Molecular Neurobiology

, Volume 51, Issue 3, pp 1008–1016 | Cite as

ABCA7 in Alzheimer’s Disease

Article

Abstract

ATP-binding cassette A7 (ABCA7) gene has recently been identified as a strong genetic locus associated with late-onset Alzheimer’s disease (LOAD) through genome-wide association studies (GWASs). ABCA7 is a member of the ATP-binding cassette (ABC) transporter gene superfamily, which codes for 49 ABC proteins, divided into 7 subfamilies (coded A–G). As a multispan transmembrane protein, ABCA7 is most abundantly expressed in the microglial cells in the brain. The levels of ABCA7 have been detected to be increased in the Alzheimer’s disease (AD) brain, which positively correlated with amyloid plaque burden and disease severity. Emerging data suggests that ABCA7 could be associated with AD via various pathways, possibly including amyloid-β (Aβ) accumulation, lipid metabolism, and phagocytosis. In this review, we summarize the known functions of ABCA7 and discuss the single-nucleotide polymorphisms (SNPs) related to LOAD, as well as their potential physiological effects. Finally, given the contributions of ABCA7 to AD pathogenesis, targeting ABCA7 might provide novel opportunities for AD therapy.

Keywords

Alzheimer’s disease ABCA7 Genetics Pathogenesis Therapy Outline 

References

  1. 1.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science (New York, NY) 297(5580):353–356. doi:10.1126/science.1072994 CrossRefGoogle Scholar
  2. 2.
    Wortmann M (2012) Dementia: a global health priority—highlights from an ADI and World Health Organization report. Alzheimers Res Ther 4(5):40. doi:10.1186/alzrt143 PubMedCentralPubMedGoogle Scholar
  3. 3.
    Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease (2013). Nature genetics 45 (12):1452-1458. doi:10.1038/ng.2802
  4. 4.
    Vasquez JB, Fardo DW, Estus S (2013) ABCA7 expression is associated with Alzheimer’s disease polymorphism and disease status. Neurosci Lett 556:58–62. doi:10.1016/j.neulet.2013.09.058 CrossRefPubMedGoogle Scholar
  5. 5.
    Vasiliou V, Vasiliou K, Nebert DW (2009) Human ATP-binding cassette (ABC) transporter family. Human Genomics 3(3):281–290CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Jehle AW, Gardai SJ, Li S, Linsel-Nitschke P, Morimoto K, Janssen WJ, Vandivier RW, Wang N, Greenberg S, Dale BM, Qin C, Henson PM, Tall AR (2006) ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages. J Cell Biol 174(4):547–556. doi:10.1083/jcb.200601030 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Quazi F, Molday RS (2013) Differential phospholipid substrates and directional transport by ATP-binding cassette proteins ABCA1, ABCA7, and ABCA4 and disease-causing mutants. J Biol Chem 288(48):34414–34426. doi:10.1074/jbc.M113.508812 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Kaminski WE, Orso E, Diederich W, Klucken J, Drobnik W, Schmitz G (2000) Identification of a novel human sterol-sensitive ATP-binding cassette transporter (ABCA7). Biochem Biophys Res Commun 273(2):532–538. doi:10.1006/bbrc.2000.2954 CrossRefPubMedGoogle Scholar
  9. 9.
    Broccardo C, Osorio J, Luciani MF, Schriml LM, Prades C, Shulenin S, Arnould I, Naudin L, Lafargue C, Rosier M, Jordan B, Mattei MG, Dean M, Denefle P, Chimini G (2001) Comparative analysis of the promoter structure and genomic organization of the human and mouse ABCA7 gene encoding a novel ABCA transporter. Cytogenet Cell Genet 92(3-4):264–270CrossRefPubMedGoogle Scholar
  10. 10.
    Ikeda Y, Abe-Dohmae S, Munehira Y, Aoki R, Kawamoto S, Furuya A, Shitara K, Amachi T, Kioka N, Matsuo M, Yokoyama S, Ueda K (2003) Posttranscriptional regulation of human ABCA7 and its function for the apoA-I-dependent lipid release. Biochem Biophys Res Commun 311(2):313–318CrossRefPubMedGoogle Scholar
  11. 11.
    Reorganizing the protein space at the Universal Protein Resource (UniProt) (2012). Nucleic acids research 40 (Database issue):D71-75. doi:10.1093/nar/gkr981
  12. 12.
