Molecular Neurobiology

, Volume 53, Issue 1, pp 577–583 | Cite as

Predictive and Prognostic Roles of Abnormal Expression of Tissue miR-125b, miR-221, and miR-222 in Glioma

  • Xinxing Li
  • Jihui Zheng
  • Liangyu Chen
  • Hongyu Diao
  • Yunhui Liu


Glioma is the most prevalent primary brain tumors in adults. In addition to the high incidence and mortality rate, the 5-year survival rate of glioma is also extremely low. MicroRNAs (miRNAs), as a class of small non-coding RNAs, may play an important role in carcinogenesis. It was also proposed that miRNAs might also be associated with glioma diagnosis and prognosis. In this study, we aimed at investigating the predictive and prognostic values of miR-125b, miR-221, and miR-222 in glioma and, hopefully, to provide some evidence for novel therapy of glioma. Tissue specimens were obtained from tumor tissue and adjacent non-tumor tissue. RNA was extracted and qRT-PCR was performed with U6 being the internal control. Receiver-operating characteristic (ROC) curves were constructed, and the area under the ROC curves (AUC) was calculated to evaluate the significance of candidate miRNAs in distinguishing glioma tumor tissues and adjacent normal tissues. Survival curves of Kaplan-Meier method were constructed for both high expression group and low expression group, and the difference between curves was evaluated by log-rank test. All the statistical analyses were performed using Stata version 12.0 software, and graphs were generated by GraphPad Prism 5.0. The significance of miR-125b, miR-221, and miR-222 expression level in distinguishing glioma tumor from adjacent non-tumor tissues was further validated. Combination of miR-125b, miR-221, and miR-22 was significantly superior compared to the clinical standard of using these miRNAs alone. A clear demarcation was shown by survival analysis between patients with high miR-125b, miR-221, and miR-222 expression and patients with poor prognosis. Similarly, panel of these miRNAs could play a better prognostic role in glioma. In this study, we confirmed the significance of miR-125b, miR-221, and miR-222 in distinguishing glioma tumor from adjacent non-tumor tissues. Higher expressions of miR-125b and miR-222 have also been proved to be associated with glioma. Furthermore, glioma patients with higher miR-125b, miR-221, and miR-222 expression were manifested to have poorer prognostic status, which might be attributed to their attenuated sensitivity to chemotherapy and radiotherapy.


