Molecular Neurobiology

, Volume 53, Issue 1, pp 369–378 | Cite as

Strategy to Suppress Oxidative Damage-Induced Neurotoxicity in PC12 Cells by Curcumin: the Role of ROS-Mediated DNA Damage and the MAPK and AKT Pathways

  • Xiao-yan Fu
  • Ming-feng Yang
  • Ming-zhi Cao
  • Da-wei Li
  • Xiao-yi Yang
  • Jing-yi Sun
  • Zong-yong Zhang
  • Lei-lei Mao
  • Shuai Zhang
  • Feng-ze Wang
  • Feng Zhang
  • Cun-dong FanEmail author
  • Bao-liang SunEmail author


Oxidative damage plays a key role in causation and progression of neurodegenerative diseases. Inhibition of oxidative stress represents one of the most effective ways in treating human neurologic diseases. Herein, we evaluated the protective effect of curcumin on PC12 cells against H2O2-induced neurotoxicity and investigated its underlying mechanism. The results indicated that curcumin pre-treatment significantly suppressed H2O2-induced cytotoxicity, inhibited the loss of mitochondrial membrane potential (Δψm) through regulation of Bcl-2 family expression, and ultimately reversed H2O2-induced apoptotic cell death in PC12 cells. Attenuation of caspase activation, poly(ADP-ribose) polymerase (PARP) cleavage, DNA damage, and accumulation of reactive oxygen species (ROS) all confirmed its protective effects. Moreover, curcumin markedly alleviated the dysregulation of the MAPK and AKT pathways induced by H2O2. Taken together, our findings suggest that the strategy of using curcumin could be a highly effective way in combating oxidative damage-mediated human neurodegenerative diseases.


Curcumin Oxidative damage Apoptosis Reactive oxygen species Neurodegenerative diseases 



This study was supported by the National Natural Science Foundation of China (No. 81471212, 81271275, 81070947, and 30770759 to B.-L. Sun; No. 81271276 to F. Zhang) and by the Natural Science Foundation of Shandong (No. ZR2012HZ006 to B.-L. Sun).

Supplementary material

12035_2014_9021_MOESM1_ESM.doc (53 kb)
ESM 1 (DOC 53 kb)


