Molecular Neurobiology

, Volume 53, Issue 1, pp 187–199 | Cite as

Transplantation of Cerebral Dopamine Neurotrophic Factor Transducted BMSCs in Contusion Spinal Cord Injury of Rats: Promotion of Nerve Regeneration by Alleviating Neuroinflammation

  • Hua Zhao
  • Lei Cheng
  • Xinwen Du
  • Yong Hou
  • Yi Liu
  • Zhaoqiang Cui
  • Lin NieEmail author


Traumatic spinal cord injury (SCI) causes neuron death and axonal damage resulting in functional motor and sensory loss, showing limited regeneration because of adverse microenvironment such as neuroinflammation and glial scarring. Currently, there is no effective therapy to treat SCI in clinical practice. Bone marrow-derived mesenchymal stem cells (BMSCs) are candidates for cell therapies but its effect is limited by neuroinflammation and adverse microenvironment in the injured spinal cord. In this study, we developed transgenic BMSCs overexpressing cerebral dopamine neurotrophic factor (CDNF), a secretory neurotrophic factor that showed potent effects on neuron protection, anti-inflammation, and sciatic nerve regeneration in previous studies. Our results showed that the transplantation of CDNF-BMSCs suppressed neuroinflammation and decreased the production of proinflammatory cytokines after SCI, resulting in the promotion of locomotor function and nerve regeneration of the injured spinal cord. This study presents a novel promising strategy for the treatment of spinal cord injury.


Spinal cord injury Cell therapy Bone marrow-derived mesenchymal stem cells Cerebral dopamine neurotrophic factor Nerve regeneration Neuroinflammation 



The authors are grateful to Prof. Tang DQ, Wang XL, Research Center for Cell Therapy, Qilu Hospital of Shandong University, and Prof. Chen ZY, Department of Neurobiology, Shandong University, for their kind advice and help with this research. The study was supported by the grant from Ph.D. Programs Foundation of Ministry of Education of China (20110131120079) and Natural Science Foundation of Shandong Province, China (ZR2013HM095).

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Supplementary material

12035_2014_9000_MOESM1_ESM.pdf (121 kb)
ESM 1 (PDF 121 kb)


