Advertisement

Molecular Neurobiology

, Volume 52, Issue 3, pp 1210–1222 | Cite as

Stimulation of Sigma-1 Receptor Ameliorates Depressive-like Behaviors in CaMKIV Null Mice

  • Shigeki MoriguchiEmail author
  • Hiroyuki Sakagami
  • Yasushi Yabuki
  • Yuzuru Sasaki
  • Hisanao Izumi
  • Chen Zhang
  • Feng Han
  • Kohji FukunagaEmail author
Article

Abstract

Sigma-1 receptor (Sig-1R) is a molecular chaperone regulating calcium efflux from the neuronal endoplasmic reticulum to the mitochondria. Calcium/calmodulin-dependent protein kinase IV (CaMKIV) null mice exhibit depressive-like behaviors and impaired neurogenesis as assessed by bromodeoxyuridine (BrdU) incorporation into newborn cells of the hippocampal dentate gyrus (DG). Here, we demonstrate that chronic stimulation of Sig-1R by treatment with the agonist SA4503 or the SSRI fluvoxamine for 14 days improves depressive-like behaviors in CaMKIV null mice. By contrast, treatment with paroxetine, which lacks affinity for Sig-1R, did not alter these behaviors. Reduced numbers of BrdU-positive cells and decreased brain-derived neurotrophic factor (BDNF) mRNA expression and protein kinase B (Akt; Ser-473) phosphorylation seen in the DG of CaMKIV null mice were significantly rescued by chronic Sig-1R stimulation. Interestingly, reduced ATP production observed in the DG of CaMKIV null mice was improved by chronic Sig-1R stimulation. Such stimulation also improved hippocampal long-term potentiation (LTP) induction and maintenance, which are impaired in the DG of CaMKIV null mice. LTP rescue was closely associated with both increases in calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and GluA1 (Ser-831) phosphorylation. Taken together, Sig-1R stimulation by SA4503 or fluvoxamine treatment increased hippocampal neurogenesis, which is closely associated with amelioration of depressive-like behaviors in CaMKIV null mice.

Keywords

Sigma-1R CaMKIV null mice Depressive-like behaviors Hippocampal neurogenesis 

Abbreviations

Akt

Protein kinase B

BDNF

Brain-derived neurotrophic factor

BrdU

Bromodeoxyuridine

CaMKII

Calcium/calmodulin-dependent protein kinase II

CaMKIV

Calcium/calmodulin-dependent protein kinase IV

CREB

cAMP-responsive element binding protein

DG

Dentate gyrus

DHEA

Dehydroepiandrosterone

ERK

Extracellular signal-regulated kinase

ER/SR

Endoplasmic/sacroplasmic reticulum

fEPSPs

Field excitatory postsynaptic potentials

HFS

High-frequency stimulation

LTP

Long-term potentiation

NMDAR

N-methyl-d-aspartate receptor

Sig-1R

Sigma-1 receptor

SSRIs

Selective serotonin reuptake inhibitors

Notes

Acknowledgments

This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology, and the Ministry of Health and Welfare of Japan (22390109 to K.F.; 20790398 to S.M.), the Smoking Research Foundation (to K.F.), the Takeda Science Foundation (to S.M.), the Suzuken Memorial Foundation (to S.M.), the Yokoyama Foundation for Clinical Pharmacology (to S.M.) and the Comprehensive Brain Science Network (CBSN).

Authors Contributions

S.M., H.S., Y.S., N.I., and Y.Y. performed the experiments. H.S. provided knockout mice. C.Z. and F.H. provided materials. S.M. and K.F. wrote the manuscript and designed the study.

Conflicts of Interest

The authors declare no competing financial interests.

