Advertisement

Molecular Neurobiology

, Volume 52, Issue 1, pp 244–255 | Cite as

Induced Pluripotent Stem Cells for Disease Modeling and Drug Discovery in Neurodegenerative Diseases

Article

Abstract

Although most neurodegenerative diseases have been closely related to aberrant accumulation of aggregation-prone proteins in neurons, understanding their pathogenesis remains incomplete, and there is no treatment to delay the onset or slow the progression of many neurodegenerative diseases. The availability of induced pluripotent stem cells (iPSCs) in recapitulating the phenotypes of several late-onset neurodegenerative diseases marks the new era in in vitro modeling. The iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in these diseases and provides a novel human stem cell platform for screening new candidate therapeutics. Modeling human diseases using iPSCs has created novel opportunities for both mechanistic studies as well as for the discovery of new disease therapies. In this review, we introduce iPSC-based disease modeling in neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. In addition, we discuss the implementation of iPSCs in drug discovery associated with some new techniques.

Keywords

Chemical genomics Drug screening Drug target High-throughput technologies Induced pluripotent stem cells 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China to L.T. (81171209 and 81371406) and J.T.Y. (81000544), grants from the Shandong Provincial Natural Science Foundation to L.T. (ZR2011HZ001) and J.T.Y. (ZR2010HQ004), the Medicine and Health Science Technology Development Project of Shandong Province to L.T. (2011WSA02018) and J.T.Y. (2011WSA02020), and the Innovation Project for Postgraduates of Jiangsu Province to T.J. (CXLX13_561).

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Yang YM, Gupta SK, Kim KJ, Powers BE, Cerqueira A, Wainger BJ, Ngo HD, Rosowski KA, Schein PA, Ackeifi CA, Arvanites AC, Davidow LS, Woolf CJ, Rubin LL (2013) A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell 12(6):713–726. doi: 10.1016/j.stem.2013.04.003 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Cuny GD (2012) Foreword: neurodegenerative diseases: challenges and opportunities. Futur Med Chem 4(13):1647–1649. doi: 10.4155/fmc.12.123 CrossRefGoogle Scholar
  3. 3.
    Imaizumi Y, Okano H (2014) Modeling human neurological disorders with induced pluripotent stem cells. J Neurochem 129(3):388–399. doi: 10.1111/jnc.12625 PubMedCrossRefGoogle Scholar
  4. 4.
    Maherali N, Hochedlinger K (2008) Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 3(6):595–605. doi: 10.1016/j.stem.2008.11.008 PubMedCrossRefGoogle Scholar
  5. 5.
    Cundiff PE, Anderson SA (2011) Impact of induced pluripotent stem cells on the study of central nervous system disease. Curr Opin Genet Dev 21(3):354–361. doi: 10.1016/j.gde.2011.01.008 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Rashid ST, Alexander GJ (2013) Induced pluripotent stem cells: from Nobel Prizes to clinical applications. J Hepatol 58(3):625–629. doi: 10.1016/j.jhep.2012.10.026 PubMedCrossRefGoogle Scholar
  7. 7.
    Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8(6):633–638. doi: 10.1016/j.stem.2011.05.001 PubMedCrossRefGoogle Scholar
  8. 8.
    Malgrange B, Borgs L, Grobarczyk B, Purnelle A, Ernst P, Moonen G, Nguyen L (2011) Using human pluripotent stem cells to untangle neurodegenerative disease mechanisms. Cell Mol Life Sci CMLS 68(4):635–649. doi: 10.1007/s00018-010-0557-6 PubMedCrossRefGoogle Scholar
  9. 9.
    Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112(3):523–533. doi: 10.1161/CIRCRESAHA.111.256149 PubMedCrossRefGoogle Scholar
  10. 10.
    Hargus G, Ehrlich M, Hallmann AL, Kuhlmann T (2014) Human stem cell models of neurodegeneration: a novel approach to study mechanisms of disease development. Acta Neuropathol 127(2):151–173. doi: 10.1007/s00401-013-1222-6 PubMedCrossRefGoogle Scholar
  11. 11.
    Hermann A, Storch A (2013) Induced neural stem cells (iNSCs) in neurodegenerative diseases. J Neural Transm 120(Suppl 1):S19–S25. doi: 10.1007/s00702-013-1042-9 PubMedCrossRefGoogle Scholar
  12. 12.