  1. 1.
    Nashmi R, Fehlings MG (2001) Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain Res Brain Res Rev 38(1–2):165–191CrossRefPubMedGoogle Scholar
  2. 2.
    Parr AM, Kulbatski I, Zahir T, Wang X, Yue C, Keating A, Tator CH (2008) Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 155(3):760–770. doi: 10.1016/j.neuroscience.2008.05.042 CrossRefPubMedGoogle Scholar
  3. 3.
    Wright KT, El Masri W, Osman A, Chowdhury J, Johnson WE (2011) Concise review: bone marrow for the treatment of spinal cord injury: mechanisms and clinical applications. Stem Cells 29(2):169–178. doi: 10.1002/stem.570 CrossRefPubMedGoogle Scholar
  4. 4.
    Thuret S, Moon LD, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7(8):628–643. doi: 10.1038/nrn1955 CrossRefPubMedGoogle Scholar
  5. 5.
    Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 114:25–57. doi: 10.1016/j.pneurobio.2013.11.002 CrossRefPubMedGoogle Scholar
  6. 6.
    Bradbury EJ, McMahon SB (2006) Spinal cord repair strategies: why do they work? Nat Rev Neurosci 7(8):644–653. doi: 10.1038/nrn1964 CrossRefPubMedGoogle Scholar
  7. 7.
    Bydon M, Lin J, Macki M, Gokaslan ZL, Bydon A (2013) The current role of steroids in acute spinal cord injury. World Neurosurg. doi: 10.1016/j.wneu.2013.02.062 Google Scholar
  8. 8.
    Markandaya M, Stein DM, Menaker J (2012) Acute treatment options for spinal cord injury. Curr Treat Options Neurol. doi: 10.1007/s11940-011-0162-5 PubMedGoogle Scholar
  9. 9.
    Miller SM (2008) Methylprednisolone in acute spinal cord injury: a tarnished standard. J Neurosurg Anesthesiol 20(2):140–142. doi: 10.1097/01.ana.0000314442.40952.0d CrossRefPubMedGoogle Scholar
  10. 10.
    Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112(3):523–533. doi: 10.1161/CIRCRESAHA.111.256149 CrossRefPubMedGoogle Scholar
  11. 11.
    Ruff CA, Fehlings MG (2010) Neural stem cells in regenerative medicine: bridging the gap. Panminerva Med 52(2):125–147PubMedGoogle Scholar
  12. 12.
    Forraz N, Wright KE, Jurga M, McGuckin CP (2013) Experimental therapies for repair of the central nervous system: stem cells and tissue engineering. J Tissue Eng Regen Med 7(7):523–536. doi: 10.1002/term.552 CrossRefPubMedGoogle Scholar
  13. 13.
    Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, Olson L (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 99(4):2199–2204. doi: 10.1073/pnas.042678299 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Himes BT, Neuhuber B, Coleman C, Kushner R, Swanger SA, Kopen GC, Wagner J, Shumsky JS, Fischer I (2006) Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil Neural Repair 20(2):278–296. doi: 10.1177/1545968306286976 CrossRefPubMedGoogle Scholar
  15. 15.
    Mahmood A, Lu D, Wang L, Chopp M (2002) Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J Neurotrauma 19(12):1609–1617. doi: 10.1089/089771502762300265 CrossRefPubMedGoogle Scholar
  16. 16.
    Ritfeld GJ, Nandoe Tewarie RD, Vajn K, Rahiem ST, Hurtado A, Wendell DF, Roos RA, Oudega M (2012) Bone marrow stromal cell-mediated tissue sparing enhances functional repair after spinal cord contusion in adult rats. Cell Transplant 21(7):1561–1575. doi: 10.3727/096368912X640484 CrossRefPubMedGoogle Scholar
  17. 17.
    Cho SR, Kim YR, Kang HS, Yim SH, Park CI, Min YH, Lee BH, Shin JC, Lim JB (2009) Functional recovery after the transplantation of neurally differentiated mesenchymal stem cells derived from bone barrow in a rat model of spinal cord injury. Cell Transplant 18(12):1359–1368. doi: 10.3727/096368909X475329 CrossRefPubMedGoogle Scholar
  18. 18.
    Cho JS, Park HW, Park SK, Roh S, Kang SK, Paik KS, Chang MS (2009) Transplantation of mesenchymal stem cells enhances axonal outgrowth and cell survival in an organotypic spinal cord slice culture. Neurosci Lett 454(1):43–48. doi: 10.1016/j.neulet.2009.02.024 CrossRefPubMedGoogle Scholar
  19. 19.
    Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506. doi: 10.1182/blood-2007-02-069716 CrossRefPubMedGoogle Scholar
  20. 20.