    Wang N, Lan D, Gerbod-Giannone M, Linsel-Nitschke P, Jehle AW, Chen W, Martinez LO, Tall AR (2003) ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux. J Biol Chem 278(44):42906–42912. doi:10.1074/jbc.M307831200 CrossRefPubMedGoogle Scholar
  13. 13.
    Kim WS, Fitzgerald ML, Kang K, Okuhira K, Bell SA, Manning JJ, Koehn SL, Lu N, Moore KJ, Freeman MW (2005) Abca7 null mice retain normal macrophage phosphatidylcholine and cholesterol efflux activity despite alterations in adipose mass and serum cholesterol levels. J Biol Chem 280(5):3989–3995. doi:10.1074/jbc.M412602200 CrossRefPubMedGoogle Scholar
  14. 14.
    Kim WS, Guillemin GJ, Glaros EN, Lim CK, Garner B (2006) Quantitation of ATP-binding cassette subfamily-A transporter gene expression in primary human brain cells. Neuroreport 17(9):891–896. doi:10.1097/01.wnr.0000221833.41340.cd CrossRefPubMedGoogle Scholar
  15. 15.
    Abe-Dohmae S, Ikeda Y, Matsuo M, Hayashi M, Okuhira K, Ueda K, Yokoyama S (2004) Human ABCA7 supports apolipoprotein-mediated release of cellular cholesterol and phospholipid to generate high density lipoprotein. J Biol Chem 279(1):604–611. doi:10.1074/jbc.M309888200 CrossRefPubMedGoogle Scholar
  16. 16.
    Kim WS, Li H, Ruberu K, Chan S, Elliott DA, Low JK, Cheng D, Karl T, Garner B (2013) Deletion of Abca7 increases cerebral amyloid-beta accumulation in the J20 mouse model of Alzheimer’s disease. J Neurosci Off J Soc Neurosci 33(10):4387–4394. doi:10.1523/JNEUROSCI.4165-12.2013 CrossRefGoogle Scholar
  17. 17.
    Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Jones N, Stretton A, Thomas C, Richards A, Ivanov D, Widdowson C, Chapman J, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Beaumont H, Warden D, Wilcock G, Love S, Kehoe PG, Hooper NM, Vardy ER, Hardy J, Mead S, Fox NC, Rossor M, Collinge J, Maier W, Jessen F, Ruther E, Schurmann B, Heun R, Kolsch H, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frolich L, Hampel H, Gallacher J, Hull M, Rujescu D, Giegling I, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M, Singleton AB, Guerreiro R, Muhleisen TW, Nothen MM, Moebus S, Jockel KH, Klopp N, Wichmann HE, Pankratz VS, Sando SB, Aasly JO, Barcikowska M, Wszolek ZK, Dickson DW, Graff-Radford NR, Petersen RC, van Duijn CM, Breteler MM, Ikram MA, DeStefano AL, Fitzpatrick AL, Lopez O, Launer LJ, Seshadri S, Berr C, Campion D, Epelbaum J, Dartigues JF, Tzourio C, Alperovitch A, Lathrop M, Feulner TM, Friedrich P, Riehle C, Krawczak M, Schreiber S, Mayhaus M, Nicolhaus S, Wagenpfeil S, Steinberg S, Stefansson H, Stefansson K, Snaedal J, Bjornsson S, Jonsson PV, Chouraki V, Genier-Boley B, Hiltunen M, Soininen H, Combarros O, Zelenika D, Delepine M, Bullido MJ, Pasquier F, Mateo I, Frank-Garcia A, Porcellini E, Hanon O, Coto E, Alvarez V, Bosco P, Siciliano G, Mancuso M, Panza F, Solfrizzi V, Nacmias B, Sorbi S, Bossu P, Piccardi P, Arosio B, Annoni G, Seripa D, Pilotto A, Scarpini E, Galimberti D, Brice A, Hannequin D, Licastro F, Jones L, Holmans PA, Jonsson T, Riemenschneider M, Morgan K, Younkin SG, Owen MJ, O’Donovan M, Amouyel P, Williams J (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43(5):429–435. doi:10.1038/ng.803 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Nussbaum RL (2013) Genome-wide association studies, Alzheimer disease, and understudied populations. JAMA 309(14):1527–1528. doi:10.1001/jama.2013.3507 CrossRefPubMedGoogle Scholar
  19. 19.
    Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK, Larson EB, Bird TD, Boeve BF, Graff-Radford NR, De Jager PL, Evans D, Schneider JA, Carrasquillo MM, Ertekin-Taner N, Younkin SG, Cruchaga C, Kauwe JS, Nowotny P, Kramer P, Hardy J, Huentelman MJ, Myers AJ, Barmada MM, Demirci FY, Baldwin CT, Green RC, Rogaeva E, St George-Hyslop P, Arnold SE, Barber R, Beach T, Bigio EH, Bowen JD, Boxer A, Burke JR, Cairns NJ, Carlson CS, Carney RM, Carroll SL, Chui HC, Clark DG, Corneveaux J, Cotman CW, Cummings JL, DeCarli C, DeKosky ST, Diaz-Arrastia R, Dick M, Dickson DW, Ellis WG, Faber KM, Fallon KB, Farlow MR, Ferris S, Frosch MP, Galasko DR, Ganguli M, Gearing M, Geschwind DH, Ghetti B, Gilbert JR, Gilman S, Giordani B, Glass JD, Growdon JH, Hamilton RL, Harrell LE, Head E, Honig LS, Hulette CM, Hyman BT, Jicha GA, Jin LW, Johnson N, Karlawish J, Karydas A, Kaye JA, Kim R, Koo EH, Kowall NW, Lah JJ, Levey AI, Lieberman AP, Lopez OL, Mack WJ, Marson DC, Martiniuk F, Mash DC, Masliah E, McCormick WC, McCurry SM, McDavid AN, McKee AC, Mesulam M, Miller BL, Miller CA, Miller JW, Parisi JE, Perl DP, Peskind E, Petersen RC, Poon WW, Quinn JF, Rajbhandary RA, Raskind M, Reisberg B, Ringman JM, Roberson ED, Rosenberg RN, Sano M, Schneider LS, Seeley W, Shelanski ML, Slifer MA, Smith CD, Sonnen JA, Spina S, Stern RA, Tanzi RE, Trojanowski JQ, Troncoso JC, Van Deerlin VM, Vinters HV, Vonsattel JP, Weintraub S, Welsh-Bohmer KA, Williamson J, Woltjer RL, Cantwell LB, Dombroski BA, Beekly D, Lunetta KL, Martin ER, Kamboh MI, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Montine TJ, Goate AM, Blacker D, Tsuang DW, Hakonarson H, Kukull WA, Foroud TM, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43(5):436–441. doi:10.1038/ng.801 CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Reitz C, Jun G, Naj A, Rajbhandary R, Vardarajan BN, Wang LS, Valladares O, Lin CF, Larson EB, Graff-Radford NR, Evans D, De Jager PL, Crane PK, Buxbaum JD, Murrell JR, Raj T, Ertekin-Taner N, Logue M, Baldwin CT, Green RC, Barnes LL, Cantwell LB, Fallin MD, Go RC, Griffith P, Obisesan TO, Manly JJ, Lunetta KL, Kamboh MI, Lopez OL, Bennett DA, Hendrie H, Hall KS, Goate AM, Byrd GS, Kukull WA, Foroud TM, Haines JL, Farrer LA, Pericak-Vance MA, Schellenberg GD, Mayeux R (2013) Variants in the ATP-binding cassette transporter (ABCA7), apolipoprotein E ε4, and the risk of late-onset Alzheimer disease in African Americans. JAMA 309(14):1483–1492. doi:10.1001/jama.2013.2973 CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Tan L, Yu JT, Zhang W, Wu ZC, Zhang Q, Liu QY, Wang W, Wang HF, Ma XY, Cui WZ (2013) Association of GWAS-linked loci with late-onset Alzheimer’s disease in a northern Han Chinese population. Alzheimer’s Dement J Alzheimer’s Assoc 9(5):546–553. doi:10.1016/j.jalz.2012.08.007 CrossRefGoogle Scholar
  22. 22.
    Yang P, Sun YM, Liu ZJ, Tao QQ, Li HL, Lu SJ, Wu ZY (2013) Association study of ABCA7 and NPC1 polymorphisms with Alzheimer’s disease in Chinese Han ethnic population. Psychiatr Genet 23(6):268. doi:10.1097/ypg.0000000000000016 CrossRefPubMedGoogle Scholar
  23. 23.
    Chung SJ, Lee JH, Kim SY, You S, Kim MJ, Lee JY, Koh J (2013) Association of GWAS top hits with late-onset Alzheimer disease in Korean population. Alzheimer Dis Assoc Disord 27(3):250–257. doi:10.1097/WAD.0b013e31826d7281 CrossRefPubMedGoogle Scholar
  24. 24.
