Molecular Neurobiology

, Volume 51, Issue 2, pp 685–695 | Cite as

Electroacupuncture Attenuates Cerebral Ischemia-Reperfusion Injury in Diabetic Mice Through Adiponectin Receptor 1-Mediated Phosphorylation of GSK-3β

  • Fan Guo
  • Tao Jiang
  • Wenying Song
  • Haidong Wei
  • Feng Wang
  • Lixin Liu
  • Lei Ma
  • Hong Yin
  • Qiang Wang
  • Lize Xiong
Article

Abstract

Diabetes mellitus substantially increases the risk of stroke and enhances brain’s vulnerability to ischemia insult. Electroacupuncture (EA) pretreatment was proved to induce cerebral ischemic tolerance in normal stroke models. Whether EA could attenuate cerebral ischemia injury in diabetic mice and the possible underlying mechanism are still unrevealed. Male C57BL/6 mice were subjected to streptozotocin (STZ) for diabetic models. After inducing focal cerebral ischemia model, the levels of plasma and cerebral adiponectin (APN) were measured as well as the expression of cerebral adiponectin receptor 1 (AdipoR1) and 2 (AdipoR2). The neurobehavioral score, infarction volume, and cellular apoptosis were evaluated with or without AdipoR1 short interfering RNA (siRNA). The role of phosphorylation of glycogen synthesis kinase 3 beta (GSK-3β) at Ser-9 in the EA pretreatment was also assessed. EA pretreatment increased both plasma and cerebral APN levels and enhanced neuronal AdipoR1 in diabetic mice. In addition, EA reduced infarct size, improved neurological outcomes, and inhibited cell apoptosis after reperfusion. These beneficial effects were reversed by AdipoR1 knockdown. Furthermore, EA increased GSK-3β phosphorylation (p-GSK-3β) in the ipsilateral penumbra. Augmented p-GSK-3β induced neuroprotective effects similar to those of EA pretreatment. In contrast, dampened p-GSK-3β could reverse the neuroprotective effects of EA. In addition, the increase in p-GSK-3β by EA was abolished by AdipoR1 knockdown. We conclude that EA pretreatment increases the production of APN, which induce protective effects against cerebral ischemia-reperfusion injury through neuronal AdipoR1-mediated phosphorylation of GSK-3β in diabetic mice.

Keywords

Diabetes Electroacupuncture Ischemia-reperfusion injury Adiponectin Adiponectin receptor Glycogen synthesis kinase 3 beta 

