Molecular Neurobiology

, Volume 53, Issue 1, pp 561–576 | Cite as

The Ephrin-A5/EphA4 Interaction Modulates Neurogenesis and Angiogenesis by the p-Akt and p-ERK Pathways in a Mouse Model of TLE

  • Yi Shu
  • Bo XiaoEmail author
  • Qian Wu
  • Tiantian Liu
  • Yang Du
  • Haiyun Tang
  • Si Chen
  • Li Feng
  • Lili Long
  • Yi LiEmail author


Studies have shown that neurogenesis and angiogenesis do exist in temporal lobe epilepsy (TLE). The ephrin ligands and Eph receptors are the largest members of receptor tyrosine kinases, and their interaction via cell–cell contact participates in cell proliferation, differentiation, migration, and tissue remodeling. However, there is little information about the function of the ephrin-A5/EphA4 complex in TLE. In the current study, we found that ephrin-A5 was expressed in astrocytes, while EphA4 existed in endothelial cells in the hippocampus in a mouse model of TLE. Furthermore, the messenger RNA (mRNA) and protein levels of both ephrin-A5 and EphA4 and the binding capacity of ephrin-A5/EphA4 showed gradual increase in spatiotemporal course. When ephrin-A5-Fc was injected into the hippocampus at 3 days post-status epilepticus (SE) for 7 days, the spontaneous recurrent seizure (SRS) frequency and intensity of the mice attenuated in the following 2 weeks. Furthermore, doublecortin-positive neuronal progenitor cells were reduced in the subgranular zone, and the density of microvessels decreased in the hilus. The molecular mechanism was attributed to ephrin-A5-Fc-induced inhibition of phosphorylated ERK (p-ERK) and phosphorylated Akt (p-Akt), and also EphA4 and VEGF reduction. In summary, interaction between ephrin-A5 and EphA4 could mediate the ERK and Akt signaling pathways in pilocarpine-induced epilepsy, and intervention of the ephrin/Eph interaction may play an essential role in the suppression of newborn neuron generation, microvessel remodeling, and SRS in a mouse model of TLE. The ephrin-A5/EphA4 communication may provide a potential therapy for the treatment of TLE.


Ephrin-A5 EphA4 Neurogenesis Angiogenesis Pilocarpine Temporal lobe epilepsy 



This study is supported by the National Natural Science Foundation of China (81100967; 81301160) and Specialized Research Fund for the Doctoral Program of Higher Education (20110162120002). We would like to thank Jinghui Liang for tissue preparation and thank Zhaohui Luo and Zhiguo Wu for outstanding technical assistance with co-immunoprecipitation and confocal microscopy.

Conflict of Interest

There is no conflict of interest among the authors.