    Anchan RM, Quaas P, Gerami-Naini B, Bartake H, Griffin A, Zhou YL, Day D, Eaton JL, George LL, Naber C, Turbe-Doan A, Park PJ, Hornstein MD, Maas RL (2011) Amniocytes can serve a dual function as a source of iPS cells and feeder layers. Hum Mol Genet 20(5):962–974PubMedCrossRefGoogle Scholar
  13. 13.
    Liang G, Zhang Y (2013) Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res 23(1):49–69. doi: 10.1038/cr.2012.175 PubMedCrossRefGoogle Scholar
  14. 14.
    Muller LU, Daley GQ, Williams DA (2009) Upping the ante: recent advances in direct reprogramming. Mol Ther J Am Soc Gene Ther 17(6):947–953. doi: 10.1038/mt.2009.72 CrossRefGoogle Scholar
  15. 15.
    Liu J, Ashton MP, Sumer H, O’Bryan MK, Brodnicki TC, Verma PJ (2011) Generation of stable pluripotent stem cells from NOD mouse tail-tip fibroblasts. Diabetes 60(5):1393–1398. doi: 10.2337/db10-1540 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Wang P, Na J (2011) Mechanism and methods to induce pluripotency. Protein Cell 2(10):792–799. doi: 10.1007/s13238-011-1107-1 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hong SG, Dunbar CE, Winkler T (2013) Assessing the risks of genotoxicity in the therapeutic development of induced pluripotent stem cells. Mol Ther J Am Soc Gene Ther 21(2):272–281. doi: 10.1038/mt.2012.255 CrossRefGoogle Scholar
  18. 18.
    Kitada M, Wakao S, Dezawa M (2012) Muse cells and induced pluripotent stem cell: implication of the elite model. Cell Mol Life Sci CMLS 69(22):3739–3750. doi: 10.1007/s00018-012-0994-5 PubMedCrossRefGoogle Scholar
  19. 19.
    Power C, Rasko JE (2011) Promises and challenges of stem cell research for regenerative medicine. Ann Intern Med 155(10):706–713. doi: 10.7326/0003-4819-155-10-201111150-00010, W217PubMedCrossRefGoogle Scholar
  20. 20.
    Jung YW, Hysolli E, Kim KY, Tanaka Y, Park IH (2012) Human induced pluripotent stem cells and neurodegenerative disease: prospects for novel therapies. Curr Opin Neurol 25(2):125–130. doi: 10.1097/WCO.0b013e3283518226 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Anastasia L, Pelissero G, Venerando B, Tettamanti G (2010) Cell reprogramming: expectations and challenges for chemistry in stem cell biology and regenerative medicine. Cell Death Differ 17(8):1230–1237. doi: 10.1038/cdd.2010.14 PubMedCrossRefGoogle Scholar
  22. 22.
    Wichterle H, Przedborski S (2010) What can pluripotent stem cells teach us about neurodegenerative diseases? Nat Neurosci 13(7):800–804. doi: 10.1038/nn.2577 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Robinton DA, Daley GQ (2012) The promise of induced pluripotent stem cells in research and therapy. Nature 481(7381):295–305. doi: 10.1038/nature10761 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Li M, Chen M, Han W, Fu X (2010) How far are induced pluripotent stem cells from the clinic? Ageing Res Rev 9(3):257–264. doi: 10.1016/j.arr.2010.03.001 PubMedCrossRefGoogle Scholar
  25. 25.
    Gao A, Peng Y, Deng Y, Qing H (2013) Potential therapeutic applications of differentiated induced pluripotent stem cells (iPSCs) in the treatment of neurodegenerative diseases. Neuroscience 228:47–59. doi: 10.1016/j.neuroscience.2012.09.076 PubMedCrossRefGoogle Scholar
  26. 26.
    Wong WT, Sayed N, Cooke JP (2013) Induced pluripotent stem cells: how they will change the practice of cardiovascular medicine. Methodist DeBakey Cardiovasc J 9(4):206–209PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Byers B, Lee HL, Reijo Pera R (2012) Modeling Parkinson’s disease using induced pluripotent stem cells. Curr Neurol Neurosc Rep 12(3):237–242. doi: 10.1007/s11910-012-0270-y CrossRefGoogle Scholar
  28. 28.
