Advertisement

Molecular Neurobiology

, Volume 52, Issue 3, pp 1263–1268 | Cite as

RETRACTED ARTICLE: CXCR4 Signaling Induced Epithelial-Mesenchymal Transition by PI3K/AKT and ERK Pathways in Glioblastoma

  • Baoyu Lv
  • Xiangshan Yang
  • Shunzeng Lv
  • Lei Wang
  • Kaixi Fan
  • Ranran Shi
  • Fengling Wang
  • Huishu Song
  • Xiaochen Ma
  • Xuefen Tan
  • Kun Xu
  • Jingjing Xie
  • Guangmei Wang
  • Man Feng
  • Li Zhang
Article

Abstract

Stromal cell-derived factor 1 (SDF-1) and its receptor, CXCR4, play an important role in tumor progression. Epithelial-mesenchymal transition (EMT) process is linked to disease pathophysiology. This study aimed to investigate the roles and underlying mechanisms of SDF-1/CXCR4 axis in EMT process of glioblastoma. In the present study, CXCR4 activation and inhibition in U87 were induced with exogenous SDF-1 and with CXCR4 small interfering RNA (siRNA), respectively. CXCR4 downstream signal molecules AKT, ERK, and EMT biomarkers (vementin, snail, N-cadherin, and E-cadherin) were tested using the Western blot. Our results showed that SDF-1 can induce AKT and ERK phosphorylation in a dose-dependent manner, and endogenous CXCR4 can be blocked thoroughly by CXCR4 siRNA in U87. Notably SDF-1 alone treatment can induce the upregulation of vementin, snail, and N-cadherin of U87; besides, the downregulation of E-cadherin also occurred. On the contrary, CXCR4 siRNA significantly prohibited SDF-1-induced AKT and ERK phosphorylation, at the same time, EMT biomarker changes were not observed. Function analysis revealed that CXCR4 siRNA obviously interfered with U87 cell migration and proliferation, according to wound healing assay. In conclusion, this study suggested that EMT process can be triggered by the SDF-1/CXCR4 axis in glioblastoma, and then involved in the tumor cell invasion and proliferation via activation of PI3K/AKT and ERK pathway. Our study lays a new foundation for the treatment of glioblastoma through antagonizing CXCR4.

Keywords

CXCR4 EMT PI3K/AKT ERK Glioblastoma 

Notes

Acknowledgments

This study was supported by Science and Technology Project of Shandong Province Academy of Medical Sciences (2013015). We greatly thank other members of the Yang and Sandy Lab for their valuable suggestions and writing.

Conflicts of interest

The authors state that there are no conflicts of interest to disclose.