References

  1. 1.
    Gould E, Tanapat P, Rydel T et al (2000) Regulation of hippocampal neurogenesis in adulthood. Biol Psychiatry 48:715–720CrossRefPubMedGoogle Scholar
  2. 2.
    Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(805):809Google Scholar
  3. 3.
    Boldrini M, Underwood MD, Hen R et al (2009) Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 34:2376–2389CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Malberg JE, Duman RS (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28(1562):1571Google Scholar
  5. 5.
    Cobos EJ, Entrena JM, Nieto FR et al (2008) Pharmacology and therapeutic potential of sigma1 receptor ligands. Curr Neuropharmacol 6:344–366CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chevallier N, Keller E, Maurice T (2011) Behavioral phenotyping of knockout mice for the sigma-1 (σ1) chaperone protein revealed gender-related anxiety, depressive-like and memory alterations. J Psychopharmacol 25:960–975CrossRefPubMedGoogle Scholar
  7. 7.
    Moriguchi S, Yamamoto Y, Ikuno T et al (2011) Sigma-1 receptor stimulation by dehydroepiandrosterone ameliorates cognitive impairment through activation of CaM kinase II, protein kinase C and extracellular signal-regulated kinase in olfactory bulbectomized mice. J Neurochem 117:879–891CrossRefPubMedGoogle Scholar
  8. 8.
    Moriguchi S, Shinoda Y, Yamamoto Y et al (2013) Stimulation of sigma-1 receptor by DHEA enhances synaptic efficacy and neurogenesis in the hippocampal dentate gyrus of olfactory bulbectomized mice. PLoS ONE 8:e60863CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hanner M, Moebius FF, Flandorfer A et al (1996) Purification, molecular cloning, and expression of the mammalian σ1 binding site. Proc Natl Acad Sci U S A 93:8072–8077CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kekuda R, Prasad PD, Fei YJ et al (1996) Cloning and functional expression of the human type1 sigma receptor (hSigmaR1). Biochem Biophys Res Commun 229:553–558CrossRefPubMedGoogle Scholar
  11. 11.
    Seth P, Leibach FH, Ganapathy V (1997) Cloning and structural analysis of the cDNA and the gene encoding the murine type 1 sigma receptor. Biochem Biophys Res Commun 241:535–540CrossRefPubMedGoogle Scholar
  12. 12.
    Seth P, Fei YJ, Li HW et al (1998) Cloning and functional characterization of a sigma receptor from rat brain. J Neurochem 70:922–931CrossRefPubMedGoogle Scholar
  13. 13.
    Pan YX, Mey J, Xu J et al (1998) Cloning and characterization of a mouse σ1 receptor. J Neurochem 70:2279–2285CrossRefPubMedGoogle Scholar
  14. 14.
    Hayashi T, Su TP (2004) Sigma-1 receptors at galactosylceramide-enriched lipid microdomains regulate oligodendrocyte differentiation. Proc Natl Acad Sci U S A 101:14949–14954CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Palacios G, Muro A, Vela JM et al (2003) Immnohistochemical localization of the sigma1-receptor in oligodendrocytes in the rat central nervous system. Brain Res 961:92–99CrossRefPubMedGoogle Scholar
  16. 16.
    Hayashi T, Maurice T, Su TP (2000) Ca2+ signaling via sigma1-receptors: novel regulatory mechanism affecting intracellular Ca2+ concentration. J Pharmacol Exp Ther 293:788–798PubMedGoogle Scholar
  17. 17.
    Shioda N, Ishikawa K, Tagashira H et al (2012) Expression of a truncated form of the endoplasmic reticulum chaperone protein, σ1 receptor, promotes mitochondrial energy depletion and apoptosis. J Biol Chem 287:23318–23331CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Monnet FP, Mahe V, Robel P et al (1995) Neurosteroids, via sigma receptors, modulate the [3H] norepinephrine release evoked by N-methyl-d-aspartate in the rat hippocampus. Proc Natl Acad Sci U S A 92:3774–3778CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gonzalez-Alvear GM, Werling LL (1994) Regulation of [3H] dopamine release from rat striatal slices by sigma receptor ligands. J Pharmacol Exp Ther 271:212–219PubMedGoogle Scholar
  20. 20.
    Bito H, Deisseroth K, Tsien RW (1996) CREB phosphorylation and dephosphorylation: a Ca2+ and stimulus duration-dependent switch for hippocampal gene expression. Cell 87:1203–1214CrossRefPubMedGoogle Scholar
  21. 21.