    Lee G, Studer L (2011) Modelling familial dysautonomia in human induced pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci 366(1575):2286–2296. doi: 10.1098/rstb.2011.0026 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ito D, Okano H, Suzuki N (2012) Accelerating progress in induced pluripotent stem cell research for neurological diseases. Ann Neurol 72(2):167–174. doi: 10.1002/ana.23596 PubMedCrossRefGoogle Scholar
  30. 30.
    Chen WW, Blurton-Jones M (2012) Concise review: can stem cells be used to treat or model Alzheimer’s disease? Stem Cells 30(12):2612–2618. doi: 10.1002/stem.1240 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Qiang L, Fujita R, Abeliovich A (2013) Remodeling neurodegeneration: somatic cell reprogramming-based models of adult neurological disorders. Neuron 78(6):957–969. doi: 10.1016/j.neuron.2013.06.002 PubMedCrossRefGoogle Scholar
  32. 32.
    Vazin T, Ball KA, Lu H, Park H, Ataeijannati Y, Head-Gordon T, Poo MM, Schaffer DV (2013) Efficient derivation of cortical glutamatergic neurons from human pluripotent stem cells: a model system to study neurotoxicity in Alzheimer’s disease. Neurobiol Dis 62C:62–72. doi: 10.1016/j.nbd.2013.09.005 Google Scholar
  33. 33.
    Auburger G, Klinkenberg M, Drost J, Marcus K, Morales-Gordo B, Kunz WS, Brandt U, Broccoli V, Reichmann H, Gispert S, Jendrach M (2012) Primary skin fibroblasts as a model of Parkinson’s disease. Mol Neurobiol 46(1):20–27. doi: 10.1007/s12035-012-8245-1 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schule B, Dolmetsch RE, Langston W, Palmer TD, Pera RR (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8(3):267–280. doi: 10.1016/j.stem.2011.01.013 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Consortium HDi (2012) Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11(2):264–278. doi: 10.1016/j.stem.2012.04.027 CrossRefGoogle Scholar
  36. 36.
    Zhang K, Yi F, Liu GH, Izpisua Belmonte JC (2012) Huntington’s disease: dancing in a dish. Cell Res 22(12):1627–1630. doi: 10.1038/cr.2012.116 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Guo X, Disatnik MH, Monbureau M, Shamloo M, Mochly-Rosen D, Qi X (2013) Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration. J Clin Invest 123(12):5371–5388. doi: 10.1172/JCI70911 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Cheng PH, Li CL, Chang YF, Tsai SJ, Lai YY, Chan AW, Chen CM, Yang SH (2013) miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am J Hum Genet 93(2):306–312. doi: 10.1016/j.ajhg.2013.05.025 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Laustriat D, Gide J, Peschanski M (2010) Human pluripotent stem cells in drug discovery and predictive toxicology. Biochem Soc Trans 38(4):1051–1057. doi: 10.1042/BST0381051 PubMedCrossRefGoogle Scholar
  40. 40.
    Skibinski G, Finkbeiner S (2011) Drug discovery in Parkinson’s disease-update and developments in the use of cellular models. Int J High Throughput Screen 2011(2):15–25. doi: 10.2147/IJHTS.S8681 PubMedPubMedCentralGoogle Scholar
  41. 41.
    Egawa N, Kitaoka S, Tsukita K, Naitoh M, Takahashi K, Yamamoto T, Adachi F, Kondo T, Okita K, Asaka I, Aoi T, Watanabe A, Yamada Y, Morizane A, Takahashi J, Ayaki T, Ito H, Yoshikawa K, Yamawaki S, Suzuki S, Watanabe D, Hioki H, Kaneko T, Makioka K, Okamoto K, Takuma H, Tamaoka A, Hasegawa K, Nonaka T, Hasegawa M, Kawata A, Yoshida M, Nakahata T, Takahashi R, Marchetto MC, Gage FH, Yamanaka S, Inoue H (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4(145):145ra104. doi: 10.1126/scitranslmed.3004052 PubMedCrossRefGoogle Scholar
  42. 42.
    Rountree SD, Atri A, Lopez OL, Doody RS (2013) Effectiveness of antidementia drugs in delaying Alzheimer’s disease progression. Alzheimers Dement J Alzheimers Assoc 9(3):338–345. doi: 10.1016/j.jalz.2012.01.002 CrossRefGoogle Scholar
  43. 43.