  1. 1.
    Parent JM, Murphy GG (2008) Mechanisms and functional significance of aberrant seizure-induced hippocampal neurogenesis. Epilepsia 49(Suppl 5):19–25CrossRefPubMedGoogle Scholar
  2. 2.
    Taupin P (2006) Adult neural stem cells, neurogenic niches, and cellular therapy. Stem Cell Rev 2:213–219CrossRefPubMedGoogle Scholar
  3. 3.
    Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494CrossRefPubMedGoogle Scholar
  4. 4.
    Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D, During MJ (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36:827–835CrossRefPubMedGoogle Scholar
  5. 5.
    Ndode-Ekane XE, Hayward N, Gröhn O, Pitkänen A (2010) Vascular changes in epilepsy: functional consequences and association with network plasticity in pilocarpine-induced experimental epilepsy. Neuroscience 166:312–332CrossRefPubMedGoogle Scholar
  6. 6.
    Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436:193–200CrossRefPubMedGoogle Scholar
  7. 7.
    Eberhart J, Swartz M, Koblar SA, Pasquale EB, Tanaka H, Krull CE (2000) Expression of EphA4, Ephrin-A2 and Ephrin-A5 during axon outgrowth to the hindlimb indicates potential roles in pathfinding. Dev Neurosci 22:237–250CrossRefPubMedGoogle Scholar
  8. 8.
    Eberhart J, Barr J, O’Connell S, Flagg A, Swartz ME, Cramer KS, Tosney KW, Pasquale EB, Krull CE (2004) Ephrin-A5 exerts positive or inhibitory effects on distinct subsets of EphA4-positive motor neurons. J Neurosci 24:1070–1078CrossRefPubMedGoogle Scholar
  9. 9.
    Kimura K, Hikida T, Yawata S, Yamaguchi T, Nakanishi S (2011) Pathway-specific engagement of ephrinA5-EphA4/EphA5 system of the substantia nigra pars reticulata in cocaine-induced responses. Proc Natl Acad Sci U S A 108:9981–9986CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hara Y, Nomura T, Yoshizaki K, Frisén J, Osumi N (2010) Impaired hippocampal neurogenesis and vascular formation in ephrin-A5-deficient mice. Stem Cells 28:974–983PubMedGoogle Scholar
  11. 11.
    Choi YS, Cho HY, Hoyt KR, Naegele JR, Obrietan K (2008) IGF-1 receptor-mediated ERK/MAPK signaling couples status epilepticus to progenitor cell proliferation in the subgranular layer of the dentate gyrus. Glia 56:791–800CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Houser CR, Huang CS, Peng Z (2008) Dynamic seizure-related changes in extracellular signal-regulated kinase activation in a mouse model of temporal lobe epilepsy. Neuroscience 156:222–237CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nateri AS, Raivich G, Gebhardt C, Da Costa C, Naumann H, Vreugdenhil M, Makwana M, Brandner S, Adams RH, Jefferys JG, Kann O, Behrens A (2007) ERK activation causes epilepsy by stimulating NMDA receptor activity. EMBO J 26:4891–4901CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Okamoto OK, Janjoppi L, Bonone FM, Pansani AP, da Silva AV, Scorza FA, Cavalheiro EA (2010) Whole transcriptome analysis of the hippocampus: toward a molecular portrait of epileptogenesis. BMC Genomics 11:230CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang B, Wong M (2012) Pentylenetetrazole-induced seizures cause acute, but not chronic, mTOR pathway activation in rat. Epilepsia 53:506–511CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, Sahin M, Kwiatkowski DJ (2008) Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci 28:5422–5432CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chang P, Walker MC, Williams RS (2014) Seizure-induced reduction in PIP3 levels contributes to seizure-activity and is rescued by valproic acid. Neurobiol Dis 62:296–306CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wu H, Jiang H, Lu D, Qu C, Xiong Y, Zhou D, Chopp M, Mahmood A (2011) Induction of angiogenesis and modulation of vascular endothelial growth factor receptor-2 by simvastatin after traumatic brain