    Allen M, Zou F, Chai HS, Younkin CS, Crook J, Pankratz VS, Carrasquillo MM, Rowley CN, Nair AA, Middha S, Maharjan S, Nguyen T, Ma L, Malphrus KG, Palusak R, Lincoln S, Bisceglio G, Georgescu C, Schultz D, Rakhshan F, Kolbert CP, Jen J, Haines JL, Mayeux R, Pericak-Vance MA, Farrer LA, Schellenberg GD, Consortium Alzheimer’s Disease Genetics, Petersen RC, Graff-Radford NR, Dickson DW, Younkin SG, Ertekin-Taner N (2012) Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology 79(3):221–228. doi:10.1212/WNL.0b013e3182605801 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Karch CM, Jeng AT, Nowotny P, Cady J, Cruchaga C, Goate AM (2012) Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS One 7(11):e50976. doi:10.1371/journal.pone.0050976 CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Chung SJ, Kim MJ, Kim YJ, Kim J, You S, Jang EH, Kim SY, Lee JH (2014) CR1, ABCA7, and APOE genes affect the features of cognitive impairment in Alzheimer’s disease. J Neurol Sci. doi:10.1016/j.jns.2014.01.029 Google Scholar
  27. 27.
    Engelman CD, Koscik RL, Jonaitis EM, Okonkwo OC, Hermann BP, La Rue A, Sager MA (2013) Interaction between two cholesterol metabolism genes influences memory: findings from the Wisconsin Registry for Alzheimer’s Prevention. JAD 36(4):749–757. doi:10.3233/jad-130482 PubMedCentralPubMedGoogle Scholar
  28. 28.
    Jiang T, Yu JT, Hu N, Tan MS, Zhu XC, Tan L (2014) CD33 in Alzheimer’s disease. Mol Neurobiol 49(1):529–535. doi:10.1007/s12035-013-8536-1 CrossRefPubMedGoogle Scholar
  29. 29.
    Zhu XC, Yu JT, Jiang T, Wang P, Cao L, Tan L (2014) CR1 in Alzheimer’s disease. Mol Neurobiol. doi:10.1007/s12035-014-8723-8 Google Scholar
  30. 30.
    Tan MS, Yu JT, Tan L (2013) Bridging integrator 1 (BIN1): form, function, and Alzheimer’s disease. Trends Mol Med 19(10):594–603. doi:10.1016/j.molmed.2013.06.004 CrossRefPubMedGoogle Scholar
  31. 31.
    Jiang T, Yu JT, Zhu XC, Tan L (2013) TREM2 in Alzheimer’s disease. Mol Neurobiol 48(1):180–185. doi:10.1007/s12035-013-8424-8 CrossRefPubMedGoogle Scholar
  32. 32.
    Tan MS, Yu JT, Jiang T, Zhu XC, Guan HS, Tan L (2014) Genetic variation in BIN1 gene and Alzheimer’s disease risk in Han Chinese individuals. Neurobiol Aging 35 (7):1781 e1781-1788. doi:10.1016/j.neurobiolaging.2014.01.151
  33. 33.
    Jiang T, Yu JT, Tan MS, Wang HF, Wang YL, Zhu XC, Zhang W, Tan L (2014) Genetic variation in PICALM and Alzheimer’s disease risk in Han Chinese. Neurobiol Aging 35 (4):934 e931-933. doi:10.1016/j.neurobiolaging.2013.09.014
  34. 34.
    Yu JT, Ma XY, Wang YL, Sun L, Tan L, Hu N (1921) Tan L (2013) Genetic variation in clusterin gene and Alzheimer’s disease risk in Han Chinese. Neurobiol Aging 34(7):e1917–e1923. doi:10.1016/j.neurobiolaging.2013.01.010 Google Scholar
  35. 35.
    Yu JT, Song JH, Ma T, Zhang W, Yu NN, Xuan SY, Tan L (2011) Genetic association of PICALM polymorphisms with Alzheimer’s disease in Han Chinese. J Neurol Sci 300(1–2):78–80. doi:10.1016/j.jns.2010.09.027 CrossRefPubMedGoogle Scholar
  36. 36.