    Jiang T, Yu JT, Tian Y, Tan L (2013) Epidemiology and etiology of Alzheimer’s disease: from genetic to non- genetic factors. Curr Alzheimer Res 10(8):852–867PubMedCrossRefGoogle Scholar
  44. 44.
    Zhu XC, Yu JT, Jiang T, Wang P, Cao L, Tan L (2014) CR1 in Alzheimer’s disease. Mol Neurobiol. doi: 10.1007/s12035-014-8723-8 Google Scholar
  45. 45.
    Ooi L, Sidhu K, Poljak A, Sutherland G, O’Connor MD, Sachdev P, Munch G (2013) Induced pluripotent stem cells as tools for disease modelling and drug discovery in Alzheimer’s disease. J Neural Transm 120(1):103–111. doi: 10.1007/s00702-012-0839-2 PubMedCrossRefGoogle Scholar
  46. 46.
    Jiang T, Yu JT, Tan L (2012) Novel disease-modifying therapies for Alzheimer’s disease. J Alzheimers Dis JAD 31(3):475–492. doi: 10.3233/JAD-2012-120640 PubMedGoogle Scholar
  47. 47.
    Kiskinis E, Eggan K (2010) Progress toward the clinical application of patient-specific pluripotent stem cells. J Clin Invest 120(1):51–59. doi: 10.1172/JCI40553 PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Wu SM, Hochedlinger K (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13(5):497–505. doi: 10.1038/ncb0511-497 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Grskovic M, Javaherian A, Strulovici B, Daley GQ (2011) Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 10(12):915–929. doi: 10.1038/nrd3577 PubMedGoogle Scholar
  50. 50.
    Peng J, Zeng X (2011) The role of induced pluripotent stem cells in regenerative medicine: neurodegenerative diseases. Stem Cell Res Ther 2(4):32. doi: 10.1186/scrt73 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Imaizumi Y, Okano H (2013) Modeling human neurological disorders with induced pluripotent stem cells. J Neurochem. doi: 10.1111/jnc.12625 PubMedGoogle Scholar
  52. 52.
    Wojda U, Kuznicki J (2013) Alzheimer’s disease modeling: ups, downs, and perspectives for human induced pluripotent stem cells. J Alzheimers Dis JAD 34(3):563–588. doi: 10.3233/JAD-121984 PubMedGoogle Scholar
  53. 53.
    Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ (2012) A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med 4(124):124ra129. doi: 10.1126/scitranslmed.3003771 CrossRefGoogle Scholar
  54. 54.
    Chung CY, Khurana V, Auluck PK, Tardiff DF, Mazzulli JR, Soldner F, Baru V, Lou Y, Freyzon Y, Cho S, Mungenast AE, Muffat J, Mitalipova M, Pluth MD, Jui NT, Schule B, Lippard SJ, Tsai LH, Krainc D, Buchwald SL, Jaenisch R, Lindquist S (2013) Identification and rescue of alpha-synuclein toxicity in Parkinson patient-derived neurons. Science 342(6161):983–987. doi: 10.1126/science.1245296 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Martinez-Morales PL, Liste I (2012) Stem cells as in vitro model of Parkinson’s disease. Stem Cells Int 2012:980941. doi: 10.1155/2012/980941 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zuo L, Motherwell MS (2013) The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson’s disease. Gene 532(1):18–23. doi: 10.1016/j.gene.2013.07.085 PubMedCrossRefGoogle Scholar
  57. 57.
    Yao J, Mu Y, Gage FH (2012) Neural stem cells: mechanisms and modeling. Protein Cell 3(4):251–261. doi: 10.1007/s13238-012-2033-6 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Compagnucci C, Nizzardo M, Corti S, Zanni G, Bertini E (2013) In vitro neurogenesis: development and functional implications of iPSC technology. Cell Mol Life Sci CMLS. doi: 10.1007/s00018-013-1511-1 PubMedGoogle Scholar
  59. 59.
    Xu L, Tan YY, Ding JQ, Chen SD (2010) The iPS technique provides hope for Parkinson’s disease treatment. Stem Cell Rev 6(3):398–404. doi: 10.1007/s12015-010-9145-2 PubMedCrossRefGoogle Scholar
  60. 60.