  1. 1.
    Lagowska-Lenard M, Bielewicz J, Raszewski G et al (2008) Oxidative stress in cerebral stroke. Pol Merkur Lekarski 25(147):205–208PubMedGoogle Scholar
  2. 2.
    Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 1147:93–104CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Su B, Wang X, Nunomura A et al (2008) Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res 5(6):525–532CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 32(11):1050–1060CrossRefPubMedGoogle Scholar
  5. 5.
    Sultana R, Perluigi M, Butterfield DA (2006) Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal 8(11–12):2021–2037CrossRefPubMedGoogle Scholar
  6. 6.
    Moreira PI, Nunomura A, Nakamura M et al (2008) Nucleic acid oxidation in Alzheimer disease. Free Radic Biol Med 44(8):1493–1505CrossRefPubMedGoogle Scholar
  7. 7.
    Pratico D, Clark CM, Liun F et al (2002) Increase of brain oxidative stress in mild cognitive impairment: a possible predictor of Alzheimer disease. Arch Neurol 59(6):972–976CrossRefPubMedGoogle Scholar
  8. 8.
    Butterfield DA, Reed TT, Perluigi M et al (2007) Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: implications for the role of nitration in the progression of Alzheimer’s disease. Brain Res 1148:243–248CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Maheshwari A, Misro MM, Aggarwal A et al (2009) Pathways involved in testicular germ cell apoptosis induced by H2O2 in vitro. FEBS J 276(3):870–881CrossRefPubMedGoogle Scholar
  10. 10.
    Gupta A, Vij G, Sharma S et al (2009) Curcumin, a polyphenolic antioxidant, attenuates chronic fatigue syndrome in murine water immersion stress model. Immunobiology 214(1):33–39CrossRefPubMedGoogle Scholar
  11. 11.
    Dai F, Chen WF, Zhou B et al (2009) Antioxidative effects of curcumin and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Phytother Res 23(9):1220–1228CrossRefPubMedGoogle Scholar
  12. 12.
    Karmakar S, Banik NL, Ray SK (2007) Curcumin suppressed anti-apoptotic signals and activated cysteine proteases for apoptosis in human malignant glioblastoma U87MG cells. Neurochem Res 32(12):2103–2113CrossRefPubMedGoogle Scholar
  13. 13.
    Devasena T, Menon VP, Rajasekharan KN (2006) Prevention of 1,2-dimethylhydrazine-induced circulatory oxidative stress by bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione during colon carcinogenesis. Pharmacol Rep 58(2):229–235PubMedGoogle Scholar
  14. 14.
    Jaruga E, Bielak-Zmijewska A, Sikora E et al (1998) Glutathione-independent mechanism of apoptosis inhibition by curcumin in rat thymocytes. Biochem Pharmacol 56(8):961–965CrossRefPubMedGoogle Scholar
  15. 15.
    Somasundaram S, Edmund NA, Moore DT et al (2002) Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res 62(13):3868–3875PubMedGoogle Scholar
  16. 16.
    Chan WH, Wu CC, Yu JS (2003) Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells. J Cell Biochem 90(2):327–338CrossRefPubMedGoogle Scholar
  17. 17.
    Jiang J, Wang W, Sun YJ et al (2007) Neuroprotective effect of curcumin on focal cerebral ischemic rats by preventing blood-brain barrier damage. Eur J Pharmacol 561(1–3):54–62CrossRefPubMedGoogle Scholar
  18. 18.
    Siddiqui MA, Kashyap MP, Kumar V et al (2010) Differential protection of pre-, co- and post-treatment of curcumin against hydrogen peroxide in PC12 cells. Hum Exp Toxicol 30(3):192–198CrossRefPubMedGoogle Scholar
  19. 19.
    Fan C, Chen J, Wang Y et al (2013) Selenocystine potentiates cancer cell apoptosis induced by 5-fluorouracil by triggering reactive oxygen species-mediated DNA damage and inactivation of the ERK pathway. Free Radic Biol Med 65:305–316CrossRefPubMedGoogle Scholar
  20. 20.
    Fan C, Zheng W, Fu X et al (2014) Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death Dis 5:e1191CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kim R (2005) Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer 103(8):1551–1560CrossRefPubMedGoogle Scholar
  22. 22.
    Festjens N, van Gurp M, van Loo G et al (2004) Bcl-2 family members as sentinels of cellular integrity and role of mitochondrial intermembrane space proteins in apoptotic cell death. Acta Haematol 111(1–2):7–27PubMedGoogle Scholar
  23. 23.
    van Gurp M, Festjens N, van Loo G et al (2003) Mitochondrial intermembrane proteins in cell death. Biochem Biophys Res Commun 304(3):487–497CrossRefPubMedGoogle Scholar
  24. 24.
    Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2(9):647–656CrossRefPubMedGoogle Scholar
  25. 25.
    Wei MC, Zong WX, Cheng EH et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81(2):807–869PubMedGoogle Scholar
  27. 27.
    Dudek H, Datta SR, Franke TF et al (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275(5300):661–665CrossRefPubMedGoogle Scholar
  28. 28.