injury. Neurosurgery 68:1363–1371, discussion 1371CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Noberini R, Koolpe M, Peddibhotla S, Dahl R, Su Y, Cosford ND, Roth GP, Pasquale EB (2008) Small molecules can selectively inhibit ephrin binding to the EphA4 and EphA2 receptors. J Biol Chem 283:29461–29472CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Murai KK, Nguyen LN, Koolpe M, McLennan R, Krull CE, Pasquale EB (2003) Targeting the EphA4 receptor in the nervous system with biologically active peptides. Mol Cell Neurosci 24:1000–1011CrossRefPubMedGoogle Scholar
  21. 21.
    Han X, Xu Y, Yang Y, Xi J, Tian W, Duggineni S, Huang Z, An J (2013) Discovery and characterization of a novel cyclic peptide that effectively inhibits ephrin binding to the EphA4 receptor and displays anti-angiogenesis activity. PLoS ONE 8:e80183CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Winning RS, Krull CE (2011) Knockdown of ephrin-A5 expression by 40 % does not affect motor axon growth or migration into the chick hindlimb. Int J Mol Sci 12:8362–8371CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Sikkema AH, den Dunnen WF, Hulleman E, van Vuurden DG, Garcia-Manero G, Yang H, Scherpen FJ, Kampen KR, Hoving EW, Kamps WA, Diks SH, Peppelenbosch MP, de Bont ES (2012) EphB2 activity plays a pivotal role in pediatric medulloblastoma cell adhesion and invasion. Neurol Oncol 14:1125–1135CrossRefGoogle Scholar
  24. 24.
    Overman JJ, Clarkson AN, Wanner IB, Overman WT, Eckstein I, Maguire JL, Dinov ID, Toga AW, Carmichael ST (2012) A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proc Natl Acad Sci U S A 109:E2230–E2239CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sheleg M, Yochum CL, Wagner GC, Zhou R, Richardson JR (2013) Ephrin-A5 deficiency alters sensorimotor and monoaminergic development. Behav Brain Res 236:139–147CrossRefPubMedGoogle Scholar
  26. 26.
    Gerlai R (1996) Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype? Trends Neurosci 19:177–181CrossRefPubMedGoogle Scholar
  27. 27.
    Eisener-Dorman AF, Lawrence DA, Bolivar VJ (2010) Behavioral and genetic investigations of low exploratory behavior in Il18r1(−/−) mice: we can’t always blame it on the targeted gene. Brain Behav Immun 24:1116–1125CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Eisener-Dorman AF, Lawrence DA, Bolivar VJ (2009) Cautionary insights on knockout mouse studies: the gene or not the gene? Brain Behav Immun 23:318–324CrossRefPubMedGoogle Scholar
  29. 29.
    Winslow JW, Moran P, Valverde J, Shih A, Yuan JQ, Wong SC, Tsai SP, Goddard A, Henzel WJ, Hefti F, Beck KD, Caras IW (1995) Cloning of AL-1, a ligand for an Eph-related tyrosine kinase receptor involved in axon bundle formation. Neuron 14:973–981CrossRefPubMedGoogle Scholar
  30. 30.
    Ashkenazi A, Chamow SM (1997) Immunoadhesins as research tools and therapeutic agents. Curr Opin Immunol 9:195–200CrossRefPubMedGoogle Scholar
  31. 31.
    Goldshmit Y, Spanevello MD, Tajouri S, Li L, Rogers F, Pearse M, Galea M, Bartlett PF, Boyd AW, Turnley AM (2011) EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLoS ONE 6:e24636CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chamow SM, Ashkenazi A (1996) Immunoadhesins: principles and applications. Trends Biotechnol 14:52–60CrossRefPubMedGoogle Scholar
  33. 33.
    Meima L, Kljavin IJ, Moran P, Shih A, Winslow JW, Caras IW (1997) AL-1-induced growth cone collapse of rat cortical neurons is correlated with REK7 expression and rearrangement of the actin cytoskeleton. Eur J Neurosci 9:177–188CrossRefPubMedGoogle Scholar
  34. 34.
    Li Y, Peng Z, Xiao B, Houser CR (2010) Activation of ERK by spontaneous seizures in neural progenitors of the dentate gyrus in a mouse model of epilepsy. Exp Neurol 224:133–145CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Arida RM, Scorza FA, Peres CA, Cavalheiro EA (1999) The course of untreated seizures in the pilocarpine model of epilepsy. Epilepsy Res 34:99–107CrossRefPubMedGoogle Scholar