    Gibson SA, Gao GD, McDonagh K, Shen S (2012) Progress on stem cell research towards the treatment of Parkinson’s disease. Stem Cell Res Ther 3(2):11. doi: 10.1186/scrt102 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Pu J, Jiang H, Zhang B, Feng J (2012) Redefining Parkinson’s disease research using induced pluripotent stem cells. Curr Neurol Neurosci Rep 12(4):392–398. doi: 10.1007/s11910-012-0288-1 PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sommer CA, Mostoslavsky G (2013) The evolving field of induced pluripotency: recent progress and future challenges. J Cell Physiol 228(2):267–275. doi: 10.1002/jcp.24155 PubMedCrossRefGoogle Scholar
  63. 63.
    Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, Mandal PK, Vera E, Shim JW, Kriks S, Taldone T, Fusaki N, Tomishima MJ, Krainc D, Milner TA, Rossi DJ, Studer L (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13(6):691–705. doi: 10.1016/j.stem.2013.11.006 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Brennand KJ (2013) Inducing cellular aging: enabling neurodegeneration-in-a-dish. Cell Stem Cell 13(6):635–636. doi: 10.1016/j.stem.2013.11.017 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    An MC, Zhang N, Scott G, Montoro D, Wittkop T, Mooney S, Melov S, Ellerby LM (2012) Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11(2):253–263. doi: 10.1016/j.stem.2012.04.026 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jeon I, Lee N, Li JY, Park IH, Park KS, Moon J, Shim SH, Choi C, Chang DJ, Kwon J, Oh SH, Shin DA, Kim HS, Do JT, Lee DR, Kim M, Kang KS, Daley GQ, Brundin P, Song J (2012) Neuronal properties, in vivo effects, and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem Cells 30(9):2054–2062. doi: 10.1002/stem.1135 PubMedCrossRefGoogle Scholar
  67. 67.
    Nicoleau C, Viegas P, Peschanski M, Perrier AL (2011) Human pluripotent stem cell therapy for Huntington’s disease: technical, immunological, and safety challenges human pluripotent stem cell therapy for Huntington’s disease: technical, immunological, and safety challenges. Neurother J Am Soc Exp NeuroTher 8(4):562–576. doi: 10.1007/s13311-011-0079-4 CrossRefGoogle Scholar
  68. 68.
    Xu XH, Zhong Z (2013) Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells. Acta Pharmacol Sin 34(6):755–764. doi: 10.1038/aps.2013.63 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Reinhart PH, Kaltenbach LS, Essrich C, Dunn DE, Eudailey JA, DeMarco CT, Turmel GJ, Whaley JC, Wood A, Cho S, Lo DC (2011) Identification of anti-inflammatory targets for Huntington’s disease using a brain slice-based screening assay. Neurobiol Dis 43(1):248–256. doi: 10.1016/j.nbd.2011.03.017 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Benraiss A, Goldman SA (2011) Cellular therapy and induced neuronal replacement for Huntington’s disease. Neurother J Am Soc Exp NeuroTher 8(4):577–590. doi: 10.1007/s13311-011-0075-8 CrossRefGoogle Scholar
  71. 71.
    Sareen D, O’Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, Bell S, Carmona S, Ornelas L, Sahabian A, Gendron T, Petrucelli L, Baughn M, Ravits J, Harms MB, Rigo F, Bennett CF, Otis TS, Svendsen CN, Baloh RH (2013) Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med 5(208):208ra149. doi: 10.1126/scitranslmed.3007529 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Aliaga L, Lai C, Yu J, Chub N, Shim H, Sun L, Xie C, Yang WJ, Lin X, O’Donovan MJ, Cai H (2013) Amyotrophic lateral sclerosis-related VAPB P56S mutation differentially affects the function and survival of corticospinal and spinal motor neurons. Hum Mol Genet 22(21):4293–4305. doi: 10.1093/hmg/ddt279 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Inoue H (2010) Neurodegenerative disease-specific induced pluripotent stem cell research. Exp Cell Res 316(16):2560–2564. doi: 10.1016/j.yexcr.2010.04.022 PubMedCrossRefGoogle Scholar
  74. 74.
