Advertisement

Molecular Neurobiology

, Volume 53, Issue 2, pp 793–809 | Cite as

Inhibitor of Differentiation-1 and Hypoxia-Inducible Factor-1 Mediate Sonic Hedgehog Induction by Amyloid Beta-Peptide in Rat Cortical Neurons

  • Yu-Hsing Hung
  • Shih-Hsin Chang
  • Chao-Tzu Huang
  • Jiu-Haw Yin
  • Chi-Shin Hwang
  • Liang-Yo Yang
  • Ding-I YangEmail author
Article

Abstract

One major pathological hallmark of Alzheimer’s disease (AD) is the accumulation of senile plaques mainly composed of neurotoxic amyloid beta-peptide (Aβ) in the patients’ brains. Sonic hedgehog (SHH) is a morphogen critically involved in the embryonic development of the central nervous system (CNS). In the present study, we tested whether Aβ may induce SHH expression and explored its underlying mechanisms. We found that both Aβ25-35 and Aβ1-42 enhanced SHH expression in the primary cortical neurons derived from fetal rat brains. Immunohistochemistry revealed heightened expression of SHH in the cortex and hippocampus of aged (9 and 12 months old) AD transgenic mouse brains as compared to age-matched littermate controls. Chromatin immunoprecipitation (ChIP) assay demonstrated that Aβ25-35 enhanced binding of hypoxia-inducible factor-1 (HIF-1) to the promoter of the Shh gene in primary cortical cultures; consistently, Aβ25-35 induction of SHH was abolished by HIF-1α small interfering RNA (siRNA). Aβ25-35 also time-dependently induced inhibitor of differentiation-1 (Id1) that has been shown to stabilize HIF-1α; further, Aβ25-35-mediated induction of HIF-1α and SHH was both suppressed by Id1 siRNA. Pharmacological induction of HIF-1α by cobalt chloride and application of the cell-permeable recombinant Id1 proteins were both sufficient to induce SHH expression. Finally, both the SHH pathway inhibitor cyclopamine and its neutralizing antibody attenuated Aβ cytotoxicity, albeit to a minor extent. These results thus established a signaling cascade of “Aβ → Id1 → HIF-1 → SHH” in primary rat cortical cultures; furthermore, SHH may in part contribute to Aβ neurotoxicity.

Keywords

Alzheimer’s disease Aβ HIF-1 Id1 Morphogen 

Notes

Acknowledgments

This study was supported by the National Science Council/Ministry of Science and Technology in Taiwan (NSC 101-2314-B-010-042MY2 and MOST 103-2314-B-010-013MY3 to Ding-I Yang; NSC 102-2314-B-038-024 to Liang-Yo Yang), Ministry of Education in Taiwan Aim for the Top University Plan (103AC-B5 to Ding-I Yang), Department of Health in Taipei City Government (10201-62-067 and 10301-62-003 to Ding-I Yang and Chi-Shin Hwang), and Cheng Hsin General Hospital (102F218C12 and 103F003C16 to Ding-I Yang and Jiu-Haw Yin).

Conflict of Interest

All authors declare no actual or potential conflicts of interest.