    Yu JT, Tan L (2012) Clusterin polymorphisms and Alzheimer’s disease. Eur J Epidemiol 27(9):757–758. doi:10.1007/s10654-012-9681-y CrossRefPubMedGoogle Scholar
  37. 37.
    Yu JT, Tan L, Hardy J (2014) Apolipoprotein E in Alzheimer’s disease: an update. Annu Rev Neurosci. doi:10.1146/annurev-neuro-071013-014300 PubMedGoogle Scholar
  38. 38.
    Morgan K (2011) The three new pathways leading to Alzheimer’s disease. Neuropathol Appl Neurobiol 37(4):353–357. doi:10.1111/j.1365-2990.2011.01181.x CrossRefPubMedGoogle Scholar
  39. 39.
    Pluta R, Jablonski M, Ulamek-Koziol M, Kocki J, Brzozowska J, Januszewski S, Furmaga-Jablonska W, Bogucka-Kocka A, Maciejewski R, Czuczwar SJ (2013) Sporadic Alzheimer’s disease begins as episodes of brain ischemia and ischemically dysregulated Alzheimer’s disease genes. Mol Neurobiol 48(3):500–515. doi:10.1007/s12035-013-8439-1 CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Meurs I, Calpe-Berdiel L, Habets KL, Zhao Y, Korporaal SJ, Mommaas AM, Josselin E, Hildebrand RB, Ye D, Out R, Kuiper J, Van Berkel TJ, Chimini G, Van Eck M (2012) Effects of deletion of macrophage ABCA7 on lipid metabolism and the development of atherosclerosis in the presence and absence of ABCA1. PLoS One 7(3):e30984. doi:10.1371/journal.pone.0030984 CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Chan SL, Kim WS, Kwok JB, Hill AF, Cappai R, Rye KA, Garner B (2008) ATP-binding cassette transporter A7 regulates processing of amyloid precursor protein in vitro. J Neurochem 106(2):793–804. doi:10.1111/j.1471-4159.2008.05433.x CrossRefPubMedGoogle Scholar
  42. 42.
    Hughes TM, Lopez OL, Evans RW, Kamboh MI, Williamson JD, Klunk WE, Mathis CA, Price JC, Cohen AD, Snitz BE, Dekosky ST, Kuller LH (2014) Markers of cholesterol transport are associated with amyloid deposition in the brain. Neurobiol Aging 35(4):802–807. doi:10.1016/j.neurobiolaging.2013.09.040 CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Shulman JM, Chen K, Keenan BT, Chibnik LB, Fleisher A, Thiyyagura P, Roontiva A, McCabe C, Patsopoulos NA, Corneveaux JJ, Yu L, Huentelman MJ, Evans DA, Schneider JA, Reiman EM, De Jager PL, Bennett DA (2013) Genetic susceptibility for Alzheimer disease neuritic plaque pathology. JAMA Neurology 70(9):1150–1157. doi:10.1001/jamaneurol.2013.2815 CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Zlokovic BV, Deane R, Sagare AP, Bell RD, Winkler EA (2010) Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer’s amyloid β-peptide elimination from the brain. J Neurochem 115(5):1077–1089. doi:10.1111/j.1471-4159.2010.07002.x CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Castellano JM, Deane R, Gottesdiener AJ, Verghese PB, Stewart FR, West T, Paoletti AC, Kasper TR, DeMattos RB, Zlokovic BV, Holtzman DM (2012) Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood Aβ clearance in a mouse model of β-amyloidosis. Proc Natl Acad Sci U S A 109(38):15502–15507. doi:10.1073/pnas.1206446109 CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Cascorbi I, Fluh C, Remmler C, Haenisch S, Faltraco F, Grumbt M, Peters M, Brenn A, Thal DR, Warzok RW, Vogelgesang S (2013) Association of ATP-binding cassette transporter variants with the risk of Alzheimer’s disease. Pharmacogenomics 14(5):485–494. doi:10.2217/pgs.13.18 CrossRefPubMedGoogle Scholar
  47. 47.
    Iwamoto N, Abe-Dohmae S, Sato R, Yokoyama S (2006) ABCA7 expression is regulated by cellular cholesterol through the SREBP2 pathway and associated with phagocytosis. J Lipid Res 47(9):1915–1927. doi:10.1194/jlr.M600127-JLR200 CrossRefPubMedGoogle Scholar
  48. 48.
    Perry VH, Holmes C (2014) Microglial priming in neurodegenerative disease. Nat Rev Neurol 10(4):217–224. doi:10.1038/nrneurol.2014.38 CrossRefPubMedGoogle Scholar
  49. 49.
