K (+)-induced reversal of astrocyte glutamate uptake is limited by compensatory changes in intracellular Na+. Neuroscience 93(1):285–292CrossRefPubMedGoogle Scholar
  49. 49.
    Szatkowski M, Barbour B, Attwell D (1990) Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake. Nature 348(6300):443–446CrossRefPubMedGoogle Scholar
  50. 50.
    Vitvitsky VM, Garg SK, Keep RF, Albin RL, Banerjee R (2012) Na+ and K+ ion imbalances in Alzheimer’s disease. Biochim Biophys Acta 1822(11):1671–1681PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Illarionava NB, Brismar H, Aperia A, Gunnarson E (2014) Role of Na, K-ATPase alpha1 and alpha2 isoforms in the support of astrocyte glutamate uptake. PLoS ONE 9(6):e98469PubMedCentralCrossRefPubMedGoogle Scholar
  52. 52.
    Nanitsos EK, Acosta GB, Saihara Y, Stanton D, Liao LP, Shin JW, Rae C, Balcar VJ (2004) Effects of glutamate transport substrates and glutamate receptor ligands on the activity of Na-/K (+)-ATPase in brain tissue in vitro. Clin Exp Pharmacol Physiol 31(11):762–769CrossRefPubMedGoogle Scholar
  53. 53.
    Namekata K, Harada C, Kohyama K, Matsumoto Y, Harada T (2008) Interleukin-1 stimulates glutamate uptake in glial cells by accelerating membrane trafficking of Na+/K+-ATPase via actin depolymerization. Mol Cell Biol 28(10):3273–3280PubMedCentralCrossRefPubMedGoogle Scholar
  54. 54.
    Sanchez-Huerta KB, Montes S, Perez-Severiano F, Alva-Sanchez C, Rios C, Pacheco-Rosado J (2012) Hypothyroidism reduces glutamate-synaptic release by ouabain depolarization in rat CA3-hippocampal region. J Neurosci Res 90(4):905–912CrossRefPubMedGoogle Scholar
  55. 55.
    Pawson T (2004) Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116(2):191–203CrossRefPubMedGoogle Scholar
  56. 56.
    Boggon TJ, Eck MJ (2004) Structure and regulation of Src family kinases. Oncogene 23(48):7918–7927CrossRefPubMedGoogle Scholar
  57. 57.
    Liang M, Tian J, Liu L, Pierre S, Liu J, Shapiro J, Xie ZJ (2007) Identification of a pool of non-pumping Na/K-ATPase. J Biol Chem 282(14):10585–10593CrossRefPubMedGoogle Scholar
  58. 58.
    Xie Z (2003) Molecular mechanisms of Na/K-ATPase-mediated signal transduction. Ann N Y Acad Sci 986:497–503CrossRefPubMedGoogle Scholar
  59. 59.
    Nguyen KT, Buljan V, Else PL, Pow DV, Balcar VJ (2010) Cardiac glycosides ouabain and digoxin interfere with the regulation of glutamate transporter GLAST in astrocytes cultured from neonatal rat brain. Neurochem Res 35(12):2062–2069PubMedCentralCrossRefPubMedGoogle Scholar
  60. 60.
    Nguyen KT, Shin JW, Rae C, Nanitsos EK, Acosta GB, Pow DV, Buljan V, Bennett MR, Else PL, Balcar VJ (2009) Rottlerin inhibits (Na+, K+)-ATPase activity in brain tissue and alters D-aspartate dependent redistribution of glutamate transporter GLAST in cultured astrocytes. Neurochem Res 34(10):1767–1774CrossRefPubMedGoogle Scholar
  61. 61.
    Sheean RK, Lau CL, Shin YS, O’Shea RD, Beart PM (2013) Links between l-glutamate transporters, Na (+)/K (+)-ATPase and cytoskeleton in astrocytes: evidence following inhibition with rottlerin. Neuroscience 254:335–346CrossRefPubMedGoogle Scholar
  62. 62.
    Nanitsos EK, Nguyen KT, St’astny F, Balcar VJ (2005) Glutamatergic hypothesis of schizophrenia: involvement of Na+/K+-dependent glutamate transport. J Biomed Sci 12(6):975–984CrossRefPubMedGoogle Scholar
  63. 63.
    Matos M, Augusto E, Agostinho P, Cunha RA, Chen JF (2013) Antagonistic interaction between adenosine A2A receptors and Na+/K+-ATPase-alpha2 controlling glutamate uptake in astrocytes. J Neurosci 33(47):18492–18502PubMedCentralCrossRefPubMedGoogle Scholar
  64. 64.
    Gegelashvili M, Rodriguez-Kern A, Sung L, Shimamoto K, Gegelashvili G (2007) Glutamate transporter GLAST/EAAT1 directs cell surface expression of FXYD2/gamma subunit of Na, K-ATPase in human fetal astrocytes. Neurochem Int 50(7–8):916–920CrossRefPubMedGoogle Scholar
  65. 65.