Notes

Acknowledgments

This work was supported by the Overseas and Hong Kong, Macau Scholars Collaborated Researching Fund (Grant 81228022), the Program for Changjiang Scholars and Innovative Research Team in University (Grant IRT 1053), and the National Natural Science Foundation of China (Grants 81072888 and 81171278).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378(9785):31–40CrossRefPubMedGoogle Scholar
  2. 2.
    Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Liu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J (2010) Prevalence of diabetes among men and women in China. N Engl J Med 362(12):1090–1101. doi: 10.1056/NEJMoa0908292 CrossRefPubMedGoogle Scholar
  3. 3.
    Luitse MJ, Biessels GJ, Rutten GE, Kappelle LJ (2012) Diabetes, hyperglycaemia, and acute ischaemic stroke. Lancet Neurol 11(3):261–271. doi: 10.1016/S1474-4422(12)70005-4 CrossRefPubMedGoogle Scholar
  4. 4.
    Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–2222. doi: 10.1016/S0140-6736(10)60484-9 CrossRefPubMedGoogle Scholar
  5. 5.
    Bejot Y, Giroud M (2010) Stroke in diabetic patients. Diabetes Metab 36(Suppl 3):S84–S87. doi: 10.1016/S1262-3636(10)70472-9 CrossRefPubMedGoogle Scholar
  6. 6.
    Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC (2000) Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol 278(4):H1218–H1224PubMedGoogle Scholar
  7. 7.
    Monteiro P, Goncalves L, Providencia LA (2005) Diabetes and cardiovascular disease: the road to cardioprotection. Heart 91(12):1621–1625. doi: 10.1136/hrt.2005.063008 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270(45):26746–26749CrossRefPubMedGoogle Scholar
  9. 9.
    Ahima RS (2006) Metabolic actions of adipocyte hormones: focus on adiponectin. Obesity (Silver Spring) 14(Suppl 1):9S–15S. doi: 10.1038/oby.2006.276 CrossRefGoogle Scholar
  10. 10.
    Thundyil J, Tang SC, Okun E, Shah K, Karamyan VT, Li YI, Woodruff TM, Taylor SM, Jo DG, Mattson MP, Arumugam TV (2010) Evidence that adiponectin receptor 1 activation exacerbates ischemic neuronal death. Exp Transl Stroke Med 2(1):15. doi: 10.1186/2040-7378-2-15 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Ma Y, Liu Y, Liu S, Qu Y, Wang R, Xia C, Pei H, Lian K, Yin T, Lu X, Sun L, Yang L, Cao Y, Lau WB, Gao E, Wang H, Tao L (2011) Dynamic alteration of adiponectin/adiponectin receptor expression and its impact on myocardial ischemia/reperfusion in type 1 diabetic mice. Am J Physiol Endocrinol Metab 301(3):E447–E455. doi: 10.1152/ajpendo.00687.2010 CrossRefPubMedGoogle Scholar
  12. 12.
    Cohen P, Goedert M (2004) GSK3 inhibitors: development and therapeutic potential. Nat Rev Drug Discov 3(6):479–487. doi: 10.1038/nrd1415 CrossRefPubMedGoogle Scholar
  13. 13.
    Dash PK, Johnson D, Clark J, Orsi SA, Zhang M, Zhao J, Grill RJ, Moore AN, Pati S (2011) Involvement of the glycogen synthase kinase-3 signaling pathway in TBI pathology and neurocognitive outcome. PLoS One 6(9):e24648. doi: 10.1371/journal.pone.0024648 CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Simao F, Matte A, Pagnussat AS, Netto CA, Salbego CG (2012) Resveratrol prevents CA1 neurons against ischemic injury by parallel modulation of both GSK-3beta and CREB through PI3-K/Akt pathways. Eur J Neurosci 36(7):2899–2905. doi: 10.1111/j.1460-9568.2012.08229.x CrossRefPubMedGoogle Scholar
  15. 15.
    Collino M, Thiemermann C, Mastrocola R, Gallicchio M, Benetti E, Miglio G, Castiglia S, Danni O, Murch O, Dianzani C, Aragno M, Fantozzi R (2008) Treatment with the glycogen synthase kinase-3beta inhibitor, TDZD-8, affects transient cerebral ischemia/reperfusion injury in the rat hippocampus. Shock 30(3):299–307. doi: 10.1097/SHK.0b013e318164e762 CrossRefPubMedGoogle Scholar
  16. 16.
    Eldar-Finkelman H, Ilouz R (2003) Challenges and opportunities with glycogen synthase kinase-3 inhibitors for insulin resistance and type 2 diabetes treatment. Expert Opin Investig Drugs 12(9):1511–1519. doi: 10.1517/13543784.12.9.1511 CrossRefPubMedGoogle Scholar
  17. 17.
    Gross ER, Hsu AK, Gross GJ (2007) Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta. Diabetes 56(1):127–136. doi: 10.2337/db06-0907 CrossRefPubMedGoogle Scholar
  18. 18.
    Wang F, Tian DR, Han JS (2008) Electroacupuncture in the treatment of obesity. Neurochem Res 33(10):2023–2027. doi: 10.1007/s11064-008-9822-6 CrossRefPubMedGoogle Scholar
  19. 19.