    Shaywitz AL, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861CrossRefPubMedGoogle Scholar
  22. 22.
    West AE, Griffith EC, Greenberg ME (2002) Regulation of transcription factors by neuronal activity. Nat Rev Neurosci 3:921–931CrossRefPubMedGoogle Scholar
  23. 23.
    Bourtchuladze R, Frenguelli B, Blendy J et al (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68CrossRefPubMedGoogle Scholar
  24. 24.
    Josselyn SA, Shi C, Carlezon WAJ et al (2001) Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J Neurosci 21:2404–2412PubMedGoogle Scholar
  25. 25.
    Impey S, Smith DM, Obrietan K et al (1998) Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat Neurosci 1:595–601CrossRefPubMedGoogle Scholar
  26. 26.
    Valverde O, Mantamadiotis T, Torrecilla M et al (2004) Modulation of anxiety-like behavior and morphine dependence in CREB-deficient mice. Neuropsychopharmacology 29:1122–1133CrossRefPubMedGoogle Scholar
  27. 27.
    Maldonado R, Smadja C, Mazzucchelli M et al (1999) Altered emotional and locomotor responses in mice deficient in the transcription factor CREM. Proc Natl Acad Sci U S A 96:14094–14099CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Barrot M, Olivier JD, Perrotti LI et al (2002) CREB activity in the nucleus accumbens shell controls gating of behavioral responses to stimuli. Proc Natl Acad Sci U S A 99:11435–11440CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ohmstede CA, Bland MM, Merrill BM et al (1991) Relationship of genes encoding Ca2+/calmodulin-dependent protein kinase Gr and calpermin: a gene within a page. Proc Natl Acad Sci U S A 88:5784–5788CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Takao K, Tanda K, Nakamura K et al (2010) Comprehensive behavioral analysis of calcium/calmodulin-dependent protein kinase IV knockout mice. PLoS ONE 5:e9460CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shum FW, Ko SW, Lee YS et al (2005) Genetic alteration of anxiety and stress-like behavior in mice lacking CaMKIV. Mol Pain 1:22CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lee KH, Chatila TA, Ram RA et al (2009) Impaired memory of eyeblink conditioning in CaMKIV KO mice. Behav Neurosci 123:438–442CrossRefPubMedGoogle Scholar
  33. 33.
    Song N, Nakagawa S, Izumi T et al (2012) Involvement of CaMKIV in neurogenic effect with chronic fluoxetine treatment. Int J Neuropsychopharmacol 16:803–812CrossRefPubMedGoogle Scholar
  34. 34.
    Moriguchi S, Shioda N, Han F et al (2008) CaM kinase II and protein kinase C activations mediate enhancement of long-term potentiation by nefiracetam in the rat hippocampal CA1 region. J Neurochem 106:1092–1103CrossRefPubMedGoogle Scholar
  35. 35.
    Fukunaga K, Horikawa K, Shibata S et al (2002) Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin. J Neurosci Res 70:799–807CrossRefPubMedGoogle Scholar
  36. 36.
    Fukunaga K, Muller D, Miyamoto E (1995) Increased phosphorylation of Ca2+/calmodulin-dependent protein kinase II and its endgeneous substrates in the induction of long term potentiation. J Biol Chem 270:6119–6124CrossRefPubMedGoogle Scholar
  37. 37.
    Seki T, Arai Y (1993) Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J Neurosci 13:2351–2358PubMedGoogle Scholar
  38. 38.
    Li BS, Ma W, Zhang L et al (2001) Activation of phosphatidylinositol-3 kinase (PI-3 K) and extracellular regulated kinases (Erk1/2) is involved in muscarinic receptor-mediated DNA synthesis in neural progenitor cells. J Neurosci 21:1569–1579PubMedGoogle Scholar
  39. 39.
    Zheng F, Zhou X, Luo Y et al (2011) Regulation of brain-derived neurotrophic factor exon IV transcription through calcium respobsive elements in cortical neurons. PLoS ONE 6:e28441CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kidane AH, Heinrich G, Dirks RPH et al (2009) Differential neuroendocrine expression of multiple brain-derived neurotrophic factor transcripts. Endocrinology 150:1361–1368CrossRefPubMedGoogle Scholar
  41. 41.
    Ruscher K, Shamloo M, Rickhag M et al (2011) The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke. Brain 134:732–746CrossRefPubMedGoogle Scholar
  42. 42.
    Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12:895–908CrossRefPubMedGoogle Scholar