    Mei JM, Niu CS (2014) Effects of CDNF on 6-OHDA-induced apoptosis in PC12 cells via modulation of Bcl-2/Bax and caspase-3 activation. Neurol Sci. doi: 10.1007/s10072-014-1700-1 Google Scholar
  21. 21.
    Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, Park HC, Park SR, Min BH, Kim EY, Choi BH, Park H, Ha Y (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial. Stem Cells 25(8):2066–2073. doi: 10.1634/stemcells. 2006-0807 CrossRefPubMedGoogle Scholar
  22. 22.
    Bernardo ME, Pagliara D, Locatelli F (2012) Mesenchymal stromal cell therapy: a revolution in regenerative medicine? Bone Marrow Transplant 47(2):164–171. doi: 10.1038/bmt.2011.81 CrossRefPubMedGoogle Scholar
  23. 23.
    Mahmood A, Lu D, Chopp M (2004) Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma 21(1):33–39. doi: 10.1089/089771504772695922 CrossRefPubMedGoogle Scholar
  24. 24.
    Caplan AI (2009) Why are MSCs therapeutic? New data: new insight. J Pathol 217(2):318–324. doi: 10.1002/path.2469 CrossRefPubMedGoogle Scholar
  25. 25.
    Hawryluk GW, Mothe A, Wang J, Wang S, Tator C, Fehlings MG (2012) An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev 21(12):2222–2238. doi: 10.1089/scd.2011.0596 CrossRefPubMedGoogle Scholar
  26. 26.
    Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213(2):341–347. doi: 10.1002/jcp.21200 CrossRefPubMedGoogle Scholar
  27. 27.
    Messmer K, Reynolds GP (2005) An in vitro model of inflammatory neurodegeneration and its neuroprotection. Neurosci Lett 388(1):39–44. doi: 10.1016/j.neulet.2005.06.047 CrossRefPubMedGoogle Scholar
  28. 28.
    Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318CrossRefPubMedGoogle Scholar
  29. 29.
    Kim WG, Mohney RP, Wilson B, Jeohn GH, Liu B, Hong JS (2000) Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci 20(16):6309–6316PubMedGoogle Scholar
  30. 30.
    Hall ED, Springer JE (2004) Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 1(1):80–100. doi: 10.1602/neurorx.1.1.80 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang N, Yin Y, Xu SJ, Wu YP, Chen WS (2012) Inflammation & apoptosis in spinal cord injury. Indian J Med Res 135:287–296PubMedPubMedCentralGoogle Scholar
  32. 32.
    Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209(2):378–388. doi: 10.1016/j.expneurol.2007.06.009 CrossRefPubMedGoogle Scholar
  33. 33.
    Karimi-Abdolrezaee S, Billakanti R (2012) Reactive astrogliosis after spinal cord injury—beneficial and detrimental effects. Mol Neurobiol 46(2):251–264. doi: 10.1007/s12035-012-8287-4 CrossRefPubMedGoogle Scholar
  34. 34.
    Lindholm P, Voutilainen MH, Lauren J, Peranen J, Leppanen VM, Andressoo JO, Lindahl M, Janhunen S, Kalkkinen N, Timmusk T, Tuominen RK, Saarma M (2007) Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 448(7149):73–77. doi: 10.1038/nature05957 CrossRefPubMedGoogle Scholar
  35. 35.
    Bruhn H (2005) A short guided tour through functional and structural features of saposin-like proteins. Biochem J 389(Pt 2):249–257. doi: 10.1042/BJ20050051 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lindstrom R, Lindholm P, Kallijarvi J, Yu LY, Piepponen TP, Arumae U, Saarma M, Heino TI (2013) Characterization of the structural and functional determinants of MANF/CDNF in drosophila in vivo model. PLoS One 8(9):e73928. doi: 10.1371/journal.pone.0073928 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Airavaara M, Shen H, Kuo CC, Peranen J, Saarma M, Hoffer B, Wang Y (2009) Mesencephalic astrocyte-derived neurotrophic factor reduces ischemic brain injury and promotes behavioral recovery in rats. J Comp Neurol 515(1):116–124. doi: 10.1002/cne.22039 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Voutilainen MH, Back S, Porsti E, Toppinen L, Lindgren L, Lindholm P, Peranen J, Saarma M, Tuominen RK (2009) Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson’s disease. J Neurosci 29(30):9651–9659. doi: 10.1523/JNEUROSCI. 0833-09.2009 CrossRefPubMedGoogle Scholar
  39. 39.