Glioma miR-125b miR-221 miR-222 Tissue Diagnosis Prognosis 


  1. 1.
    Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C, Barnholtz-Sloan JS (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro-Oncology 15(suppl 2):ii1–ii56CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006) Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2(9):494–503. doi:10.1038/ncpneuro0289, quiz 491 p following 516CrossRefPubMedGoogle Scholar
  3. 3.
    Fan Z, Wu Y, Shen J, Zhan R (2013) Glutathione S-transferase M1, T1, and P1 polymorphisms and risk of glioma: a meta-analysis. Mol Biol Rep 40(2):1641–1650. doi:10.1007/s11033-012-2213-8 CrossRefPubMedGoogle Scholar
  4. 4.
    Meister G (2007) miRNAs get an early start on translational silencing. Cell 131(1):25–28. doi:10.1016/j.cell.2007.09.021 CrossRefPubMedGoogle Scholar
  5. 5.
    Zen K, Zhang CY (2012) Circulating microRNAs: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev 32(2):326–348. doi:10.1002/med.20215 CrossRefPubMedGoogle Scholar
  6. 6.
    Wu N, Lin X, Zhao X, Zheng L, Xiao L, Liu J, Ge L, Cao S (2013) MiR-125b acts as an oncogene in glioblastoma cells and inhibits cell apoptosis through p53 and p38MAPK-independent pathways. Br J Cancer 109(11):2853–2863CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wu N, Xiao L, Zhao X, Zhao J, Wang J, Wang F, Cao S, Lin X (2012) miR-125b regulates the proliferation of glioblastoma stem cells by targeting E2F2. FEBS Lett 586(21):3831–3839CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, Wang G, Zhang A, Jia Z, Han L, Jiang H (2009) Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol 34(6):1653–1660PubMedGoogle Scholar
  9. 9.
    Zhang CZ, Zhang JX, Zhang AL, Shi ZD, Han L, Jia ZF, Yang WD, Wang GX, Jiang T, You YP, Pu PY, Cheng JQ, Kang CS (2010) MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer 9:229. doi:10.1186/1476-4598-9-229 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang J, Han L, Ge Y, Zhou X, Zhang A, Zhang C, Zhong Y, You Y, Pu P, Kang C (2010) miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. Int J Oncol 36(4):913–920PubMedGoogle Scholar
  11. 11.
    Sobin LH, Fleming ID (1997) TNM classification of malignant tumors, fifth edition (1997). Union Internationale Contre le Cancer and the American Joint Committee on Cancer. Cancer 80(9):1803–1804CrossRefPubMedGoogle Scholar
  12. 12.
    Koshkin PA, Chistiakov DA, Chekhonin VP (2013) Role of microRNAs in mechanisms of glioblastoma resistance to radio- and chemotherapy. Biochem Biokhimiia 78(4):325–334. doi:10.1134/s0006297913040019 CrossRefGoogle Scholar
  13. 13.
    Jin Z, Xu S, Yu H, Yang B, Zhao H, Zhao G (2013) miR-125b inhibits connexin43 and promotes glioma growth. Cell Mol Neurobiol 33(8):1143–1148CrossRefPubMedGoogle Scholar
  14. 14.
    Smits M, Wurdinger T, van het Hof B, Drexhage JA, Geerts D, Wesseling P, Noske DP, Vandertop WP, de Vries HE, Reijerkerk A (2012) Myc-associated zinc finger protein (MAZ) is regulated by miR-125b and mediates VEGF-induced angiogenesis in glioblastoma. Faseb J 26(6):2639–2647CrossRefPubMedGoogle Scholar
  15. 15.
    Shi L, Zhang J, Pan T, Zhou J, Gong W, Liu N, Fu Z, You Y (2010) MiR-125b is critical for the suppression of human U251 glioma stem cell proliferation. Brain Res 2:120–126CrossRefGoogle Scholar
  16. 16.
    Xia HF, He TZ, Liu CM, Cui Y, Song PP, Jin XH, Ma X (2009) MiR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cell Physiol Biochem 23(4–6):347–358CrossRefPubMedGoogle Scholar
  17. 17.
    Chen J, Fu X, Wan Y, Wang Z, Jiang D, Shi L (2014) miR-125b inhibitor enhance the chemosensitivity of glioblastoma stem cells to temozolomide by targeting Bak1. Tumour Biol 35(7):6293–6302CrossRefPubMedGoogle Scholar
  18. 18.
    Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, Croce CM, Stein GS (2008) MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res 68(8):2773–2780. doi:10.1158/0008-5472.can-07-6754 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Quintavalle C, Garofalo M, Zanca C, Romano G, Iaboni M, del Basso De Caro M, Martinez-Montero JC, Incoronato M, Nuovo G, Croce CM, Condorelli G (2012) miR-221/222 overexpression in human glioblastoma increases invasiveness by targeting the protein phosphate PTPmu. Oncogene 31(7):858–868. doi:10.1038/onc.2011.280 CrossRefPubMedGoogle Scholar
  20. 20.
    Xie Q, Huang Z, Yan Y, Li F, Zhong X (2014) miR-221 mediates epithelial-mesenchymal transition-related gene expressions via regulation of PTEN/Akt signaling in drug-resistant glioma cells. Nan fang yi ke da xue xue bao J South Med Univ 34(2):218–222Google Scholar
  21. 21.
    Hao J, Zhang C, Zhang A, Wang K, Jia Z, Wang G, Han L, Kang C, Pu P (2012) miR-221/222 is the regulator of Cx43 expression in human glioblastoma cells. Oncol Rep 27(5):1504–1510. doi:10.3892/or.2012.1652 PubMedGoogle Scholar
  22. 22.
    Li Q, Shen K, Zhao Y, He X, Ma C, Wang L, Wang B, Liu J, Ma J (2013) MicroRNA-222 promotes tumorigenesis via targeting DKK2 and activating the Wnt/beta-catenin signaling pathway. FEBS Lett 587(12):1742–1748. doi:10.1016/j.febslet.2013.04.002 CrossRefPubMedGoogle Scholar
  23. 23.
    Chen L, Zhang J, Han L, Zhang A, Zhang C, Zheng Y, Jiang T, Pu P, Jiang C, Kang C (2012) Downregulation of miR-221/222 sensitizes glioma cells to temozolomide by regulating apoptosis independently of p53 status. Oncol Rep 27(3):854–860. doi:10.3892/or.2011.1535 PubMedGoogle Scholar
  24. 24.
    Quintavalle C, Mangani D, Roscigno G, Romano G, Diaz-Lagares A, Iaboni M, Donnarumma E, Fiore D, De Marinis P, Soini Y, Esteller M, Condorelli G (2013) MiR-221/222 target the DNA methyltransferase MGMT in glioma cells. PLoS One 8(9):e74466. doi:10.1371/journal.pone.0074466 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Li W, Guo F, Wang P, Hong S, Zhang C (2014) miR-221/222 confers radioresistance in glioblastoma cells through activating Akt independent of PTEN status. Curr Mol Med 14(1):185–195CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Xinxing Li
    • 1
  • Jihui Zheng
    • 2
  • Liangyu Chen
    • 1
  • Hongyu Diao
    • 1
  • Yunhui Liu
    • 1
  1. 1.Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
  2. 2.Department of RadiologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangChina

Personalised recommendations