References

  1. 1.
    Wilson TA, Karajannis MA, Harter DH (2014) Glioblastoma multiforme: state of the art and future therapeutics. Surg Neurol Int 5:64CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Weathers SP, Gilbert MR (2014) Advances in treating glioblastoma. F1000Prime Rep 6:46CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn Martin JB, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996CrossRefPubMedGoogle Scholar
  4. 4.
    Gilbert MR, Wang M, Aldape KD, Stupp R, Hegi ME, Jaeckle KA, Armstrong TS, Wefel JS, Won M, Blumenthal DT, Mahajan A, Schultz CJ, Erridge S, Baumert B, Hopkins KI, Tzuk-Shina T, Brown PD, Chakravarti A, Curran WJ, Mehta MP (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 31(32):4085–4091CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Moustakas A, Heldin P (2014) TGFβ and matrix-regulated epithelial to mesenchymal transition. Biochim Biophys Acta 1840(8):2621–2634CrossRefPubMedGoogle Scholar
  6. 6.
    Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15(3):178–196CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nieto MA (2013) Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342(6159):1234850CrossRefPubMedGoogle Scholar
  8. 8.
    Li Y, Ma J, Qian X, Wu Q, Xia J, Miele L, Sarkar FH, Wang Z (2013) Regulation of EMT by notch signaling pathway in tumor progression. Curr Cancer Drug Targets 13(9):957–962CrossRefPubMedGoogle Scholar
  9. 9.
    Balogh P, Katz S, Kiss AL (2013) The role of endocytic pathways in TGF-β signaling. Pathol Oncol Res 19(2):141–148CrossRefPubMedGoogle Scholar
  10. 10.
    Fuxe J, Karlsson MC (2012) TGF-β-induced epithelial-mesenchymal transition: a link between cancer and inflammation. Semin Cancer Biol 22(5–6):455–461CrossRefPubMedGoogle Scholar
  11. 11.
    Gao D, Vahdat LT, Wong S, Chang JC, Mittal V (2012) Microenvironmental regulation of epithelial-mesenchymal transitions in cancer. Cancer Res 72(19):4883–4889CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dave B, Mittal V, Tan NM, Chang JC (2012) Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Res 14(1):202CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Roy I, Evans DB, Dwinell MB (2014) Chemokines and chemokine receptors: update on utility and challenges for the clinician. Surgery 155(6):961–973CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yoshie O (2013) Chemokine receptors as therapeutic targets. Nihon Rinsho Meneki Gakkai Kaishi 36(4):189–196CrossRefPubMedGoogle Scholar
  15. 15.
    Domanska UM, Kruizinga RC, Nagengast WB, Timmer-Bosscha H, Huls G, de Vries EG, Walenkamp AM (2013) A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer 49(1):219–230CrossRefPubMedGoogle Scholar
  16. 16.
    Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272(5263):872–877CrossRefPubMedGoogle Scholar
  17. 17.
    Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4(7):540–550CrossRefPubMedGoogle Scholar
  18. 18.
    Luker KE, Luker GD (2006) Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett 238(1):30–41CrossRefPubMedGoogle Scholar
  19. 19.
    Fernandis AZ, Prasad A, Band H, Klösel R, Ganju RK (2004) Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 23(1):157–167CrossRefPubMedGoogle Scholar
  20. 20.
    Bates RC, DeLeo Iii MJ, Mercurio AM (2004) The epithelial–mesenchymal transition of colon carcinoma involves expression of IL-8 and CXCR-1-mediated chemotaxis. Exp Cell Res 299(2):315–324CrossRefPubMedGoogle Scholar
  21. 21.
    Wu Y, Ginther C, Kim J, Mosher N, Chung S, Slamon D, Vadgama JV (2012) Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol Cancer Res 10(12):1597–1606CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Deshmukh AB, Patel JK, Prajapati AR, Shah S (2012) Perspective in chronic kidney disease: targeting hypoxia-inducible factor (HIF) as potential therapeutic approach. Ren Fail 34(4):521–532CrossRefPubMedGoogle Scholar
  23. 23.
    Li Y, Qiu X, Zhang S, Zhang Q, Wang E (2009) Hypoxia induced CXCR4 expression via HIF-1alpha and HIF-2alpha correlates with migration and invasion in lung cancer cells. Cancer Biol Ther 8(4):322–330CrossRefPubMedGoogle Scholar
  24. 24.
    Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 117(12):3810–3820PubMedPubMedCentralGoogle Scholar
  25. 25.
    Sahlgren C, Gustafsson MV, Jin S, Poellinger L, Lendahl U (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci U S A 105(17):6392–6397CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kaidi A, Williams AC, Paraskeva C (2007) Interaction between beta-catenin and HIF-1 promotes cellular adaptation to hypoxia. Nat Cell Biol 9(2):210–217CrossRefPubMedGoogle Scholar
  27. 27.
    Yang F, Sun L, Li Q, Han X, Lei L, Zhang H, Shang Y (2012) SET8 promotes epithelial–mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J 31(1):110–123CrossRefPubMedGoogle Scholar
  28. 28.
    Luo D, Wang J, Li J, Post M (2011) Mouse snail is a target gene for HIF. Mol Cancer Res 9(2):234–245CrossRefPubMedGoogle Scholar
  29. 29.
    Imai T, Horiuchi A, Wang C, Oka K, Ohira S, Nikaido T, Konishi I (2003) Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol 163(4):1437–1447CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Baoyu Lv
    • 1
  • Xiangshan Yang
    • 2
  • Shunzeng Lv
    • 2
    • 3
  • Lei Wang
    • 4
  • Kaixi Fan
    • 5
  • Ranran Shi
    • 3
    • 4
  • Fengling Wang
    • 1
  • Huishu Song
    • 3
  • Xiaochen Ma
    • 3
  • Xuefen Tan
    • 1
  • Kun Xu
    • 1
  • Jingjing Xie
    • 5
  • Guangmei Wang
    • 5
  • Man Feng
    • 2
  • Li Zhang
    • 6
  1. 1.Department of OncologyShandong Cancer Hospital and InstituteJinanChina
  2. 2.Department of PathologyAffiliated Hospital of Shandong Academy of Medical SciencesJinanChina
  3. 3.Shandong University School of MedicineJinanChina
  4. 4.Department of Thoracic SurgeryShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
  5. 5.Department of OncologyAffiliated Hospital of Shandong Academy of Medical SciencesJinanChina
  6. 6.Department of Gynecologic OncologyShandong Cancer Hospital and InstituteJinanChina

Personalised recommendations