  43. 43.
    Jia C, Halpern M (2003) Calbindin D28K immunoreactive neurons in vomeronasal organ and their projections to the accessory olfactory bulb in the rat. Brain Res 977:261–269CrossRefPubMedGoogle Scholar
  44. 44.
    Sha S, Qu WJ, Li L et al (2013) Sigma-1 receptor knockout impairs neurogenesis in dentate gyrus of adult hippocampus via down-regulation of NMDA receptors. CNS Neurosci Ther 19:705–713CrossRefPubMedGoogle Scholar
  45. 45.
    Hiemke C, Hӓrtter S (2000) Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther 85:11–28CrossRefPubMedGoogle Scholar
  46. 46.
    Narita N, Hashimoto K, Tomitaka S et al (1996) Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain. Eur J Pharmacol 307:117–119CrossRefPubMedGoogle Scholar
  47. 47.
    Wu H, Lu D, Jiang H et al (2008) Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. J Neurotrauma 25:130–139CrossRefPubMedGoogle Scholar
  48. 48.
    Shioda N, Han F, Morioka M et al (2008) Bis(1-oxy-2-pyridinethiolato)oxovanadium(IV) enhances neurogenesis via phosphatidylinositol 3-kinase/Akt and extracellular signal regulated kinase activation in the hippocampal subgranular zone after mouse focal cerebral ischemia. Neuroscience 155:876–887CrossRefPubMedGoogle Scholar
  49. 49.
    Sun P, Enslen H, Myung PS et al (1994) Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev 8:2527–2539CrossRefPubMedGoogle Scholar
  50. 50.
    Takeuchi Y, Fukunaga K, Miyamoto E (2002) Activation of nuclear Ca2+/calmodulin-dependent protein kinase II and brain-derived neurotrophic factor gene expression by stimulation of dopamine D2 receptor in transfected NG108-15 cellsGoogle Scholar
  51. 51.
    Yamasaki N, Maekawa M, Kobayashi K et al (2008) Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol Brain 1:6CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Irwin RP, Lin SZ, Rogawski MA et al (1994) Steroid potentiation and inhibition of N-methyl-d-aspartate receptor-mediated intracellular Ca2+ response: structure-activity studies. J Pharmacol Exp Ther 271:677–682PubMedGoogle Scholar
  53. 53.
    Chen L, Miyamoto Y, Furuya K et al (2007) PREGS induces LTP in the hippocampal dentate gyrus of adult rats via the tyrosine phosphorylation of NR2B coupled to ERK/CREB signaling. J Neurophysiol 98:1538–1548CrossRefPubMedGoogle Scholar
  54. 54.
    Martina M, Turcotte ME, Halman S et al (2007) The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol 578:143–157CrossRefPubMedGoogle Scholar
  55. 55.
    Crossthwaite AJ, Valli H, Williams RJ (2004) Inhibiting Src family tyrosine kinase activity blocks glutamate signaling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurons. J Neurochem 88:1127–1139CrossRefPubMedGoogle Scholar
  56. 56.
    Du J, Feng L, Yang F et al (2000) Activity- and Ca2+-dependent modulation of surface expression of brain-derived neurotrophic factor receptors in hippocampal neurons. J Cell Biol 150:1423–1434CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Peltier J, O’Neill A, Schaffer DV (2007) PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev Neurobiol 67:1348–1361CrossRefPubMedGoogle Scholar
  58. 58.
    Mantamadiotis T, Lemberger T, Bleckmann SC et al (2002) Disruption of CREB function in brain leads to neurodegeneration. Nat Genet 31:47–54CrossRefPubMedGoogle Scholar
  59. 59.
    Shetty AK, Hattiangady B, Shetty GA (2005) Stem/progenitor cell proliferation factors FGF-2, IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes. Glia 51:173–186CrossRefPubMedGoogle Scholar
  60. 60.
    Cao X, Li LP, Wang Q et al (2013) Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 19:773–777CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Shigeki Moriguchi
    • 1
    Email author
  • Hiroyuki Sakagami
    • 2
  • Yasushi Yabuki
    • 1
  • Yuzuru Sasaki
    • 1
  • Hisanao Izumi
    • 1
  • Chen Zhang
    • 3
  • Feng Han
    • 3
  • Kohji Fukunaga
    • 1
    Email author
  1. 1.Department of Pharmacology, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
  2. 2.Department of AnatomyKitasato University School of MedicineSagamiharaJapan
  3. 3.Department of Pharmacy, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina

Personalised recommendations