    Wu CA, Wang N, Zhao DH (2013) An evaluation of the mechanism of ABCA7 on cellular lipid release in ABCA7-HEC293 cell. Chin Med J 126(2):306–310PubMedGoogle Scholar
  50. 50.
    Voloshyna I, Reiss AB (2011) The ABC transporters in lipid flux and atherosclerosis. Prog Lipid Res 50(3):213–224. doi:10.1016/j.plipres.2011.02.001 CrossRefPubMedGoogle Scholar
  51. 51.
    Li G, Gu HM, Zhang DW (2013) ATP-binding cassette transporters and cholesterol translocation. IUBMB life. doi:10.1002/iub.01165
  52. 52.
    Lee CY, Tse W, Smith JD, Landreth GE (2012) Apolipoprotein E promotes β-amyloid trafficking and degradation by modulating microglial cholesterol levels. J Biol Chem 287(3):2032–2044. doi:10.1074/jbc.M111.295451 CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Khalil A, Berrougui H, Pawelec G, Fulop T (2012) Impairment of the ABCA1 and SR-BI-mediated cholesterol efflux pathways and HDL anti-inflammatory activity in Alzheimer’s disease. Mech Ageing Dev 133(1):20–29. doi:10.1016/j.mad.2011.11.008 CrossRefPubMedGoogle Scholar
  54. 54.
    Turton J, Morgan K (2013) ATP-binding cassette, subfamily A (ABC1), member 7 (ABCA7). In: Genetic variants in Alzheimer’s disease. Springer, pp 135-158Google Scholar
  55. 55.
    Tanaka N, Abe-Dohmae S, Iwamoto N, Fitzgerald ML, Yokoyama S (2010) Helical apolipoproteins of high-density lipoprotein enhance phagocytosis by stabilizing ATP-binding cassette transporter A7. J Lipid Res 51(9):2591–2599. doi:10.1194/jlr.M006049 CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Gemma C, Bachstetter AD (2013) The role of microglia in adult hippocampal neurogenesis. Front Cell Neurosci 7:229. doi:10.3389/fncel.2013.00229 CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Ferreira ST, Clarke JR, Bomfim TR, De Felice FG (2014) Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc 10(1S):S76–S83. doi:10.1016/j.jalz.2013.12.010 CrossRefGoogle Scholar
  58. 58.
    Meraz-Rios MA, Toral-Rios D, Franco-Bocanegra D, Villeda-Hernandez J, Campos-Pena V (2013) Inflammatory process in Alzheimer’s disease. Front Integr Neurosci 7:59. doi:10.3389/fnint.2013.00059 CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K (2006) Role of toll-like receptor signalling in Abeta uptake and clearance. Brain: J Neurol 129(Pt 11):3006–3019. doi:10.1093/brain/awl249 CrossRefGoogle Scholar
  60. 60.
    Pluta R, Barcikowska M, Misicka A, Lipkowski AW, Spisacka S, Januszewski S (1999) Ischemic rats as a model in the study of the neurobiological role of human beta-amyloid peptide. Time-dependent disappearing diffuse amyloid plaques in brain. Neuroreport 10(17):3615–3619CrossRefPubMedGoogle Scholar
  61. 61.
    Pluta R, Misicka A, Barcikowska M, Spisacka S, Lipkowski AW, Januszewski S (2000) Possible reverse transport of beta-amyloid peptide across the blood-brain barrier. Acta Neurochir Suppl 76:73–77PubMedGoogle Scholar
  62. 62.
    Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, Hazrati L, Collinge J, Pocock J, Lashley T, Williams J, Lambert JC, Amouyel P, Goate A, Rademakers R, Morgan K, Powell J, St George-Hyslop P, Singleton A, Hardy J (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368(2):117–127. doi:10.1056/NEJMoa1211851 CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Logge W, Cheng D, Chesworth R, Bhatia S, Garner B, Kim WS, Karl T (2012) Role of Abca7 in mouse behaviours relevant to neurodegenerative diseases. PLoS One 7(9):e45959. doi:10.1371/journal.pone.0045959 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Neurology, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoChina
  2. 2.College of Medicine and PharmaceuticsOcean University of ChinaQingdaoChina
  3. 3.Department of Neurology, Qingdao Municipal HospitalNanjing Medical UniversityNanjingChina

Personalised recommendations