References

  1. 1.
    Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13(7):812–818PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Soucek T, Cumming R, Dargusch R, Maher P, Schubert D (2003) The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. Neuron 39(1):43–56CrossRefPubMedGoogle Scholar
  4. 4.
    Kawamoto EM, Lepsch LB, Boaventura MF, Munhoz CD, Lima LS, Yshii LM, Avellar MC, Curi R, Mattson MP, Scavone C (2008) Amyloid beta-peptide activates nuclear factor-kappaB through an N-methyl-D-aspartate signaling pathway in cultured cerebellar cells. J Neurosci Res 86(4):845–860CrossRefPubMedGoogle Scholar
  5. 5.
    Akhter R, Sanphui P, Biswas SC (2014) The essential role of p53 upregulated modulator of apoptosis and its regulation by FoxO3a transcription factor in beta-amyloid induced neuron death. J Biol Chem 289(15):10812–10822PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Chen YS, Chen SD, Wu CL, Huang SS, Yang DI (2014) Induction of sestrin2 as an endogenous protective mechanism against amyloid beta-peptide neurotoxicity in primary cortical culture. Exp Neurol 253:63–71CrossRefPubMedGoogle Scholar
  7. 7.
    Echelard Y, Epstein DJ, St-Jacques B, Shen L, Mohler J, McMahon JA, McMahon AP (1993) Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75(7):1417–1430CrossRefPubMedGoogle Scholar
  8. 8.
    Fuccillo M, Joyner AL, Fishell G (2006) Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat Rev Neurosci 7(10):772–783CrossRefPubMedGoogle Scholar
  9. 9.
    Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MP, Pennica D, Goddard A, Phillips H, Noll M, Hooper JE, de Sauvage F, Rosenthal A (1996) The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384(6605):129–134CrossRefPubMedGoogle Scholar
  10. 10.
    Alcedo J, Ayzenzon M, Von Ohlen T, Noll M, Hooper JE (1996) The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the hedgehog signal. Cell 86(2):221–232CrossRefPubMedGoogle Scholar
  11. 11.
    Riobo NA, Manning DR (2007) Pathways of signal transduction employed by vertebrate Hedgehogs. Biochem J 403(3):369–379CrossRefPubMedGoogle Scholar
  12. 12.
    Kenney AM, Cole MD, Rowitch DH (2003) Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130(1):15–28CrossRefPubMedGoogle Scholar
  13. 13.
    Regl G, Kasper M, Schnidar H, Eichberger T, Neill GW, Philpott MP, Esterbauer H, Hauser-Kronberger C, Frischauf AM, Aberger F (2004) Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res 64(21):7724–7731CrossRefPubMedGoogle Scholar
  14. 14.
    Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P, Van Lohuizen M, Marino S (2004) Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428(6980):337–341CrossRefPubMedGoogle Scholar
  15. 15.
    Zebedee Z, Hara E (2001) Id proteins in cell cycle control and cellular senescence. Oncogene 20(58):8317–8325CrossRefPubMedGoogle Scholar
  16. 16.
    Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H (1990) The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61(1):49–59CrossRefPubMedGoogle Scholar
  17. 17.
    Yokota Y, Mori S (2002) Role of Id family proteins in growth control. J Cell Physiol 190(1):21–28CrossRefPubMedGoogle Scholar
  18. 18.
    Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270(3):1230–1237CrossRefPubMedGoogle Scholar
  20. 20.
    Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A (1996) Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271(51):32529–32537CrossRefPubMedGoogle Scholar
  21. 21.
    Semenza GL (2011) Oxygen sensing, homeostasis, and disease. N Engl J Med 365(6):537–547CrossRefPubMedGoogle Scholar
  22. 22.
    Semenza GL (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 123(9):3664–3671PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A 90(9):4304–4308PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Chen SD, Wu CL, Lin TK, Chuang YC, Yang DI (2012) Renin inhibitor aliskiren exerts neuroprotection against amyloid beta-peptide toxicity in rat cortical neurons. Neurochem Int 61(3):369–377CrossRefPubMedGoogle Scholar
  25. 25.
    Stine WB Jr, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278(13):11612–11622CrossRefPubMedGoogle Scholar
  26. 26.
    Ju TC, Yang YT, Yang DI (2004) Protective effects of S-nitrosoglutathione against neurotoxicity of 3-nitropropionic acid in rat. Neurosci Lett 362(3):226–231CrossRefPubMedGoogle Scholar
  27. 27.
    Ju TC, Chen SD, Liu CC, Yang DI (2005) Protective effects of S-nitrosoglutathione against amyloid beta-peptide neurotoxicity. Free Radic Biol Med 38(7):938–949CrossRefPubMedGoogle Scholar
  28. 28.
    Wu CL, Chen SD, Yin JH, Hwang CS, Yang DI (2010) Erythropoietin and sonic hedgehog mediate the neuroprotective effects of brain-derived neurotrophic factor against mitochondrial inhibition. Neurobiol Dis 40(1):146–154CrossRefPubMedGoogle Scholar
  29. 29.
    Wu CL, Yin JH, Hwang CS, Chen SD, Yang DY, Yang DI (2012) c-Jun-dependent sulfiredoxin induction mediates BDNF protection against mitochondrial inhibition in rat cortical neurons. Neurobiol Dis 46(2):450–462CrossRefPubMedGoogle Scholar
  30. 30.
    Wu CL, Hwang CS, Yang DI (2009) Protective effects of brain-derived neurotrophic factor against neurotoxicity of 3-nitropropionic acid in rat cortical neurons. Neurotoxicology 30(4):718–726CrossRefPubMedGoogle Scholar
  31. 31.
    Wu MF, Yin JH, Hwang CS, Tang CM, Yang DI (2014) NAD attenuates oxidative DNA damages induced by amyloid beta-peptide in primary rat cortical neurons. Free Radic Res 48(7):794–805CrossRefPubMedGoogle Scholar
  32. 32.
    Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, Copeland NG, Lee MK, Younkin LH, Wagner SL, Younkin SG, Borchelt DR (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 13(2):159–170CrossRefPubMedGoogle Scholar
  33. 33.
    Volianskis A, Kostner R, Molgaard M, Hass S, Jensen MS (2010) Episodic memory deficits are not related to altered glutamatergic synaptic transmission and plasticity in the CA1 hippocampus of the APPswe/PS1deltaE9-deleted transgenic mice model of β-amyloidosis. Neurobiol Aging 31(7):1173–1187CrossRefPubMedGoogle Scholar
  34. 34.
    Bijlsma MF, Groot AP, Oduro JP, Franken RJ, Schoenmakers SH, Peppelenbosch MP, Spek CA (2009) Hypoxia induces a hedgehog response mediated by HIF-1alpha. J Cell Mol Med 13(8B):2053–2060CrossRefPubMedGoogle Scholar
  35. 35.
    Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, Johnson MS, Willard MT, Zhong H, Simons JW, Giannakakou P (2003) 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3(4):363–375CrossRefPubMedGoogle Scholar
  36. 36.
    Perk J, Iavarone A, Benezra R (2005) Id family of helix-loop-helix proteins in cancer. Nat Rev Cancer 5(8):603–614CrossRefPubMedGoogle Scholar
  37. 37.
    Jung S, Park RH, Kim S, Jeon YJ, Ham DS, Jung MY, Kim SS, Lee YD, Park CH, Suh-Kim H (2010) Id proteins facilitate self-renewal and proliferation of neural stem cells. Stem Cells Dev 19(6):831–841CrossRefPubMedGoogle Scholar
  38. 38.
    Kim HJ, Chung H, Yoo YG, Kim H, Lee JY, Lee MO, Kong G (2007) Inhibitor of DNA binding 1 activates vascular endothelial growth factor through enhancing the stability and activity of hypoxia-inducible factor-1alpha. Mol Cancer Res 5(4):321–329CrossRefPubMedGoogle Scholar
  39. 39.
    Lee TK, Poon RT, Yuen AP, Ling MT, Wang XH, Wong YC, Guan XY, Man K, Tang ZY, Fan ST (2006) Regulation of angiogenesis by Id-1 through hypoxia-inducible factor-1alpha-mediated vascular endothelial growth factor up-regulation in hepatocellular carcinoma. Clin Cancer Res 12(23):6910–6919CrossRefPubMedGoogle Scholar
  40. 40.
    Lofstedt T, Jogi A, Sigvardsson M, Gradin K, Poellinger L, Pahlman S, Axelson H (2004) Induction of ID2 expression by hypoxia-inducible factor-1: a role in dedifferentiation of hypoxic neuroblastoma cells. J Biol Chem 279(38):39223–39231CrossRefPubMedGoogle Scholar
  41. 41.
    Favaro R, Valotta M, Ferri AL, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V, Ottolenghi S, Taylor V, Nicolis SK (2009) Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci 12(10):1248–1256CrossRefPubMedGoogle Scholar
  42. 42.
    Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16(21):2743–2748PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Mille F, Thibert C, Fombonne J, Rama N, Guix C, Hayashi H, Corset V, Reed JC, Mehlen P (2009) The Patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex. Nat Cell Biol 11(6):739–746PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    He P, Staufenbiel M, Li R, Shen Y (2014) Deficiency of Patched 1-induced Gli1 signal transduction results in astrogenesis in Swedish mutated APP transgenic mice. Hum Mol Genet 23(24):6512–6527PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Wu CL, Chen SD, Hwang CS, Yang DI (2009) Sonic hedgehog mediates BDNF-induced neuroprotection against mitochondrial inhibitor 3-nitropropionic acid. Biochem Biophys Res Commun 385(1):112–117CrossRefPubMedGoogle Scholar
  46. 46.
    Kusano KF, Pola R, Murayama T, Curry C, Kawamoto A, Iwakura A, Shintani S, Ii M, Asai J, Tkebuchava T, Thorne T, Takenaka H, Aikawa R, Goukassian D, von Samson P, Hamada H, Yoon YS, Silver M, Eaton E, Ma H, Heyd L, Kearney M, Munger W, Porter JA, Kishore R, Losordo DW (2005) Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat Med 11(11):1197–1204CrossRefPubMedGoogle Scholar
  47. 47.
    Ruiz i Altaba A, Palma V, Dahmane N (2002) Hedgehog-Gli signalling and the growth of the brain. Nat Rev Neurosci 3(1):24–33CrossRefPubMedGoogle Scholar
  48. 48.
    Wang G, Zhang Z, Xu Z, Yin H, Bai L, Ma Z, Decoster MA, Qian G, Wu G (2010) Activation of the sonic hedgehog signaling controls human pulmonary arterial smooth muscle cell proliferation in response to hypoxia. Biochim Biophys Acta 1803(12):1359–1367PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    Kasperczyk H, Baumann B, Debatin KM, Fulda S (2009) Characterization of sonic hedgehog as a novel NF-kappaB target gene that promotes NF-kappaB-mediated apoptosis resistance and tumor growth in vivo. FASEB J 23(1):21–33CrossRefPubMedGoogle Scholar
  50. 50.
    Nakashima H, Nakamura M, Yamaguchi H, Yamanaka N, Akiyoshi T, Koga K, Yamaguchi K, Tsuneyoshi M, Tanaka M, Katano M (2006) Nuclear factor-kappaB contributes to hedgehog signaling pathway activation through sonic hedgehog induction in pancreatic cancer. Cancer Res 66(14):7041–7049CrossRefPubMedGoogle Scholar
  51. 51.
    Guo S, Bragina O, Xu Y, Cao Z, Chen H, Zhou B, Morgan M, Lin Y, Jiang BH, Liu KJ, Shi H (2008) Glucose up-regulates HIF-1 alpha expression in primary cortical neurons in response to hypoxia through maintaining cellular redox status. J Neurochem 105(5):1849–1860CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yu-Hsing Hung
    • 1
  • Shih-Hsin Chang
    • 1
  • Chao-Tzu Huang
    • 1
  • Jiu-Haw Yin
    • 2
  • Chi-Shin Hwang
    • 3
  • Liang-Yo Yang
    • 4
  • Ding-I Yang
    • 1
    Email author
  1. 1.Institute of Brain Science and Brain Research CenterNational Yang-Ming UniversityTaipei CityTaiwan
  2. 2.Department of NeurologyCheng Hsin General HospitalTaipei CityTaiwan
  3. 3.Department of NeurologyTaipei City HospitalTaipei CityTaiwan
  4. 4.Department of Physiology, School of Medicine, College of MedicineTaipei Medical UniversityTaipei CityTaiwan

Personalised recommendations