    Abeliovich A, Doege CA (2009) Reprogramming therapeutics: iPS cell prospects for neurodegenerative disease. Neuron 61(3):337–339. doi: 10.1016/j.neuron.2009.01.024 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Saporta MA, Grskovic M, Dimos JT (2011) Induced pluripotent stem cells in the study of neurological diseases. Stem Cell Res Ther 2(5):37. doi: 10.1186/scrt78 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Liu W, Deng Y, Liu Y, Gong W, Deng W (2013) Stem cell models for drug discovery and toxicology studies. J Biochem Mol Toxicol 27(1):17–27. doi: 10.1002/jbt.21470 PubMedCrossRefGoogle Scholar
  77. 77.
    Roshan R, Ghosh T, Scaria V, Pillai B (2009) MicroRNAs: novel therapeutic targets in neurodegenerative diseases. Drug Discov Today 14(23–24):1123–1129. doi: 10.1016/j.drudis.2009.09.009 PubMedCrossRefGoogle Scholar
  78. 78.
    Duan L, Bhattacharyya BJ, Belmadani A, Pan L, Miller RJ, Kessler JA (2014) Stem cell derived basal forebrain cholinergic neurons from Alzheimer’s disease patients are more susceptible to cell death. Mol Neurodegener 9(1):3. doi: 10.1186/1750-1326-9-3 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bellin M, Marchetto MC, Gage FH, Mummery CL (2012) Induced pluripotent stem cells: the new patient? Nat Rev Mol Cell Biol 13(11):713–726. doi: 10.1038/nrm3448 PubMedCrossRefGoogle Scholar
  80. 80.
    Zinman L, Cudkowicz M (2011) Emerging targets and treatments in amyotrophic lateral sclerosis. Lancet Neurol 10(5):481–490. doi: 10.1016/S1474-4422(11)70024-2 PubMedCrossRefGoogle Scholar
  81. 81.
    Kaye JA, Finkbeiner S (2013) Modeling Huntington’s disease with induced pluripotent stem cells. Mol Cell Neurosci 56:50–64. doi: 10.1016/j.mcn.2013.02.005 PubMedCrossRefGoogle Scholar
  82. 82.
    Hamasaki M, Hashizume Y, Yamada Y, Katayama T, Hohjoh H, Fusaki N, Nakashima Y, Furuya H, Haga N, Takami Y, Era T (2012) Pathogenic mutation of ALK2 inhibits induced pluripotent stem cell reprogramming and maintenance: mechanisms of reprogramming and strategy for drug identification. Stem Cells 30(11):2437–2449. doi: 10.1002/stem.1221 PubMedCrossRefGoogle Scholar
  83. 83.
    Yung JS, Tam PK, Ngan ES (2013) Pluripotent stem cell for modeling neurological diseases. Exp Cell Res 319(2):177–184. doi: 10.1016/j.yexcr.2012.11.007 PubMedCrossRefGoogle Scholar
  84. 84.
    Mercola M, Colas A, Willems E (2013) Induced pluripotent stem cells in cardiovascular drug discovery. Circ Res 112(3):534–548. doi: 10.1161/CIRCRESAHA.111.250266 PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ramsden N, Perrin J, Ren Z, Lee BD, Zinn N, Dawson VL, Tam D, Bova M, Lang M, Drewes G, Bantscheff M, Bard F, Dawson TM, Hopf C (2011) Chemoproteomics-based design of potent LRRK2-selective lead compounds that attenuate Parkinson’s disease-related toxicity in human neurons. ACS Chem Biol 6(10):1021–1028. doi: 10.1021/cb2002413 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Prilutsky D, Palmer NP, Smedemark-Margulies N, Schlaeger TM, Margulies DM, Kohane IS (2014) iPSC-derived neurons as a higher-throughput readout for autism: promises and pitfalls. Trends Mol Med 20(2):91–104. doi: 10.1016/j.molmed.2013.11.004 PubMedCrossRefGoogle Scholar
  87. 87.
    Engle SJ, Vincent F (2013) Small molecule screening in human induced pluripotent stem cell-derived terminal cell types. J Biol Chem. doi: 10.1074/jbc.R113.529156 Google Scholar
  88. 88.