    Lee S, Kim JH, Shin KM, Kim JE, Kim TH, Kang KW, Lee M, Jung SY, Shin MS, Kim AR, Park HJ, Hong KE, Choi SM (2013) Electroacupuncture to treat painful diabetic neuropathy: study protocol for a three-armed, randomized, controlled pilot trial. Trials 14:225. doi: 10.1186/1745-6215-14-225 CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Xiong L, Lu Z, Hou L, Zheng H, Zhu Z, Wang Q, Chen S (2003) Pretreatment with repeated electroacupuncture attenuates transient focal cerebral ischemic injury in rats. Chin Med J (Engl) 116(1):108–111Google Scholar
  21. 21.
    Wang Q, Peng Y, Chen S, Gou X, Hu B, Du J, Lu Y, Xiong L (2009) Pretreatment with electroacupuncture induces rapid tolerance to focal cerebral ischemia through regulation of endocannabinoid system. Stroke 40(6):2157–2164. doi: 10.1161/STROKEAHA.108.541490 CrossRefPubMedGoogle Scholar
  22. 22.
    Wei H, Yao X, Yang L, Wang S, Guo F, Zhou H, Marsicano G, Wang Q, Xiong L (2013) Glycogen synthase kinase-3beta is involved in electroacupuncture pretreatment via the cannabinoid CB1 receptor in ischemic stroke. Mol Neurobiol. doi: 10.1007/s12035-013-8524-5 PubMedCentralGoogle Scholar
  23. 23.
    Tominaga A, Ishizaki N, Naruse Y, Kitakoji H, Yamamura Y (2011) Repeated application of low-frequency electroacupuncture improves high-fructose diet-induced insulin resistance in rats. Acupunct Med J Bri Med Acupunct Soc 29(4):276–283. doi: 10.1136/acupmed-2011-010006 CrossRefGoogle Scholar
  24. 24.
    Wang JK, Yu LN, Zhang FJ, Yang MJ, Yu J, Yan M, Chen G (2010) Postconditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury via PI3K/Akt pathway. Brain Res 1357:142–151. doi: 10.1016/j.brainres.2010.08.009 CrossRefPubMedGoogle Scholar
  25. 25.
    Ramirez SH, Fan S, Zhang M, Papugani A, Reichenbach N, Dykstra H, Mercer AJ, Tuma RF, Persidsky Y (2010) Inhibition of glycogen synthase kinase 3beta (GSK3beta) decreases inflammatory responses in brain endothelial cells. Am J Pathol 176(2):881–892. doi: 10.2353/ajpath.2010.090671 CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Hata R, Mies G, Wiessner C, Fritze K, Hesselbarth D, Brinker G, Hossmann KA (1998) A reproducible model of middle cerebral artery occlusion in mice: hemodynamic, biochemical, and magnetic resonance imaging. J Cereb Blood Flow Metab 18(4):367–375. doi: 10.1097/00004647-199804000-00004 CrossRefPubMedGoogle Scholar
  27. 27.
    Tatlisumak T, Takano K, Carano RA, Miller LP, Foster AC, Fisher M (1998) Delayed treatment with an adenosine kinase inhibitor, GP683, attenuates infarct size in rats with temporary middle cerebral artery occlusion. Stroke 29(9):1952–1958CrossRefPubMedGoogle Scholar
  28. 28.
    Wang Q, Gou X, Xiong L, Jin W, Chen S, Hou L, Xu L (2008) Trans-activator of transcription-mediated delivery of NEP1-40 protein into brain has a neuroprotective effect against focal cerebral ischemic injury via inhibition of neuronal apoptosis. Anesthesiology 108(6):1071–1080. doi: 10.1097/ALN.0b013e318173f66b CrossRefPubMedGoogle Scholar
  29. 29.
    Margolin A, Kleber HD, Avants SK, Konefal J, Gawin F, Stark E, Sorensen J, Midkiff E, Wells E, Jackson TR, Bullock M, Culliton PD, Boles S, Vaughan R (2002) Acupuncture for the treatment of cocaine addiction: a randomized controlled trial. JAMA 287(1):55–63CrossRefPubMedGoogle Scholar
  30. 30.
    Witt C, Brinkhaus B, Jena S, Linde K, Streng A, Wagenpfeil S, Hummelsberger J, Walther HU, Melchart D, Willich SN (2005) Acupuncture in patients with osteoarthritis of the knee: a randomised trial. Lancet 366(9480):136–143. doi: 10.1016/S0140-6736(05)66871-7 CrossRefPubMedGoogle Scholar
  31. 31.
    Shen J, Wenger N, Glaspy J, Hays RD, Albert PS, Choi C, Shekelle PG (2000) Electroacupuncture for control of myeloablative chemotherapy-induced emesis: a randomized controlled trial. JAMA 284(21):2755–2761CrossRefPubMedGoogle Scholar
  32. 32.
    Wang Q, Xiong L, Chen S, Liu Y, Zhu X (2005) Rapid tolerance to focal cerebral ischemia in rats is induced by preconditioning with electroacupuncture: window of protection and the role of adenosine. Neurosci Lett 381(1–2):158–162. doi: 10.1016/j.neulet.2005.02.019 CrossRefPubMedGoogle Scholar
  33. 33.
    Steffens S, Mach F (2008) Adiponectin and adaptive immunity: linking the bridge from obesity to atherogenesis. Circ Res 102(2):140–142. doi: 10.1161/CIRCRESAHA.107.170274 CrossRefPubMedGoogle Scholar
  34. 34.
    Kos K, Harte AL, da Silva NF, Tonchev A, Chaldakov G, James S, Snead DR, Hoggart B, O’Hare JP, McTernan PG, Kumar S (2007) Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. J Clin Endocrinol Metab 92(3):1129–1136. doi: 10.1210/jc.2006-1841 CrossRefPubMedGoogle Scholar