    Casale CH, Previtali G, Serafino JJ, Arce CA, Barra HS (2005) Regulation of acetylated tubulin/Na+, K+-ATPase interaction by L-glutamate in non-neural cells: involvement of microtubules. Biochim Biophys Acta 1721(1–3):185–192CrossRefPubMedGoogle Scholar
  66. 66.
    Rose CR, Ransom BR (1996) Mechanisms of H+ and Na+ changes induced by glutamate, kainate, and D-aspartate in rat hippocampal astrocytes. J Neurosci 16(17):5393–5404PubMedGoogle Scholar
  67. 67.
    Ugbode CI, Hirst WD, Rattray M (2014) Neuronal influences are necessary to produce mitochondrial co-localization with glutamate transporters in astrocytes. J NeurochemGoogle Scholar
  68. 68.
    Shan D, Mount D, Moore S, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE (2014) Abnormal partitioning of hexokinase 1 suggests disruption of a glutamate transport protein complex in schizophrenia. Schizophr ResGoogle Scholar
  69. 69.
    Kanner BI (2006) Structure and function of sodium-coupled GABA and glutamate transporters. J Membr Biol 213(2):89–100CrossRefPubMedGoogle Scholar
  70. 70.
    Duan S, Anderson CM, Stein BA, Swanson RA (1999) Glutamate induces rapid upregulation of astrocyte glutamate transport and cell-surface expression of GLAST. J Neurosci 19(23):10193–10200PubMedGoogle Scholar
  71. 71.
    Shin JW, Nguyen KT, Pow DV, Knight T, Buljan V, Bennett MR, Balcar VJ (2009) Distribution of glutamate transporter GLAST in membranes of cultured astrocytes in the presence of glutamate transport substrates and ATP. Neurochem Res 34(10):1758–1766CrossRefPubMedGoogle Scholar
  72. 72.
    Zahler R, Zhang ZT, Manor M, Boron WF (1997) Sodium kinetics of Na, K-ATPase alpha isoforms in intact transfected HeLa cells. J Gen Physiol 110(2):201–213PubMedCentralCrossRefPubMedGoogle Scholar
  73. 73.
    Shull GE, Greeb J, Lingrel JB (1986) Molecular cloning of three distinct forms of the Na+, K+-ATPase alpha-subunit from rat brain. Biochemistry 25(25):8125–8132CrossRefPubMedGoogle Scholar
  74. 74.
    Crambert G, Schaer D, Roy S, Geering K (2004) New molecular determinants controlling the accessibility of ouabain to its binding site in human Na, K-ATPase alpha isoforms. Mol Pharmacol 65(2):335–341CrossRefPubMedGoogle Scholar
  75. 75.
    Bauer DE, Jackson JG, Genda EN, Montoya MM, Yudkoff M, Robinson MB (2012) The glutamate transporter, GLAST, participates in a macromolecular complex that supports glutamate metabolism. Neurochem Int 61(4):566–574PubMedCentralCrossRefPubMedGoogle Scholar
  76. 76.
    Feraille E, Doucet A (2001) Sodium-potassium-adenosinetriphosphatase-dependent sodium transport in the kidney: hormonal control. Physiol Rev 81(1):345–418PubMedGoogle Scholar
  77. 77.
    Morrill GA, Kostellow AB, Askari A (2008) Progesterone binding to the alpha1-subunit of the Na/K-ATPase on the cell surface: insights from computational modeling. Steroids 73(1):27–40PubMedCentralCrossRefPubMedGoogle Scholar
  78. 78.
    Konvicka K, Campagne F, Weinstein H (2000) Interactive construction of residue-based diagrams of proteins: the RbDe web service. Protein Eng 13(6):395–396CrossRefPubMedGoogle Scholar
  79. 79.
    Verrey F, Kairouz P, Schaerer E, Fuentes P, Geering K, Rossier BC, Kraehenbuhl JP (1989) Primary sequence of Xenopus laevis Na+-K+-ATPase and its localization in A6 kidney cells. Am J Physiol 256(6 Pt 2):F1034–F1043PubMedGoogle Scholar
  80. 80.
    Davies CS, Messenger NJ, Craig R, Warner AE (1996) Primary sequence and developmental expression pattern of mRNAs and protein for an alpha1 subunit of the sodium pump cloned from the neural plate of Xenopus laevis. Dev Biol 174(2):431–447CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Li-Nan Zhang
    • 1
  • Yong-Jun Sun
    • 1
  • Li-Xue Wang
    • 2
  • Zi-Bin Gao
    • 1
    • 3
    Email author
  1. 1.Department of PharmacyHebei University of Science and TechnologyShijiazhuangPeople’s Republic of China
  2. 2.Cadre WardCapital Medical University Electric Power Teaching HospitalBeijingPeople’s Republic of China
  3. 3.State Key Laboratory Breeding Base—Hebei Province Key Laboratory of Molecular Chemistry for DrugShijiazhuangPeople’s Republic of China

Personalised recommendations