    Mackay-Sim A (2013) Patient-derived stem cells: pathways to drug discovery for brain diseases. Front Cell Neurosci 7:29. doi: 10.3389/fncel.2013.00029 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Mancini C, Roncaglia P, Brussino A, Stevanin G, Lo Buono N, Krmac H, Maltecca F, Gazzano E, Bartoletti Stella A, Calvaruso MA, Iommarini L, Cagnoli C, Forlani S, Le Ber I, Durr A, Brice A, Ghigo D, Casari G, Porcelli AM, Funaro A, Gasparre G, Gustincich S, Brusco A (2013) Genome-wide expression profiling and functional characterization of SCA28 lymphoblastoid cell lines reveal impairment in cell growth and activation of apoptotic pathways. BMC Med Genet 6:22. doi: 10.1186/1755-8794-6-22 Google Scholar
  90. 90.
    Ryan SD, Dolatabadi N, Chan SF, Zhang X, Akhtar MW, Parker J, Soldner F, Sunico CR, Nagar S, Talantova M, Lee B, Lopez K, Nutter A, Shan B, Molokanova E, Zhang Y, Han X, Nakamura T, Masliah E, Yates JR 3rd, Nakanishi N, Andreyev AY, Okamoto S, Jaenisch R, Ambasudhan R, Lipton SA (2013) Isogenic human iPSC Parkinson’s model shows nitrosative stress-induced dysfunction in MEF2-PGC1alpha transcription. Cell 155(6):1351–1364. doi: 10.1016/j.cell.2013.11.009 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Jain S, van Kesteren RE, Heutink P (2012) High content screening in neurodegenerative diseases. J Visualized Exp JoVE 59:e3452. doi: 10.3791/3452 Google Scholar
  92. 92.
    Landgren H, Sartipy P (2014) Can stem-cell-derived models revolutionize drug discovery? Expert Opin Drug Discov 9(1):9–13. doi: 10.1517/17460441.2014.867945 PubMedCrossRefGoogle Scholar
  93. 93.
    Gladstone M, Su TT (2011) Chemical genetics and drug screening in Drosophila cancer models. J Genet Genomics Yi chuan xue bao 38(10):497–504. doi: 10.1016/j.jgg.2011.09.003 PubMedCrossRefGoogle Scholar
  94. 94.
    Calamini B, Lo DC, Kaltenbach LS (2013) Experimental models for identifying modifiers of polyglutamine-induced aggregation and neurodegeneration. Neurother J Am Soc Exp NeuroTher 10(3):400–415. doi: 10.1007/s13311-013-0195-4 CrossRefGoogle Scholar
  95. 95.
    Sendtner M (2010) Therapy development in spinal muscular atrophy. Nat Neurosci 13(7):795–799. doi: 10.1038/nn.2565 PubMedCrossRefGoogle Scholar
  96. 96.
    Hasson SA, Kane LA, Yamano K, Huang CH, Sliter DA, Buehler E, Wang C, Heman-Ackah SM, Hessa T, Guha R, Martin SE, Youle RJ (2013) High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504(7479):291–295. doi: 10.1038/nature12748 PubMedCrossRefGoogle Scholar
  97. 97.
    Wang T, Warren ST, Jin P (2013) Toward pluripotency by reprogramming: mechanisms and application. Protein Cell 4(11):820–832. doi: 10.1007/s13238-013-3074-1 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Zhao J, Jiang WJ, Sun C, Hou CZ, Yang XM, Gao JG (2013) Induced pluripotent stem cells: origins, applications, and future perspectives. J Zhejiang Univ Sci B 14(12):1059–1069. doi: 10.1631/jzus.B1300215 PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Wobus AM, Loser P (2011) Present state and future perspectives of using pluripotent stem cells in toxicology research. Arch Toxicol 85(2):79–117. doi: 10.1007/s00204-010-0641-6 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Rao M, Gottesfeld JM (2014) Introduction to thematic minireview series: development of human therapeutics based on induced pluripotent stem cell (iPSC) technology. J Biol Chem 289(8):4553–4554. doi: 10.1074/jbc.R113.543652 PubMedCrossRefGoogle Scholar
  101. 101.
    Gunaseeli I, Doss MX, Antzelevitch C, Hescheler J, Sachinidis A (2010) Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery. Curr Med Chem 17(8):759–766PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Kumar KK, Aboud AA, Bowman AB (2012) The potential of induced pluripotent stem cells as a translational model for neurotoxicological risk. Neurotoxicology 33(3):518–529. doi: 10.1016/j.neuro.2012.02.005 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Zhang R, Zhang LH, Xie X (2013) iPSCs and small molecules: a reciprocal effort towards better approaches for drug discovery. Acta Pharmacol Sin 34(6):765–776. doi: 10.1038/aps.2013.21 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Scott CW, Peters MF, Dragan YP (2013) Human induced pluripotent stem cells and their use in drug discovery for toxicity testing. Toxicol Lett 219(1):49–58. doi: 10.1016/j.toxlet.2013.02.020 PubMedCrossRefGoogle Scholar
  105. 105.