    Burke RE (2007) Inhibition of mitogen-activated protein kinase and stimulation of Akt kinase signaling pathways: two approaches with therapeutic potential in the treatment of neurodegenerative disease. Pharmacol Ther 114(3):261–277CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Read DE, Gorman AM (2009) Involvement of Akt in neurite outgrowth. Cell Mol Life Sci 66(18):2975–2984CrossRefPubMedGoogle Scholar
  30. 30.
    Xia Z, Sun B, Zheng Y et al (2006) Changes of nitric oxide, oxide free radicals, and systolic arterial blood pressure in rats with experimental lymphatostatic encephalopathy. Clin Hemorheol Microcirc 34(1–2):207–211PubMedGoogle Scholar
  31. 31.
    Pal A, Kumar A, Prasad R (2014) Predictive association of copper metabolism proteins with Alzheimer’s disease and Parkinson’s disease: a preliminary perspective. Biometals 27(1):25–31CrossRefPubMedGoogle Scholar
  32. 32.
    Jaronen M, Vehvilainen P, Malm T et al (2013) Protein disulfide isomerase in ALS mouse glia links protein misfolding with NADPH oxidase-catalyzed superoxide production. Hum Mol Genet 22(4):646–655CrossRefPubMedGoogle Scholar
  33. 33.
    Shivasharan BD, Nagakannan P, Thippeswamy BS et al (2013) Protective effect of Calendula officinalis Linn. flowers against 3-nitropropionic acid induced experimental Huntington’s disease in rats. Drug Chem Toxicol 36(4):466–473CrossRefPubMedGoogle Scholar
  34. 34.
    Crispo JA, Piche M, Ansell DR et al (2014) Protective effects of methyl gallate on H2O2-induced apoptosis in PC12 cells. Biochem Biophys Res Commun 393(4):773–778CrossRefGoogle Scholar
  35. 35.
    Ahsan H, Parveen N, Khan NU et al (1999) Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem Biol Interact 121(2):161–175CrossRefPubMedGoogle Scholar
  36. 36.
    Park SY, Kim HS, Cho EK et al (2008) Curcumin protected PC12 cells against beta-amyloid-induced toxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Food Chem Toxicol 46(8):2881–2887CrossRefPubMedGoogle Scholar
  37. 37.
    Chen J, Tang XQ, Zhi JL et al (2006) Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis 11(6):943–953CrossRefPubMedGoogle Scholar
  38. 38.
    Bengmark S (2006) Curcumin, an atoxic antioxidant and natural NFkappaB, cyclooxygenase-2, lipooxygenase, and inducible nitric oxide synthase inhibitor: a shield against acute and chronic diseases. Jpen 30(1):45–51CrossRefGoogle Scholar
  39. 39.
    Raza H, John A, Brown EM, Benedict S, Kambal A et al (2008) Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells. Toxicol Appl Pharmacol 226(2):161–168CrossRefPubMedGoogle Scholar
  40. 40.
    Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4(8):592–603CrossRefPubMedGoogle Scholar
  41. 41.
    Chen T, Wong YS (2009) Selenocystine induces reactive oxygen species-mediated apoptosis in human cancer cells. Biomed Pharmacother 63(2):105–113CrossRefPubMedGoogle Scholar
  42. 42.
    Chen T, Zheng W, Wong YS et al (2008) Mitochondria-mediated apoptosis in human breast carcinoma MCF-7 cells induced by a novel selenadiazole derivative. Biomed Pharmacother 62(2):77–84CrossRefPubMedGoogle Scholar
  43. 43.
    Fecker LF, Geilen CC, Tchernev G et al (2006) Loss of proapoptotic Bcl-2-related multidomain proteins in primary melanomas is associated with poor prognosis. J Investig Dermatol 126(6):1366–1371CrossRefPubMedGoogle Scholar
  44. 44.
    Krantic S, Mechawar N, Reix S et al (2007) Apoptosis-inducing factor: a matter of neuron life and death. Prog Neurobiol 81(3):179–196CrossRefPubMedGoogle Scholar
  45. 45.
    Boldt S, Weidle UH, Kolch W (2002) The role of MAPK pathways in the action of chemotherapeutic drugs. Carcinogenesis 23(11):1831–1838CrossRefPubMedGoogle Scholar
  46. 46.
    McCubrey JA, Steelman LS, Abrams SL et al (2006) Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzym Regul 46:249–279CrossRefGoogle Scholar
  47. 47.
    Ikonomidou C, Kaindl AM (2011) Neuronal death and oxidative stress in the developing brain. Antioxid Redox Signal 14(8):1535–1550CrossRefPubMedGoogle Scholar
  48. 48.
    Valko M, Leibfritz D, Moncol J et al (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xiao-yan Fu
    • 1
    • 2
  • Ming-feng Yang
    • 2
  • Ming-zhi Cao
    • 3
  • Da-wei Li
    • 2
  • Xiao-yi Yang
    • 2
  • Jing-yi Sun
    • 1
  • Zong-yong Zhang
    • 2
  • Lei-lei Mao
    • 2
  • Shuai Zhang
    • 2
  • Feng-ze Wang
    • 2
  • Feng Zhang
    • 2
    • 4
  • Cun-dong Fan
    • 2
    Email author
  • Bao-liang Sun
    • 2
    • 5
    Email author
  1. 1.School of Basic MedicineTaishan Medical UniversityTaianChina
  2. 2.Key Lab of Cerebral Microcirculation in Universities of ShandongTaishan Medical UniversityTaianChina
  3. 3.Department of Neurosurgery, Huxi HospitalJining Medical UniversityShanxianChina
  4. 4.Department of Neurology and Center of Cerebrovascular Disease ResearchUniversity of PittsburghPittsburghUSA
  5. 5.Department of NeurologyAffiliated Hospital of Taishan Medical UniversityTaianChina

Personalised recommendations