    Zhao H, Cheng L, Liu Y, Zhang W, Maharjan S, Cui Z, Wang X, Tang D, Nie L (2014) Mechanisms of anti-inflammatory property of conserved dopamine neurotrophic factor: inhibition of JNK signaling in lipopolysaccharide-induced microglia. J Mol Neurosci 52(2):186–192. doi: 10.1007/s12031-013-0120-7 CrossRefPubMedGoogle Scholar
  40. 40.
    Cheng L, Zhao H, Zhang W, Liu B, Liu Y, Guo Y, Nie L (2013) Overexpression of conserved dopamine neurotrophic factor (CDNF) in astrocytes alleviates endoplasmic reticulum stress-induced cell damage and inflammatory cytokine secretion. Biochem Biophys Res Commun 435(1):34–39. doi: 10.1016/j.bbrc.2013.04.029 CrossRefPubMedGoogle Scholar
  41. 41.
    Cheng L, Liu Y, Zhao H, Zhang W, Guo YJ, Nie L (2013) Lentiviral-mediated transfer of CDNF promotes nerve regeneration and functional recovery after sciatic nerve injury in adult rats. Biochem Biophys Res Commun 440(2):330–335. doi: 10.1016/j.bbrc.2013.09.084 CrossRefPubMedGoogle Scholar
  42. 42.
    Sun ZP, Gong L, Huang SH, Geng Z, Cheng L, Chen ZY (2011) Intracellular trafficking and secretion of cerebral dopamine neurotrophic factor in neurosecretory cells. J Neurochem 117(1):121–132. doi: 10.1111/j.1471-4159.2011.07179.x CrossRefPubMedGoogle Scholar
  43. 43.
    Wu W, Zhao H, Xie B, Liu H, Chen Y, Jiao G, Wang H (2011) Implanted spike wave electric stimulation promotes survival of the bone marrow mesenchymal stem cells and functional recovery in the spinal cord injured rats. Neurosci Lett 491(1):73–78. doi: 10.1016/j.neulet.2011.01.009 CrossRefPubMedGoogle Scholar
  44. 44.
    Wu W, Lee SY, Wu X, Tyler JY, Wang H, Ouyang Z, Park K, Xu XM, Cheng JX (2014) Neuroprotective ferulic acid (FA)-glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord. Biomaterials 35(7):2355–2364. doi: 10.1016/j.biomaterials.2013.11.074 CrossRefPubMedGoogle Scholar
  45. 45.
    Pearse DD, Sanchez AR, Pereira FC, Andrade CM, Puzis R, Pressman Y, Golden K, Kitay BM, Blits B, Wood PM, Bunge MB (2007) Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: survival, migration, axon association, and functional recovery. Glia 55(9):976–1000. doi: 10.1002/glia.20490 CrossRefPubMedGoogle Scholar
  46. 46.
    Ritfeld GJ, Rauck BM, Novosat TL, Park D, Patel P, Roos RA, Wang Y, Oudega M (2014) The effect of a polyurethane-based reverse thermal gel on bone marrow stromal cell transplant survival and spinal cord repair. Biomaterials 35(6):1924–1931. doi: 10.1016/j.biomaterials.2013.11.062 CrossRefPubMedGoogle Scholar
  47. 47.
    Bolton DA, Tse AD, Ballermann M, Misiaszek JE, Fouad K (2006) Task specific adaptations in rat locomotion: runway versus horizontal ladder. Behav Brain Res 168(2):272–279. doi: 10.1016/j.bbr.2005.11.017 CrossRefPubMedGoogle Scholar
  48. 48.
    Li W, Cai WQ, Li CR (2006) Repair of spinal cord injury by neural stem cells modified with BDNF gene in rats. Neurosci Bull 22(1):34–40PubMedGoogle Scholar
  49. 49.
    van den Berg ME, Castellote JM, de Pedro-Cuesta J, Mahillo-Fernandez I (2010) Survival after spinal cord injury: a systematic review. J Neurotrauma 27(8):1517–1528. doi: 10.1089/neu.2009.1138 CrossRefPubMedGoogle Scholar
  50. 50.
    Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209(2):294–301. doi: 10.1016/j.expneurol.2007.05.014 CrossRefPubMedGoogle Scholar
  51. 51.
    Takami T, Oudega M, Bethea JR, Wood PM, Kleitman N, Bunge MB (2002) Methylprednisolone and interleukin-10 reduce gray matter damage in the contused Fischer rat thoracic spinal cord but do not improve functional outcome. J Neurotrauma 19(5):653–666. doi: 10.1089/089771502753754118 CrossRefPubMedGoogle Scholar
  52. 52.
    Hausmann ON (2003) Post-traumatic inflammation following spinal cord injury. Spinal Cord 41(7):369–378. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  53. 53.
    Ramer LM, Ramer MS, Steeves JD (2005) Setting the stage for functional repair of spinal cord injuries: a cast of thousands. Spinal Cord 43(3):134–161. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  54. 54.