  36. 36.
    Veliskova J (2006) Behavioral characterization of seizures in rats. In: Pitkänen A, Schwartskroin PA, Solomon LM (eds) Models of seizures and epilepsy. Elsevier Academic Press, Burlington, pp 601–611CrossRefGoogle Scholar
  37. 37.
    Pernot F, Dorandeu F, Beaup C, Peinnequin A (2010) Selection of reference genes for real-time quantitative reverse transcription-polymerase chain reaction in hippocampal structure in a murine model of temporal lobe epilepsy with focal seizures. J Neurosci Res 88:1000–1008PubMedGoogle Scholar
  38. 38.
    Desai BS, Schneider JA, Li JL, Carvey PM, Hendey B (2009) Evidence of angiogenic vessels in Alzheimer’s disease. J Neural Transm 116:587–597CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gerlai R, McNamara A (2000) Anesthesia induced retrograde amnesia is ameliorated by ephrinA5-IgG in mice: EphA receptor tyrosine kinases are involved in mammalian memory. Behav Brain Res 108:133–143CrossRefPubMedGoogle Scholar
  40. 40.
    Parent JM, Kron MM (2012) Neurogenesis and epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies [internet], 4th edn. National Center for Biotechnology Information, Bethesda, pp 1–10Google Scholar
  41. 41.
    Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738PubMedGoogle Scholar
  42. 42.
    Kron MM, Zhang H, Parent JM (2010) The developmental stage of dentate granule cells dictates their contribution to seizure-induced plasticity. J Neurosci 30:2051–2059CrossRefPubMedGoogle Scholar
  43. 43.
    Jessberger S, Römer B, Babu H, Kempermann G (2005) Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol 196:342–351CrossRefPubMedGoogle Scholar
  44. 44.
    Jung KH, Chu K, Lee ST, Kim J, Sinn DI, Kim JM, Park DK, Lee JJ, Kim SU, Kim M, Lee SK, Roh JK (2006) Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol Dis 23:237–246CrossRefPubMedGoogle Scholar
  45. 45.
    Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, Picot MC, Baldy-Moulinier M, Bockaert J, Crespel A, Lerner-Natoli M (2007) Angiogenesis is associated with blood–brain barrier permeability in temporal lobe epilepsy. Brain 130:1942–1956CrossRefPubMedGoogle Scholar
  46. 46.
    Romariz SA, Garcia Kde O, Paiva Dde S, Bittencourt S, Covolan L, Mello LE, Longo BM (2014) Participation of bone marrow-derived cells in hippocampal vascularization after status epilepticus. Seizure 23:386–389CrossRefPubMedGoogle Scholar
  47. 47.
    Li J, Jiang G, Chen Y, Chen L, Li Z, Wang Z, Wang X (2014) Altered expression of hypoxia-Inducible factor-1α participates in the epileptogenesis in animal models. Synapse 68:402–409CrossRefPubMedGoogle Scholar
  48. 48.
    Kaminski RM, Rogawski MA, Klitgaard H (2014) The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 11:385–400CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Jing X, Miwa H, Sawada T, Nakanishi I, Kondo T, Miyajima M, Sakaguchi K (2012) Ephrin-A1-mediated dopaminergic neurogenesis and angiogenesis in a rat model of Parkinson’s disease. PLoS ONE 7:e32019CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fang WB, Brantley-Sieders DM, Hwang Y, Ham AJ, Chen J (2008) Identification and functional analysis of phosphorylated tyrosine residues within EphA2 receptor tyrosine kinase. J Biol Chem 283:16017–16026CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Brantley-Sieders DM, Caughron J, Hicks D, Pozzi A, Ruiz JC, Chen J (2004) EphA2 receptor tyrosine kinase regulates endothelial cell migration and vascular assembly through phosphoinositide 3-kinase-mediated Rac1 GTPase activation. J Cell Sci 117:2037–2049CrossRefPubMedGoogle Scholar
  52. 52.