  35. 35.
    Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26(3):439–451. doi: 10.1210/er.2005-0005 CrossRefPubMedGoogle Scholar
  36. 36.
    Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, Shimizu T, Nagai R, Kadowaki T (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423(6941):762–769. doi: 10.1038/nature01705 CrossRefPubMedGoogle Scholar
  37. 37.
    Guillod-Maximin E, Roy AF, Vacher CM, Aubourg A, Bailleux V, Lorsignol A, Penicaud L, Parquet M, Taouis M (2009) Adiponectin receptors are expressed in hypothalamus and colocalized with proopiomelanocortin and neuropeptide Y in rodent arcuate neurons. J Endocrinol 200(1):93–105. doi: 10.1677/JOE-08-0348 CrossRefPubMedGoogle Scholar
  38. 38.
    Nishimura M, Izumiya Y, Higuchi A, Shibata R, Qiu J, Kudo C, Shin HK, Moskowitz MA, Ouchi N (2008) Adiponectin prevents cerebral ischemic injury through endothelial nitric oxide synthase dependent mechanisms. Circulation 117(2):216–223. doi: 10.1161/CIRCULATIONAHA.107.725044 CrossRefPubMedGoogle Scholar
  39. 39.
    Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8(11):1288–1295. doi: 10.1038/nm788 CrossRefPubMedGoogle Scholar
  40. 40.
    Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, Funahashi T, Ouchi N, Walsh K (2005) Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 11(10):1096–1103. doi: 10.1038/nm1295 CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Yu L, Liao Y, Wu H, Zhao J, Wu L, Shi Y, Fang J (2013) Effects of electroacupuncture and Chinese kidney-nourishing medicine on polycystic ovary syndrome in obese patients. J Tradit Chin Med 33(3):287–293CrossRefPubMedGoogle Scholar
  42. 42.
    Cline GW, Johnson K, Regittnig W, Perret P, Tozzo E, Xiao L, Damico C, Shulman GI (2002) Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes 51(10):2903–2910CrossRefPubMedGoogle Scholar
  43. 43.
    Collino M, Aragno M, Castiglia S, Tomasinelli C, Thiemermann C, Boccuzzi G, Fantozzi R (2009) Insulin reduces cerebral ischemia/reperfusion injury in the hippocampus of diabetic rats: a role for glycogen synthase kinase-3beta. Diabetes 58(1):235–242. doi: 10.2337/db08-0691 CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Baird TA, Parsons MW, Barber PA, Butcher KS, Desmond PM, Tress BM, Colman PG, Jerums G, Chambers BR, Davis SM (2002) The influence of diabetes mellitus and hyperglycaemia on stroke incidence and outcome. J Clin Neurosci 9(6):618–626CrossRefPubMedGoogle Scholar
  45. 45.
    Williams LS, Rotich J, Qi R, Fineberg N, Espay A, Bruno A, Fineberg SE, Tierney WR (2002) Effects of admission hyperglycemia on mortality and costs in acute ischemic stroke. Neurology 59(1):67–71CrossRefPubMedGoogle Scholar
  46. 46.
    Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS (1994) Effect of blood pressure and diabetes on stroke in progression. Lancet 344(8916):156–159CrossRefPubMedGoogle Scholar
  47. 47.
    Remuzzi G, Schieppati A, Ruggenenti P (2002) Clinical practice. Nephropathy in patients with type 2 diabetes. N Engl J Med 346(15):1145–1151. doi: 10.1056/NEJMcp011773 CrossRefPubMedGoogle Scholar
  48. 48.
    Scheen AJ (2010) Central nervous system: a conductor orchestrating metabolic regulations harmed by both hyperglycaemia and hypoglycaemia. Diabetes Metab 36(Suppl 3):S31–S38. doi: 10.1016/S1262-3636(10)70464-X CrossRefPubMedGoogle Scholar
  49. 49.
    Prioritizing interventions to improve rates of thrombolysis for ischemic stroke (2005). Neurology 64 (4):654-659.  10.1212/01.WNL.0000151850.39648.51
  50. 50.
    Despres JP, Golay A, Sjostrom L (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353(20):2121–2134. doi: 10.1056/NEJMoa044537 CrossRefPubMedGoogle Scholar
  51. 51.
    Bensaid M, Gary-Bobo M, Esclangon A, Maffrand JP, Le Fur G, Oury-Donat F, Soubrie P (2003) The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol Pharmacol 63(4):908–914CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Fan Guo
    • 1
    • 2
  • Tao Jiang
    • 1
  • Wenying Song
    • 1
  • Haidong Wei
    • 1
  • Feng Wang
    • 1
  • Lixin Liu
    • 3
  • Lei Ma
    • 1
  • Hong Yin
    • 2
  • Qiang Wang
    • 1
  • Lize Xiong
    • 1
  1. 1.Department of Anesthesiology, Xijing HospitalFourth Military Medical UniversityXi’anChina
  2. 2.Department of Radiology, Xijing HospitalFourth Military Medical UniversityXi’anChina
  3. 3.Department of Anesthesiology, School of MedicineStony Brook UniversityStony BrookUSA

Personalised recommendations