    Johnston H, Boutin H, Allan SM (2011) Assessing the contribution of inflammation in models of Alzheimer’s disease. Biochem Soc Trans 39(4):886–890. doi: 10.1042/BST0390886 CrossRefPubMedGoogle Scholar
  55. 55.
    Zindler E, Zipp F (2010) Neuronal injury in chronic CNS inflammation. Best Pract Res Clin Anaesthesiol 24(4):551–562. doi: 10.1016/j.bpa.2010.11.001 CrossRefPubMedGoogle Scholar
  56. 56.
    Takakuwa T, Endo S, Nakae H, Kikichi M, Inada K, Yoshida M (1994) PAF acetylhydrolase and arachidonic acid metabolite levels in patients with sepsis. Res Commun Chem Pathol Pharmacol 84(3):283–290PubMedGoogle Scholar
  57. 57.
    Kwiatkoski M, Soriano RN, Araujo RM, Azevedo LU, Batalhao ME, Francescato HD, Coimbra TM, Carnio EC, Branco LG (2013) Hydrogen sulfide inhibits preoptic prostaglandin E2 production during endotoxemia. Exp Neurol 240:88–95. doi: 10.1016/j.expneurol.2012.11.008 CrossRefPubMedGoogle Scholar
  58. 58.
    Zhao H, Liu Y, Cheng L, Liu B, Zhang W, Guo YJ, Nie L (2013) Mesencephalic astrocyte-derived neurotrophic factor inhibits oxygen-glucose deprivation-induced cell damage and inflammation by suppressing endoplasmic reticulum stress in rat primary astrocytes. J Mol Neurosci 51(3):671–678. doi: 10.1007/s12031-013-0042-4 CrossRefPubMedGoogle Scholar
  59. 59.
    Hellman M, Arumae U, Yu LY, Lindholm P, Peranen J, Saarma M, Permi P (2011) Mesencephalic astrocyte-derived neurotrophic factor (MANF) has a unique mechanism to rescue apoptotic neurons. J Biol Chem 286(4):2675–2680. doi: 10.1074/jbc.M110.146738 CrossRefPubMedGoogle Scholar
  60. 60.
    Schiwy N, Brazda N, Muller HW (2009) Enhanced regenerative axon growth of multiple fibre populations in traumatic spinal cord injury following scar-suppressing treatment. Eur J Neurosci 30(8):1544–1553. doi: 10.1111/j.1460-9568.2009.06929.x CrossRefPubMedGoogle Scholar
  61. 61.
    Takami T, Oudega M, Bates ML, Wood PM, Kleitman N, Bunge MB (2002) Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J Neurosci 22(15):6670–6681PubMedGoogle Scholar
  62. 62.
    Guest JD, Herrera L, Margitich I, Oliveria M, Marcillo A, Casas CE (2008) Xenografts of expanded primate olfactory ensheathing glia support transient behavioral recovery that is independent of serotonergic or corticospinal axonal regeneration in nude rats following spinal cord transection. Exp Neurol 212(2):261–274. doi: 10.1016/j.expneurol.2008.03.010 CrossRefPubMedGoogle Scholar
  63. 63.
    Kubasak MD, Jindrich DL, Zhong H, Takeoka A, McFarland KC, Munoz-Quiles C, Roy RR, Edgerton VR, Ramon-Cueto A, Phelps PE (2008) OEG implantation and step training enhance hindlimb-stepping ability in adult spinal transected rats. Brain 131(Pt 1):264–276. doi: 10.1093/brain/awm267 CrossRefPubMedGoogle Scholar
  64. 64.
    Lu J, Feron F, Ho SM, Mackay-Sim A, Waite PM (2001) Transplantation of nasal olfactory tissue promotes partial recovery in paraplegic adult rats. Brain Res 889(1–2):344–357CrossRefPubMedGoogle Scholar
  65. 65.
    Deumens R, Koopmans GC, Honig WM, Maquet V, Jerome R, Steinbusch HW, Joosten EA (2006) Limitations in transplantation of astroglia-biomatrix bridges to stimulate corticospinal axon regrowth across large spinal lesion gaps. Neurosci Lett 400(3):208–212. doi: 10.1016/j.neulet.2006.02.050 CrossRefPubMedGoogle Scholar
  66. 66.
    Martin D, Robe P, Franzen R, Delree P, Schoenen J, Stevenaert A, Moonen G (1996) Effects of Schwann cell transplantation in a contusion model of rat spinal cord injury. J Neurosci Res 45(5):588–597. doi: 10.1002/(SICI)1097-4547(19960901)45:5<588::AID-JNR8>3.0.CO;2-8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Hua Zhao
    • 1
    • 2
  • Lei Cheng
    • 1
  • Xinwen Du
    • 3
  • Yong Hou
    • 1
  • Yi Liu
    • 1
    • 2
  • Zhaoqiang Cui
    • 2
  • Lin Nie
    • 1
    Email author
  1. 1.Department of Spine SurgeryQilu Hospital of Shandong UniversityJinanChina
  2. 2.Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function ResearchQilu Hospital of Shandong UniversityJinanChina
  3. 3.Department of Pediatric SurgeryLaizhou People’s HospitalLaizhouChina

Personalised recommendations