    Kaplan N, Fatima A, Peng H, Bryar PJ, Lavker RM, Getsios S (2012) EphA2/Ephrin-A1 signaling complexes restrict corneal epithelial cell migration. Invest Ophthalmol Vis Sci 53:936–945. doi: 10.1167/iovs. 11-8685 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Goldshmit Y, Galea MP, Bartlett PF, Turnley AM (2006) EphA4 regulates central nervous system vascular formation. J Comp Neurol 497:864–875CrossRefPubMedGoogle Scholar
  54. 54.
    de Araújo HB, Vandresen-Filho S, Martins WC, Boeck CR, Tasca CI (2011) NMDA preconditioning protects against quinolinic acid-induced seizures via PKA, PI3K and MAPK/ERK signaling pathways. Behav Brain Res 219:92–97CrossRefGoogle Scholar
  55. 55.
    Zheng H, Wang X, Tang Z, Zheng W, Li Z (2013) The PI3K/Akt and ERK1/2 signaling pathways mediate the erythropoietin-modulated calcium influx in kainic acid-induced epilepsy. Neuroreport 24:335–341CrossRefPubMedGoogle Scholar
  56. 56.
    Fournier NM, Lee B, Banasr M, Elsayed M, Duman RS (2012) Vascular endothelial growth factor regulates adult hippocampal cell proliferation through MEK/ERK- and PI3K/Akt-dependent signaling. Neuropharmacology 63:642–652CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Fan L, Zhao Z, Orr PT, Chambers CH, Lewis MC, Frick KM (2010) Estradiol-induced object memory consolidation in middle-aged female mice requires dorsal hippocampal extracellular signal-regulated kinase and phosphatidylinositol 3-kinase activation. J Neurosci 30:4390–4400CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Menges CW, McCance DJ (2008) Constitutive activation of the Raf-MAPK pathway causes negative feedback inhibition of Ras-PI3K-AKT and cellular arrest through the EphA2 receptor. Oncogene 27:2934–2940CrossRefPubMedGoogle Scholar
  59. 59.
    Xu L, Fukumura D, Jain RK (2002) Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF. J Biol Chem 277:11368–11374CrossRefPubMedGoogle Scholar
  60. 60.
    Ziemann AE, Schnizler MK, Albert GW, Severson MA, Howard MA 3rd, Welsh MJ, Wemmie JA (2008) Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 11:816–822CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Daniel TO, Stein E, Cerretti DP, St John PL, Robert B, Abrahamson DR (1996) ELK and LERK-2 in developing kidney and microvascular endothelial assembly. Kidney Int Suppl 57:S73–S81PubMedGoogle Scholar
  62. 62.
    Stein E, Lane AA, Cerretti DP, Schoecklmann HO, Schroff AD, Van Etten RL, Daniel TO (1998) Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev 12:667–678CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Xu K, Tzvetkova-Robev D, Xu Y, Goldgur Y, Chan YP, Himanen JP, Nikolov DB (2013) Insights into Eph receptor tyrosine kinase activation from crystal structures of the EphA4 ectodomain and its complex with ephrin-A5. Proc Natl Acad Sci U S A 110:14634–14639CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Brennaman LH, Moss ML, Maness PF (2014) EphrinA/EphA-induced ectodomain shedding of neural cell adhesion molecule regulates growth cone repulsion through ADAM10 metalloprotease. J Neurochem 128:267–279CrossRefPubMedGoogle Scholar
  65. 65.
    Noh H, Park E, Park S (2014) In vivo expression of ephrinA5-Fc in mice results in cephalic neural crest agenesis and craniofacial abnormalities. Mol Cells 37:59–65CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yi Shu
    • 1
  • Bo Xiao
    • 1
    Email author
  • Qian Wu
    • 1
  • Tiantian Liu
    • 1
  • Yang Du
    • 1
  • Haiyun Tang
    • 3
  • Si Chen
    • 1
  • Li Feng
    • 1
  • Lili Long
    • 1
  • Yi Li
    • 1
    • 2
    Email author
  1. 1.Department of NeurologyXiangya Hospital, Central South UniversityHunanChina
  2. 2.Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  3. 3.Department of RadiologyXiangya Hospital, Central South UniversityHunanChina

Personalised recommendations