    Jongkamonwiwat N, Noisa P (2013) Biomedical and clinical promises of human pluripotent stem cells for neurological disorders. BioMed Res Int 2013:656531. doi: 10.1155/2013/656531 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Sandoe J, Eggan K (2013) Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 16(7):780–789PubMedCrossRefGoogle Scholar
  107. 107.
    Sun X, Fu X, Han W, Zhao Y, Liu H (2010) Can controlled cellular reprogramming be achieved using microRNAs? Ageing Res Rev 9(4):475–483. doi: 10.1016/j.arr.2010.06.002 PubMedCrossRefGoogle Scholar
  108. 108.
    Lian Q, Chow Y, Esteban MA, Pei D, Tse HF (2010) Future perspective of induced pluripotent stem cells for diagnosis, drug screening and treatment of human diseases. Thromb Haemost 104(1):39–44. doi: 10.1160/TH10-05-0269 PubMedCrossRefGoogle Scholar
  109. 109.
    Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10(6):678–684. doi: 10.1016/j.stem.2012.05.005 PubMedCrossRefGoogle Scholar
  110. 110.
    Nie B, Wang H, Laurent T, Ding S (2012) Cellular reprogramming: a small molecule perspective. Curr Opin Cell Biol 24(6):784–792. doi: 10.1016/j.ceb.2012.08.010 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Zhou W, Freed CR (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27(11):2667–2674. doi: 10.1002/stem.201 PubMedCrossRefGoogle Scholar
  112. 112.
    Yusa K, Rad R, Takeda J, Bradley A (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6(5):363–369. doi: 10.1038/nmeth.1323 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Mattis VB, Svendsen CN (2011) Induced pluripotent stem cells: a new revolution for clinical neurology? Lancet Neurol 10(4):383–394. doi: 10.1016/S1474-4422(11)70022-9 PubMedCrossRefGoogle Scholar
  114. 114.
    Wu K, Ding J, Chen C, Sun W, Ning BF, Wen W, Huang L, Han T, Yang W, Wang C, Li Z, Wu MC, Feng GS, Xie WF, Wang HY (2012) Hepatic transforming growth factor beta gives rise to tumor-initiating cells and promotes liver cancer development. Hepatology 56(6):2255–2267. doi: 10.1002/hep.26007 PubMedCrossRefGoogle Scholar
  115. 115.
    Abdullah AI, Pollock A, Sun T (2012) The path from skin to brain: generation of functional neurons from fibroblasts. Mol Neurobiol 45(3):586–595. doi: 10.1007/s12035-012-8277-6 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Nakamura M, Okano H (2013) Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res 23(1):70–80. doi: 10.1038/cr.2012.171 PubMedCrossRefGoogle Scholar
  117. 117.
    Hanley J, Rastegarlari G, Nathwani AC (2010) An introduction to induced pluripotent stem cells. Br J Haematol 151(1):16–24. doi: 10.1111/j.1365-2141.2010.08296.x PubMedCrossRefGoogle Scholar
  118. 118.
    Rajamohan D, Matsa E, Kalra S, Crutchley J, Patel A, George V, Denning C (2013) Current status of drug screening and disease modelling in human pluripotent stem cells. BioEssays News Rev Mol Cell Dev Biol 35(3):281–298. doi: 10.1002/bies.201200053 CrossRefGoogle Scholar
  119. 119.
    Rada-Iglesias A, Wysocka J (2011) Epigenomics of human embryonic stem cells and induced pluripotent stem cells: insights into pluripotency and implications for disease. Genome Med 3(6):36. doi: 10.1186/gm252 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Neurology, Qingdao Municipal HospitalNanjing Medical UniversityNanjingChina
  2. 2.Department of Neurology, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoPeople’s Republic of China
  3. 3.Department of Neurology, Qingdao Municipal Hospital, College of Medicine and PharmaceuticsOcean University of ChinaQingdaoChina
  4. 4.Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations