Molecular Neurobiology

, Volume 51, Issue 3, pp 947–965 | Cite as

The Role of Cholesterol Metabolism in Alzheimer’s Disease

  • Jia-Hao Sun
  • Jin-Tai Yu
  • Lan Tan


Alzheimer’s disease (AD) is the most common type of dementias and becoming a worldwide problem. As the time goes by, more and more researches show that AD is related to cholesterol in the brain. Both the Aβ and the phosphorylated tau are believed to be the key factors in the pathogenesis of AD. Cholesterol in the brain is involved in a series of interdependent metabolism processes of Aβ including the synthesis, aggregation, neurotoxicity, and elimination. The phosphorylated tau is also considered to be related to cholesterol metabolism. Besides that, there is evidence suggesting that cholesterol might contribute to the pathogenesis of AD by inducing the dysfunction of cerebral vessels such as the arteriosclerosis and cerebral amyloid angiopathy (CAA). In this review, we summarize our current understanding on the role of cholesterol in the pathogenesis of AD, and also propose the therapeutic research process on cholesterol-regulating drugs in the treatment of AD pathology.


Alzheimer’s disease Cholesterol Beta amyloid Phosphorylated tau Pathogenesis Therapy 



This work was supported in part by grants from the National Natural Science Foundation of China (81000544, 81171209) and the Shandong Provincial Natural Science Foundation, China (ZR2010HQ004, ZR2011HZ001).

Conflicts of Interest

The authors declare no conflicts of interest.


  1. 1.
    Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheim Dement: JAlzheim Assoc 3(3):186–191. doi: 10.1016/j.jalz.2007.04.381 Google Scholar
  2. 2.
    Sparks DL, Scheff SW, Hunsaker JC 3rd, Liu H, Landers T, Gross DR (1994) Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 126(1):88–94. doi: 10.1006/exnr.1994.1044 PubMedGoogle Scholar
  3. 3.
    Adlard PA, Cummings BJ (2004) Alzheimer’s disease—a sum greater than its parts? Neurobiol Aging 25(6):725–733. doi: 10.1016/j.neurobiolaging.2003.12.016, discussion 743-726PubMedGoogle Scholar
  4. 4.
    Tharp WG, Sarkar IN (2013) Origins of amyloid-beta. BMC Genomics 14:290. doi: 10.1186/1471-2164-14-290 PubMedCentralPubMedGoogle Scholar
  5. 5.
    Coughlan CM, Breen KC (2000) Factors influencing the processing and function of the amyloid beta precursor protein—a potential therapeutic target in Alzheimer's disease? Pharmacol Ther 86(2):111–145PubMedGoogle Scholar
  6. 6.
    Dickson DW (1997) The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56(4):321–339PubMedGoogle Scholar
  7. 7.
    Maulik M, Westaway D, Jhamandas JH, Kar S (2013) Role of cholesterol in APP metabolism and its significance in Alzheimer’s disease pathogenesis. Mol Neurobiol 47(1):37–63. doi: 10.1007/s12035-012-8337-y PubMedGoogle Scholar
  8. 8.
    Brion JP, Anderton BH, Authelet M, Dayanandan R, Leroy K, Lovestone S, Octave JN, Pradier L, Touchet N, Tremp G (2001) Neurofibrillary tangles and tau phosphorylation. Biochem Soc Symp 67:81–88PubMedGoogle Scholar
  9. 9.
    Janocko NJ, Brodersen KA, Soto-Ortolaza AI, Ross OA, Liesinger AM, Duara R, Graff-Radford NR, Dickson DW, Murray ME (2012) Neuropathologically defined subtypes of Alzheimer’s disease differ significantly from neurofibrillary tangle-predominant dementia. Acta Neuropathol 124(5):681–692. doi: 10.1007/s00401-012-1044-y PubMedCentralPubMedGoogle Scholar
  10. 10.
    Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330(6012):1774. doi: 10.1126/science.1197623 PubMedCentralPubMedGoogle Scholar
  11. 11.
    Jiang T, Yu JT, Tian Y, Tan L (2013) Epidemiology and etiology of Alzheimer’s disease: from genetic to non-genetic factors. Curr Alzheimer Res 10(8):852–867PubMedGoogle Scholar
  12. 12.
    Dietschy JM, Turley SD (2004) Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 45(8):1375–1397PubMedGoogle Scholar
  13. 13.
    Bjorkhem I, Meaney S (2004) Brain cholesterol: long secret life behind a barrier. Arterioscler, Thromb, Vasc Biol 24(5):806–815. doi: 10.1161/01.ATV.0000120374.59826.1b Google Scholar
  14. 14.
    Funfschilling U, Saher G, Xiao L, Mobius W, Nave KA (2007) Survival of adult neurons lacking cholesterol synthesis in vivo. BMC Neurosci 8:1. doi: 10.1186/1471-2202-8-1 PubMedCentralPubMedGoogle Scholar
  15. 15.
    Mazein A, Watterson S, Hsieh WY, Griffiths WJ, Ghazal P (2013) A comprehensive machine-readable view of the mammalian cholesterol biosynthesis pathway. Biochem Pharmacol 86(1):56–66. doi: 10.1016/j.bcp.2013.03.021 PubMedCentralPubMedGoogle Scholar
  16. 16.
    Bengoechea-Alonso MT, Ericsson J (2007) SREBP in signal transduction: cholesterol metabolism and beyond. Curr Opin Cell Biol 19(2):215–222. doi: 10.1016/ PubMedGoogle Scholar
  17. 17.
    Ye J, DeBose-Boyd RA (2011) Regulation of cholesterol and fatty acid synthesis. Cold Spring Harb Perspect Biol 3(7):a004754. doi: 10.1101/cshperspect.a004754 PubMedCentralPubMedGoogle Scholar
  18. 18.
    Bjorkhem I, Lutjohann D, Diczfalusy U, Stahle L, Ahlborg G, Wahren J (1998) Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 39(8):1594–1600PubMedGoogle Scholar
  19. 19.
    Jurevics H, Morell P (1995) Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem 64(2):895–901PubMedGoogle Scholar
  20. 20.
    Yu JT, Tan L, Hardy J (2014) Apolipoprotein E in Alzheimer’s disease: an update. Annu Rev Neurosci 37:79–100PubMedGoogle Scholar
  21. 21.
    Vance JE, Hayashi H, Karten B (2005) Cholesterol homeostasis in neurons and glial cells. Semin Cell Dev Biol 16(2):193–212. doi: 10.1016/j.semcdb.2005.01.005 PubMedGoogle Scholar
  22. 22.
    Brown AJ, Jessup W (2009) Oxysterols: sources, cellular storage and metabolism, and new insights into their roles in cholesterol homeostasis. Mol Aspects Med 30(3):111–122. doi: 10.1016/j.mam.2009.02.005 PubMedGoogle Scholar
  23. 23.
    Pitas RE, Boyles JK, Lee SH, Foss D, Mahley RW (1987) Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim Biophys Acta 917(1):148–161PubMedGoogle Scholar
  24. 24.
    Bjorkhem I (2007) Rediscovery of cerebrosterol. Lipids 42(1):5–14. doi: 10.1007/s11745-006-1003-2 PubMedGoogle Scholar
  25. 25.
    Lund EG, Guileyardo JM, Russell DW (1999) cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci U S A 96(13):7238–7243PubMedCentralPubMedGoogle Scholar
  26. 26.
    Heverin M, Bogdanovic N, Lutjohann D, Bayer T, Pikuleva I, Bretillon L, Diczfalusy U, Winblad B, Bjorkhem I (2004) Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J Lipid Res 45(1):186–193. doi: 10.1194/jlr.M300320-JLR200 PubMedGoogle Scholar
  27. 27.
    Saucier SE, Kandutsch AA, Clark DS, Spencer TA (1993) Hepatic uptake and metabolism of ingested 24-hydroxycholesterol and 24 (S),25-epoxycholesterol. Biochim Biophys Acta 1166(1):115–123PubMedGoogle Scholar
  28. 28.
    Lund EG, Xie C, Kotti T, Turley SD, Dietschy JM, Russell DW (2003) Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J Biol Chem 278(25):22980–22988. doi: 10.1074/jbc.M303415200 PubMedGoogle Scholar
  29. 29.
    Martin M, Dotti CG, Ledesma MD (2010) Brain cholesterol in normal and pathological aging. Biochim Biophys Acta 1801(8):934–944. doi: 10.1016/j.bbalip.2010.03.011 PubMedGoogle Scholar
  30. 30.
    Koldamova RP, Lefterov IM, Ikonomovic MD, Skoko J, Lefterov PI, Isanski BA, DeKosky ST, Lazo JS (2003) 22R-hydroxycholesterol and 9-cis-retinoic acid induce ATP-binding cassette transporter A1 expression and cholesterol efflux in brain cells and decrease amyloid beta secretion. J Biol Chem 278(15):13244–13256. doi: 10.1074/jbc.M300044200 PubMedGoogle Scholar
  31. 31.
    Panzenboeck U, Balazs Z, Sovic A, Hrzenjak A, Levak-Frank S, Wintersperger A, Malle E, Sattler W (2002) ABCA1 and scavenger receptor class B, type I, are modulators of reverse sterol transport at an in vitro blood-brain barrier constituted of porcine brain capillary endothelial cells. J Biol Chem 277(45):42781–42789. doi: 10.1074/jbc.M207601200 PubMedGoogle Scholar
  32. 32.
    Koldamova R, Fitz NF, Lefterov I (2010) The role of ATP-binding cassette transporter A1 in Alzheimer’s disease and neurodegeneration. Biochim Biophys Acta 1801(8):824–830. doi: 10.1016/j.bbalip.2010.02.010 PubMedCentralPubMedGoogle Scholar
  33. 33.
    Dietschy JM (2009) Central nervous system: cholesterol turnover, brain development and neurodegeneration. Biol Chem 390(4):287–293. doi: 10.1515/BC.2009.035 PubMedCentralPubMedGoogle Scholar
  34. 34.
    Wang H, Eckel RH (2014) What are lipoproteins doing in the brain? Trends Endocrinol Metabol 25(1):8–14. doi: 10.1016/j.tem.2013.10.003 Google Scholar
  35. 35.
    Heverin M, Meaney S, Lutjohann D, Diczfalusy U, Wahren J, Bjorkhem I (2005) Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain. J Lipid Res 46(5):1047–1052. doi: 10.1194/jlr.M500024-JLR200 PubMedGoogle Scholar
  36. 36.
    Martin KO, Reiss AB, Lathe R, Javitt NB (1997) 7 Alpha-hydroxylation of 27-hydroxycholesterol: biologic role in the regulation of cholesterol synthesis. J Lipid Res 38(5):1053–1058PubMedGoogle Scholar
  37. 37.
    Meaney S, Heverin M, Panzenboeck U, Ekstrom L, Axelsson M, Andersson U, Diczfalusy U, Pikuleva I, Wahren J, Sattler W, Bjorkhem I (2007) Novel route for elimination of brain oxysterols across the blood-brain barrier: conversion into 7alpha-hydroxy-3-oxo-4-cholestenoic acid. J Lipid Res 48(4):944–951. doi: 10.1194/jlr.M600529-JLR200 PubMedGoogle Scholar
  38. 38.
    Sodhi RK, Singh N (2013) Liver X receptors: emerging therapeutic targets for Alzheimer’s disease. Pharmacol Res: Off J Ital Pharmacol Soc 72:45–51. doi: 10.1016/j.phrs.2013.03.008 Google Scholar
  39. 39.
    Laffitte BA, Repa JJ, Joseph SB, Wilpitz DC, Kast HR, Mangelsdorf DJ, Tontonoz P (2001) LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc Natl Acad Sci U S A 98(2):507–512. doi: 10.1073/pnas.021488798 PubMedCentralPubMedGoogle Scholar
  40. 40.
    Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368(9533):387–403. doi: 10.1016/S0140-6736(06)69113-7 PubMedGoogle Scholar
  41. 41.
    Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discovery 10(9):698–712. doi: 10.1038/nrd3505 Google Scholar
  42. 42.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8(2):101–112. doi: 10.1038/nrm2101 PubMedGoogle Scholar
  43. 43.
    Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A 108(14):5819–5824. doi: 10.1073/pnas.1017033108 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356. doi: 10.1126/science.1072994 PubMedGoogle Scholar
  45. 45.
    Vassar R (2004) BACE1—the beta-secretase enzyme in Alzheimer’s disease. J Mol Neurosci 23(1–2):105–113. doi: 10.1385/jmn:23:1-2:105 PubMedGoogle Scholar
  46. 46.
    Vassar R (2013) ADAM10 prodomain mutations cause late-onset Alzheimer’s disease: not just the latest FAD. Neuron 80(2):250–253. doi: 10.1016/j.neuron.2013.09.031 PubMedCentralPubMedGoogle Scholar
  47. 47.
    Kuhn PH, Wang H, Dislich B, Colombo A, Zeitschel U, Ellwart JW, Kremmer E, Rossner S, Lichtenthaler SF (2010) ADAM10 is the physiologically relevant, constitutive alpha-secretase of the amyloid precursor protein in primary neurons. EMBO J 29(17):3020–3032. doi: 10.1038/emboj.2010.167 PubMedCentralPubMedGoogle Scholar
  48. 48.
    Mayeux R, St George-Hyslop P (2009) Brain traffic: subcellular transport of the amyloid precursor protein. Arch Neurol 66(4):433–434. doi: 10.1001/archneurol.2009.29 PubMedCentralPubMedGoogle Scholar
  49. 49.
    Small SA, Gandy S (2006) Sorting through the cell biology of Alzheimer’s disease: intracellular pathways to pathogenesis. Neuron 52(1):15–31. doi: 10.1016/j.neuron.2006.09.001 PubMedGoogle Scholar
  50. 50.
    Kukar TL, Ladd TB, Robertson P, Pintchovski SA, Moore B, Bann MA, Ren Z, Jansen-West K, Malphrus K, Eggert S, Maruyama H, Cottrell BA, Das P, Basi GS, Koo EH, Golde TE (2011) Lysine 624 of the amyloid precursor protein (APP) is a critical determinant of amyloid beta peptide length: support for a sequential model of gamma-secretase intramembrane proteolysis and regulation by the amyloid beta precursor protein (APP) juxtamembrane region. J Biol Chem 286(46):39804–39812. doi: 10.1074/jbc.M111.274696 PubMedCentralPubMedGoogle Scholar
  51. 51.
    Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S, Ihara Y (2009) gamma-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of beta-carboxyl terminal fragment. J Neurosci: Off J Soc Neurosci 29(41):13042–13052. doi: 10.1523/JNEUROSCI.2362-09.2009 Google Scholar
  52. 52.
    Hamley IW (2012) The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem Rev 112(10):5147–5192. doi: 10.1021/cr3000994 PubMedGoogle Scholar
  53. 53.
    Wahrle S, Das P, Nyborg AC, McLendon C, Shoji M, Kawarabayashi T, Younkin LH, Younkin SG, Golde TE (2002) Cholesterol-dependent γ-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis 9(1):11–23. doi: 10.1006/nbdi.2001.0470 PubMedGoogle Scholar
  54. 54.
    Urano Y, Hayashi I, Isoo N, Reid PC, Shibasaki Y, Noguchi N, Tomita T, Iwatsubo T, Hamakubo T, Kodama T (2005) Association of active gamma-secretase complex with lipid rafts. J Lipid Res 46(5):904–912. doi: 10.1194/jlr.M400333-JLR200 PubMedGoogle Scholar
  55. 55.
    Vetrivel KS, Cheng H, Kim SH, Chen Y, Barnes NY, Parent AT, Sisodia SS, Thinakaran G (2005) Spatial segregation of gamma-secretase and substrates in distinct membrane domains. J Biol Chem 280(27):25892–25900. doi: 10.1074/jbc.M503570200 PubMedCentralPubMedGoogle Scholar
  56. 56.
    Fonseca AC, Resende R, Oliveira CR, Pereira CM (2010) Cholesterol and statins in Alzheimer’s disease: current controversies. Exp Neurol 223(2):282–293. doi: 10.1016/j.expneurol.2009.09.013 PubMedGoogle Scholar
  57. 57.
    Bodovitz S, Klein WL (1996) Cholesterol modulates alpha-secretase cleavage of amyloid precursor protein. J Biol Chem 271(8):4436–4440PubMedGoogle Scholar
  58. 58.
    Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F (2001) Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc Natl Acad Sci U S A 98(10):5815–5820. doi: 10.1073/pnas.081612998 PubMedCentralPubMedGoogle Scholar
  59. 59.
    Xiong H, Callaghan D, Jones A, Walker DG, Lue LF, Beach TG, Sue LI, Woulfe J, Xu H, Stanimirovic DB, Zhang W (2008) Cholesterol retention in Alzheimer’s brain is responsible for high beta- and gamma-secretase activities and Abeta production. Neurobiol Dis 29(3):422–437. doi: 10.1016/j.nbd.2007.10.005 PubMedCentralPubMedGoogle Scholar
  60. 60.
    Ehehalt R, Keller P, Haass C, Thiele C, Simons K (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160(1):113–123. doi: 10.1083/jcb.200207113 PubMedCentralPubMedGoogle Scholar
  61. 61.
    Kalvodova L, Kahya N, Schwille P, Ehehalt R, Verkade P, Drechsel D, Simons K (2005) Lipids as modulators of proteolytic activity of BACE: involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro. J Biol Chem 280(44):36815–36823. doi: 10.1074/jbc.M504484200 PubMedGoogle Scholar
  62. 62.
    Sharman MJ, Moussavi Nik SH, Chen MM, Ong D, Wijaya L, Laws SM, Taddei K, Newman M, Lardelli M, Martins RN, Verdile G (2013) The guinea pig as a model for sporadic Alzheimer’s disease (AD): the impact of cholesterol intake on expression of AD-related genes. PLoS One 8(6):e66235. doi: 10.1371/journal.pone.0066235 PubMedCentralPubMedGoogle Scholar
  63. 63.
    Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A, Beel AJ, Sanders CR (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336(6085):1168–1171. doi: 10.1126/science.1219988 PubMedCentralPubMedGoogle Scholar
  64. 64.
    Vanier MT, Millat G (2003) Niemann-Pick disease type C. Clin Genet 64(4):269–281PubMedGoogle Scholar
  65. 65.
    Jin LW, Shie FS, Maezawa I, Vincent I, Bird T (2004) Intracellular accumulation of amyloidogenic fragments of amyloid-beta precursor protein in neurons with Niemann-Pick type C defects is associated with endosomal abnormalities. Am J Pathol 164(3):975–985PubMedCentralPubMedGoogle Scholar
  66. 66.
    Kodam A, Maulik M, Peake K, Amritraj A, Vetrivel KS, Thinakaran G, Vance JE, Kar S (2010) Altered levels and distribution of amyloid precursor protein and its processing enzymes in Niemann-Pick type C1-deficient mouse brains. Glia 58(11):1267–1281. doi: 10.1002/glia.21001 PubMedCentralPubMedGoogle Scholar
  67. 67.
    Burns M, Gaynor K, Olm V, Mercken M, LaFrancois J, Wang L, Mathews PM, Noble W, Matsuoka Y, Duff K (2003) Presenilin redistribution associated with aberrant cholesterol transport enhances beta-amyloid production in vivo. J Neurosci: Off J Soc Neurosci 23(13):5645–5649Google Scholar
  68. 68.
    Malnar M, Kosicek M, Lisica A, Posavec M, Krolo A, Njavro J, Omerbasic D, Tahirovic S, Hecimovic S (2012) Cholesterol-depletion corrects APP and BACE1 misstrafficking in NPC1-deficient cells. Biochim Biophys Acta 1822(8):1270–1283. doi: 10.1016/j.bbadis.2012.04.002 PubMedGoogle Scholar
  69. 69.
    Cibickova L, Hyspler R, Micuda S, Cibicek N, Zivna H, Jun D, Ticha A, Brcakova E, Palicka V (2009) The influence of simvastatin, atorvastatin and high-cholesterol diet on acetylcholinesterase activity, amyloid beta and cholesterol synthesis in rat brain. Steroids 74(1):13–19. doi: 10.1016/j.steroids.2008.08.007 PubMedGoogle Scholar
  70. 70.
    George AJ, Holsinger RM, McLean CA, Laughton KM, Beyreuther K, Evin G, Masters CL, Li QX (2004) APP intracellular domain is increased and soluble Abeta is reduced with diet-induced hypercholesterolemia in a transgenic mouse model of Alzheimer disease. Neurobiol Dis 16(1):124–132. doi: 10.1016/j.nbd.2004.01.009 PubMedGoogle Scholar
  71. 71.
    Abad-Rodriguez J, Ledesma MD, Craessaerts K, Perga S, Medina M, Delacourte A, Dingwall C, De Strooper B, Dotti CG (2004) Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol 167(5):953–960. doi: 10.1083/jcb.200404149 PubMedCentralPubMedGoogle Scholar
  72. 72.
    Giuffrida ML, Caraci F, Pignataro B, Cataldo S, De Bona P, Bruno V, Molinaro G, Pappalardo G, Messina A, Palmigiano A, Garozzo D, Nicoletti F, Rizzarelli E, Copani A (2009) Beta-amyloid monomers are neuroprotective. J Neurosci: Off J Soc Neurosci 29(34):10582–10587. doi: 10.1523/JNEUROSCI.1736-09.2009 Google Scholar
  73. 73.
    Benilova I, Karran E, De Strooper B (2012) The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3):349–357. doi: 10.1038/nn.3028 PubMedGoogle Scholar
  74. 74.
    Tomic JL, Pensalfini A, Head E, Glabe CG (2009) Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol Dis 35(3):352–358. doi: 10.1016/j.nbd.2009.05.024 PubMedCentralPubMedGoogle Scholar
  75. 75.
    Roychaudhuri R, Yang M, Hoshi MM, Teplow DB (2009) Amyloid beta-protein assembly and Alzheimer disease. J Biol Chem 284(8):4749–4753. doi: 10.1074/jbc.R800036200 PubMedCentralPubMedGoogle Scholar
  76. 76.
    Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842. doi: 10.1038/nm1782 PubMedCentralPubMedGoogle Scholar
  77. 77.
    Schneider A, Schulz-Schaeffer W, Hartmann T, Schulz JB, Simons M (2006) Cholesterol depletion reduces aggregation of amyloid-beta peptide in hippocampal neurons. Neurobiol Dis 23(3):573–577. doi: 10.1016/j.nbd.2006.04.015 PubMedGoogle Scholar
  78. 78.
    Qiu L, Lewis A, Como J, Vaughn MW, Huang J, Somerharju P, Virtanen J, Cheng KH (2009) Cholesterol modulates the interaction of beta-amyloid peptide with lipid bilayers. Biophys J 96(10):4299–4307. doi: 10.1016/j.bpj.2009.02.036 PubMedCentralPubMedGoogle Scholar
  79. 79.
    Manna M, Mukhopadhyay C (2013) Binding, conformational transition and dimerization of amyloid-beta peptide on GM1-containing ternary membrane: insights from molecular dynamics simulation. PLoS One 8(8):e71308. doi: 10.1371/journal.pone.0071308 PubMedCentralPubMedGoogle Scholar
  80. 80.
    Matsuzaki K (2007) Physicochemical interactions of amyloid beta-peptide with lipid bilayers. Biochim Biophys Acta 1768(8):1935–1942. doi: 10.1016/j.bbamem.2007.02.009 PubMedGoogle Scholar
  81. 81.
    Ogawa M, Tsukuda M, Yamaguchi T, Ikeda K, Okada T, Yano Y, Hoshino M, Matsuzaki K (2011) Ganglioside-mediated aggregation of amyloid beta-proteins (Abeta): comparison between Abeta-(1-42) and Abeta-(1-40). J Neurochem 116(5):851–857. doi: 10.1111/j.1471-4159.2010.06997.x PubMedGoogle Scholar
  82. 82.
    Ariga T, McDonald MP, Yu RK (2008) Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease—a review. J Lipid Res 49(6):1157–1175. doi: 10.1194/jlr.R800007-JLR200 PubMedCentralPubMedGoogle Scholar
  83. 83.
    Mori K, Mahmood MI, Neya S, Matsuzaki K, Hoshino T (2012) Formation of GM1 ganglioside clusters on the lipid membrane containing sphingomyeline and cholesterol. J Phys Chem B 116(17):5111–5121. doi: 10.1021/jp207881k PubMedGoogle Scholar
  84. 84.
    Abramov AY, Ionov M, Pavlov E, Duchen MR (2011) Membrane cholesterol content plays a key role in the neurotoxicity of beta-amyloid: implications for Alzheimer’s disease. Aging Cell 10(4):595–603. doi: 10.1111/j.1474-9726.2011.00685.x PubMedGoogle Scholar
  85. 85.
    Arispe N, Doh M (2002) Plasma membrane cholesterol controls the cytotoxicity of Alzheimer’s disease AbetaP (1-40) and (1-42) peptides. FASEB J: Off Publ Fed Am Soc Exp Biol 16(12):1526–1536. doi: 10.1096/fj.02-0829com Google Scholar
  86. 86.
    Lin MS, Chen LY, Wang SS, Chang Y, Chen WY (2008) Examining the levels of ganglioside and cholesterol in cell membrane on attenuation the cytotoxicity of beta-amyloid peptide. Colloids Surf, B 65(2):172–177. doi: 10.1016/j.colsurfb.2008.03.012 Google Scholar
  87. 87.
    Mendoza-Oliva A, Ferrera P, Arias C (2013) Interplay between cholesterol and homocysteine in the exacerbation of amyloid-beta toxicity in human neuroblastoma cells. CNS Neurol Disord: Drug Targets 12(6):842–848Google Scholar
  88. 88.
    Phan HT, Hata T, Morita M, Yoda T, Hamada T, Vestergaard MC, Takagi M (2013) The effect of oxysterols on the interaction of Alzheimer’s amyloid beta with model membranes. Biochim Biophys Acta 1828(11):2487–2495. doi: 10.1016/j.bbamem.2013.06.021 PubMedGoogle Scholar
  89. 89.
    Yao ZX, Brown RC, Teper G, Greeson J, Papadopoulos V (2002) 22R-Hydroxycholesterol protects neuronal cells from beta-amyloid-induced cytotoxicity by binding to beta-amyloid peptide. J Neurochem 83(5):1110–1119PubMedGoogle Scholar
  90. 90.
    Lecanu L, Rammouz G, McCourty A, Sidahmed EK, Greeson J, Papadopoulos V (2010) Caprospinol reduces amyloid deposits and improves cognitive function in a rat model of Alzheimer’s disease. Neuroscience 165(2):427–435. doi: 10.1016/j.neuroscience.2009.10.033 PubMedGoogle Scholar
  91. 91.
    Papadopoulos V, Lecanu L (2012) Caprospinol: discovery of a steroid drug candidate to treat Alzheimer’s disease based on 22R-hydroxycholesterol structure and properties. J Neuroendocrinol 24(1):93–101. doi: 10.1111/j.1365-2826.2011.02167.x PubMedGoogle Scholar
  92. 92.
    Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG, Love S (2008) Abeta-degrading enzymes in Alzheimer’s disease. Brain Pathol 18(2):240–252. doi: 10.1111/j.1750-3639.2008.00132.x PubMedGoogle Scholar
  93. 93.
    Bulloj A, Leal MC, Surace EI, Zhang X, Xu H, Ledesma MD, Castano EM, Morelli L (2008) Detergent resistant membrane-associated IDE in brain tissue and cultured cells: relevance to Abeta and insulin degradation. Mol Neurodegener 3:22. doi: 10.1186/1750-1326-3-22 PubMedCentralPubMedGoogle Scholar
  94. 94.
    Glebov K, Walter J (2012) Statins in unconventional secretion of insulin-degrading enzyme and degradation of the amyloid-beta peptide. Neuro-degenerative Dis 10(1–4):309–312. doi: 10.1159/000332595 Google Scholar
  95. 95.
    Kanemitsu H, Tomiyama T, Mori H (2003) Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci Lett 350(2):113–116PubMedGoogle Scholar
  96. 96.
    Sato K, Tanabe C, Yonemura Y, Watahiki H, Zhao Y, Yagishita S, Ebina M, Suo S, Futai E, Murata M, Ishiura S (2012) Localization of mature neprilysin in lipid rafts. J Neurosci Res 90(4):870–877. doi: 10.1002/jnr.22796 PubMedGoogle Scholar
  97. 97.
    Hicks DA, Nalivaeva NN, Turner AJ (2012) Lipid rafts and Alzheimer’s disease: protein-lipid interactions and perturbation of signaling. Front Physiol 3:189. doi: 10.3389/fphys.2012.00189 PubMedCentralPubMedGoogle Scholar
  98. 98.
    Wang J, Ohno-Matsui K, Morita I (2012) Cholesterol enhances amyloid beta deposition in mouse retina by modulating the activities of Abeta-regulating enzymes in retinal pigment epithelial cells. Biochem Biophys Res Commun 424(4):704–709. doi: 10.1016/j.bbrc.2012.07.014 PubMedGoogle Scholar
  99. 99.
    Crameri A, Biondi E, Kuehnle K, Lutjohann D, Thelen KM, Perga S, Dotti CG, Nitsch RM, Ledesma MD, Mohajeri MH (2006) The role of seladin-1/DHCR24 in cholesterol biosynthesis, APP processing and Abeta generation in vivo. EMBO J 25(2):432–443. doi: 10.1038/sj.emboj.7600938 PubMedCentralPubMedGoogle Scholar
  100. 100.
    Stefani M, Liguri G (2009) Cholesterol in Alzheimer’s disease: unresolved questions. Curr Alzheimer Res 6(1):15–29PubMedGoogle Scholar
  101. 101.
    Lee CY, Tse W, Smith JD, Landreth GE (2012) Apolipoprotein E promotes beta-amyloid trafficking and degradation by modulating microglial cholesterol levels. J Biol Chem 287(3):2032–2044. doi: 10.1074/jbc.M111.295451 PubMedCentralPubMedGoogle Scholar
  102. 102.
    Hermann DM, ElAli A (2012) The abluminal endothelial membrane in neurovascular remodeling in health and disease. Science Signaling 5 (236):re4. doi: 10.1126/scisignal.2002886
  103. 103.
    Kuhnke D, Jedlitschky G, Grube M, Krohn M, Jucker M, Mosyagin I, Cascorbi I, Walker LC, Kroemer HK, Warzok RW, Vogelgesang S (2007) MDR1-P-glycoprotein (ABCB1) mediates transport of Alzheimer’s amyloid-beta peptides—implications for the mechanisms of Abeta clearance at the blood-brain barrier. Brain Pathol 17(4):347–353. doi: 10.1111/j.1750-3639.2007.00075.x PubMedGoogle Scholar
  104. 104.
    Hartz AM, Miller DS, Bauer B (2010) Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-beta in a mouse model of Alzheimer’s disease. Mol Pharmacol 77(5):715–723. doi: 10.1124/mol.109.061754 PubMedCentralPubMedGoogle Scholar
  105. 105.
    Qosa H, Abuznait AH, Hill RA, Kaddoumi A (2012) Enhanced brain amyloid-beta clearance by rifampicin and caffeine as a possible protective mechanism against Alzheimer’s disease. J Alzheim Dis: JAD 31(1):151–165. doi: 10.3233/JAD-2012-120319 Google Scholar
  106. 106.
    Saint-Pol J, Candela P, Boucau MC, Fenart L, Gosselet F (2013) Oxysterols decrease apical-to-basolateral transport of Ass peptides via an ABCB1-mediated process in an in vitro blood-brain barrier model constituted of bovine brain capillary endothelial cells. Brain Res 1517:1–15. doi: 10.1016/j.brainres.2013.04.008 PubMedGoogle Scholar
  107. 107.
    May P, Woldt E, Matz RL, Boucher P (2007) The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann Med 39(3):219–228. doi: 10.1080/07853890701214881 PubMedGoogle Scholar
  108. 108.
    Deane R, Wu Z, Zlokovic BV (2004) RAGE (yin) versus LRP (yang) balance regulates Alzheimer amyloid beta-peptide clearance through transport across the blood-brain barrier. Stroke; J Cereb Circ 35(11 Suppl 1):2628–2631. doi: 10.1161/01.STR.0000143452.85382.d1 Google Scholar
  109. 109.
    Deane R, Wu Z, Sagare A, Davis J, Du Yan S, Hamm K, Xu F, Parisi M, LaRue B, Hu HW, Spijkers P, Guo H, Song X, Lenting PJ, Van Nostrand WE, Zlokovic BV (2004) LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron 43(3):333–344. doi: 10.1016/j.neuron.2004.07.017 PubMedGoogle Scholar
  110. 110.
    Fujiyoshi M, Tachikawa M, Ohtsuki S, Ito S, Uchida Y, Akanuma S, Kamiie J, Hashimoto T, Hosoya K, Iwatsubo T, Terasaki T (2011) Amyloid-beta peptide (1-40) elimination from cerebrospinal fluid involves low-density lipoprotein receptor-related protein 1 at the blood-cerebrospinal fluid barrier. J Neurochem 118(3):407–415. doi: 10.1111/j.1471-4159.2011.07311.x PubMedGoogle Scholar
  111. 111.
    Fester L, Zhou L, Butow A, Huber C, von Lossow R, Prange-Kiel J, Jarry H, Rune GM (2009) Cholesterol-promoted synaptogenesis requires the conversion of cholesterol to estradiol in the hippocampus. Hippocampus 19(8):692–705. doi: 10.1002/hipo.20548 PubMedGoogle Scholar
  112. 112.
    Selvais C, D'Auria L, Tyteca D, Perrot G, Lemoine P, Troeberg L, Dedieu S, Noel A, Nagase H, Henriet P, Courtoy PJ, Marbaix E, Emonard H (2011) Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. FASEB J: Off Publ Fed Am Soc Exp Biol 25(8):2770–2781. doi: 10.1096/fj.10-169508 Google Scholar
  113. 113.
    Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72(5):1858–1862PubMedCentralPubMedGoogle Scholar
  114. 114.
    Andreadis A, Brown WM, Kosik KS (1992) Structure and novel exons of the human tau gene. Biochemistry 31(43):10626–10633PubMedGoogle Scholar
  115. 115.
    Schoenfeld TA, Obar RA (1994) Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system. Int Rev Cytol 151:67–137PubMedGoogle Scholar
  116. 116.
    Chin SS, Goldman JE (1996) Glial inclusions in CNS degenerative diseases. J Neuropathol Exp Neurol 55(5):499–508PubMedGoogle Scholar
  117. 117.
    Arriagada PV, Growdon JH, Hedley-Whyte ET, Hyman BT (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42(3 Pt 1):631–639PubMedGoogle Scholar
  118. 118.
    Grudzien A, Shaw P, Weintraub S, Bigio E, Mash DC, Mesulam MM (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 28(3):327–335. doi: 10.1016/j.neurobiolaging.2006.02.007 PubMedGoogle Scholar
  119. 119.
    Stoothoff WH, Johnson GVW (2005) Tau phosphorylation: physiological and pathological consequences. Biochim Biophys Acta (BBA) - Mol Basis Dis 1739(2–3):280–297. doi: 10.1016/j.bbadis.2004.06.017 Google Scholar
  120. 120.
    Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM (1993) Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron 10(6):1089–1099PubMedGoogle Scholar
  121. 121.
    Brion JP, Smith C, Couck AM, Gallo JM, Anderton BH (1993) Developmental changes in tau phosphorylation: fetal tau is transiently phosphorylated in a manner similar to paired helical filament-tau characteristic of Alzheimer’s disease. J Neurochem 61(6):2071–2080PubMedGoogle Scholar
  122. 122.
    Brion JP, Octave JN, Couck AM (1994) Distribution of the phosphorylated microtubule-associated protein tau in developing cortical neurons. Neuroscience 63(3):895–909PubMedGoogle Scholar
  123. 123.
    Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C, Terro F (2013) Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 12(1):289–309. doi: 10.1016/j.arr.2012.06.003 PubMedGoogle Scholar
  124. 124.
    Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Terro F (2013) Tau protein phosphatases in Alzheimer’s disease: the leading role of PP2A. Ageing Res Rev 12(1):39–49. doi: 10.1016/j.arr.2012.06.008 PubMedGoogle Scholar
  125. 125.
    Bolognin S, Blanchard J, Wang X, Basurto-Islas G, Tung YC, Kohlbrenner E, Grundke-Iqbal I, Iqbal K (2012) An experimental rat model of sporadic Alzheimer’s disease and rescue of cognitive impairment with a neurotrophic peptide. Acta Neuropathol 123(1):133–151. doi: 10.1007/s00401-011-0908-x PubMedCentralPubMedGoogle Scholar
  126. 126.
    Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118(1):53–69. doi: 10.1007/s00401-009-0486-3 PubMedCentralPubMedGoogle Scholar
  127. 127.
    Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JB, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393(6686):702–705. doi: 10.1038/31508 PubMedGoogle Scholar
  128. 128.
    Zhang N, Yu JT, Yang Y, Yang J, Zhang W, Tan L (2011) Association analysis of GSK3B and MAPT polymorphisms with Alzheimer’s disease in Han Chinese. Brain Res 1391:147–153. doi: 10.1016/j.brainres.2011.03.052 PubMedGoogle Scholar
  129. 129.
    Kwok JB, Loy CT, Hamilton G, Lau E, Hallupp M, Williams J, Owen MJ, Broe GA, Tang N, Lam L, Powell JF, Lovestone S, Schofield PR (2008) Glycogen synthase kinase-3beta and tau genes interact in Alzheimer’s disease. Ann Neurol 64(4):446–454. doi: 10.1002/ana.21476 PubMedGoogle Scholar
  130. 130.
    Sun W, Jia J (2009) The +347 C promoter allele up-regulates MAPT expression and is associated with Alzheimer’s disease among the Chinese Han. Neurosci Lett 450(3):340–343. doi: 10.1016/j.neulet.2008.11.067 PubMedGoogle Scholar
  131. 131.
    Platt TL, Reeves VL, Murphy MP (2013) Transgenic models of Alzheimer’s disease: better utilization of existing models through viral transgenesis. Biochim Biophys Acta 1832(9):1437–1448. doi: 10.1016/j.bbadis.2013.04.017 PubMedCentralPubMedGoogle Scholar
  132. 132.
    Auer IA, Schmidt ML, Lee VM, Curry B, Suzuki K, Shin RW, Pentchev PG, Carstea ED, Trojanowski JQ (1995) Paired helical filament tau (PHFtau) in Niemann-Pick type C disease is similar to PHFtau in Alzheimer’s disease. Acta Neuropathol 90(6):547–551PubMedGoogle Scholar
  133. 133.
    Fan QW, Yu W, Senda T, Yanagisawa K, Michikawa M (2001) Cholesterol-dependent modulation of tau phosphorylation in cultured neurons. J Neurochem 76(2):391–400PubMedGoogle Scholar
  134. 134.
    Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiology of Aging 24(8):1063–1070PubMedGoogle Scholar
  135. 135.
    Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293(5534):1491–1495. doi: 10.1126/science.1062097 PubMedGoogle Scholar
  136. 136.
    Zou K, Kim D, Kakio A, Byun K, Gong JS, Kim J, Kim M, Sawamura N, Nishimoto S, Matsuzaki K, Lee B, Yanagisawa K, Michikawa M (2003) Amyloid beta-protein (Abeta) 1-40 protects neurons from damage induced by Abeta1-42 in culture and in rat brain. J Neurochem 87(3):609–619PubMedGoogle Scholar
  137. 137.
    Martins IC, Kuperstein I, Wilkinson H, Maes E, Vanbrabant M, Jonckheere W, Van Gelder P, Hartmann D, D'Hooge R, De Strooper B, Schymkowitz J, Rousseau F (2008) Lipids revert inert Abeta amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J 27(1):224–233. doi: 10.1038/sj.emboj.7601953 PubMedCentralPubMedGoogle Scholar
  138. 138.
    Ghribi O, Larsen B, Schrag M, Herman MM (2006) High cholesterol content in neurons increases BACE, beta-amyloid, and phosphorylated tau levels in rabbit hippocampus. Exp Neurol 200(2):460–467. doi: 10.1016/j.expneurol.2006.03.019 PubMedGoogle Scholar
  139. 139.
    Ghribi O, Prammonjago P, Herman MM, Spaulding NK, Savory J (2003) Abeta(1-42)-induced JNK and ERK activation in rabbit hippocampus is differentially regulated by lithium but is not involved in the phosphorylation of tau. Brain Res Mol Brain Res 119(2):201–206PubMedGoogle Scholar
  140. 140.
    Mudher A, Lovestone S (2002) Alzheimer’s disease—do tauists and baptists finally shake hands? Trends Neurosci 25(1):22–26PubMedGoogle Scholar
  141. 141.
    Fein JA, Sokolow S, Miller CA, Vinters HV, Yang F, Cole GM, Gylys KH (2008) Co-localization of amyloid beta and tau pathology in Alzheimer’s disease synaptosomes. Am J Pathol 172(6):1683–1692. doi: 10.2353/ajpath.2008.070829 PubMedCentralPubMedGoogle Scholar
  142. 142.
    Popp J, Meichsner S, Kolsch H, Lewczuk P, Maier W, Kornhuber J, Jessen F, Lutjohann D (2013) Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer’s disease. Biochem Pharmacol 86(1):37–42. doi: 10.1016/j.bcp.2012.12.007 PubMedGoogle Scholar
  143. 143.
    Leoni V, Shafaati M, Salomon A, Kivipelto M, Bjorkhem I, Wahlund LO (2006) Are the CSF levels of 24S-hydroxycholesterol a sensitive biomarker for mild cognitive impairment? Neurosci Lett 397(1–2):83–87. doi: 10.1016/j.neulet.2005.11.046 PubMedGoogle Scholar
  144. 144.
    Shafaati M, Solomon A, Kivipelto M, Bjorkhem I, Leoni V (2007) Levels of ApoE in cerebrospinal fluid are correlated with Tau and 24S-hydroxycholesterol in patients with cognitive disorders. Neurosci Lett 425(2):78–82. doi: 10.1016/j.neulet.2007.08.014 PubMedGoogle Scholar
  145. 145.
    Marwarha G, Dasari B, Prasanthi JRP, Schommer J, Ghribi O (2010) Leptin reduces the accumulation of A beta and phosphorylated tau induced by 27-hydroxycholesterol in rabbit organotypic slices. J Alzheim Dis 19(3):1007–1019. doi: 10.3233/jad-2010-1298 Google Scholar
  146. 146.
    Zannis VI, McPherson J, Goldberger G, Karathanasis SK, Breslow JL (1984) Synthesis, intracellular processing, and signal peptide of human apolipoprotein E. J Biol Chem 259(9):5495–5499PubMedGoogle Scholar
  147. 147.
    Lund-Katz S, Phillips MC (2010) High density lipoprotein structure-function and role in reverse cholesterol transport. Sub-cellular Biochem 51:183–227. doi: 10.1007/978-90-481-8622-8_7 Google Scholar
  148. 148.
    Leoni V, Solomon A, Kivipelto M (2010) Links between ApoE, brain cholesterol metabolism, tau and amyloid beta-peptide in patients with cognitive impairment. Biochem Soc Trans 38(4):1021–1025. doi: 10.1042/BST0381021 PubMedGoogle Scholar
  149. 149.
    Glockner F, Meske V, Lutjohann D, Ohm TG (2011) Dietary cholesterol and its effect on tau protein: a study in apolipoprotein E-deficient and P301L human tau mice. J Neuropathol Exp Neurol 70(4):292–301. doi: 10.1097/NEN.0b013e318212f185 PubMedGoogle Scholar
  150. 150.
    Rahman A, Akterin S, Flores-Morales A, Crisby M, Kivipelto M, Schultzberg M, Cedazo-Minguez A (2005) High cholesterol diet induces tau hyperphosphorylation in apolipoprotein E deficient mice. FEBS Lett 579(28):6411–6416. doi: 10.1016/j.febslet.2005.10.024 PubMedGoogle Scholar
  151. 151.
    Liu J, Zhu YS, Khan MA, Brunk E, Martin-Cook K, Weiner MF, Cullum CM, Lu H, Levine BD, Diaz-Arrastia R, Zhang R (2013) Global brain hypoperfusion and oxygenation in amnestic mild cognitive impairment. Alzheim Dement: J Alzheim Asso. doi: 10.1016/j.jalz.2013.04.507 Google Scholar
  152. 152.
    Hauser T, Schonknecht P, Thomann PA, Gerigk L, Schroder J, Henze R, Radbruch A, Essig M (2013) Regional cerebral perfusion alterations in patients with mild cognitive impairment and Alzheimer disease using dynamic susceptibility contrast MRI. Acad Radiol 20(6):705–711. doi: 10.1016/j.acra.2013.01.020 PubMedGoogle Scholar
  153. 153.
    Johnson NA, Jahng GH, Weiner MW, Miller BL, Chui HC, Jagust WJ, Gorno-Tempini ML, Schuff N (2005) Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 234(3):851–859. doi: 10.1148/radiol.2343040197 PubMedCentralPubMedGoogle Scholar
  154. 154.
    Bradley KM, O'Sullivan VT, Soper ND, Nagy Z, King EM, Smith AD, Shepstone BJ (2002) Cerebral perfusion SPET correlated with Braak pathological stage in Alzheimer’s disease. Brain: J Neurol 125(Pt 8):1772–1781Google Scholar
  155. 155.
    Zlokovic BV (2005) Neurovascular mechanisms of Alzheimer’s neurodegeneration. Trends Neurosci 28(4):202–208. doi: 10.1016/j.tins.2005.02.001 PubMedGoogle Scholar
  156. 156.
    Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR (1997) Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA :J Am Med Assoc 277(10):813–817Google Scholar
  157. 157.
    Rj OB (2011) Vascular dementia: atherosclerosis, cognition and Alzheimer’s disease. Curr Alzheimer Res 8(4):341–344Google Scholar
  158. 158.
    Jellinger KA (2002) Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm 109(5–6):813–836. doi: 10.1007/s007020200068 PubMedGoogle Scholar
  159. 159.
    Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE (1998) Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 153(3):725–733PubMedCentralPubMedGoogle Scholar
  160. 160.
    Herzig MC, Winkler DT, Burgermeister P, Pfeifer M, Kohler E, Schmidt SD, Danner S, Abramowski D, Sturchler-Pierrat C, Burki K, van Duinen SG, Maat-Schieman ML, Staufenbiel M, Mathews PM, Jucker M (2004) Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci 7(9):954–960. doi: 10.1038/nn1302 PubMedGoogle Scholar
  161. 161.
    Viswanathan A, Greenberg SM (2011) Cerebral amyloid angiopathy in the elderly. Ann Neurol 70(6):871–880. doi: 10.1002/ana.22516 PubMedCentralPubMedGoogle Scholar
  162. 162.
    Cordonnier C, van der Flier WM (2011) Brain microbleeds and Alzheimer’s disease: innocent observation or key player? Brain :J Neurol 134(Pt 2):335–344. doi: 10.1093/brain/awq321 Google Scholar
  163. 163.
    Staekenborg SS, Koedam EL, Henneman WJ, Stokman P, Barkhof F, Scheltens P, van der Flier WM (2009) Progression of mild cognitive impairment to dementia: contribution of cerebrovascular disease compared with medial temporal lobe atrophy. Stroke; J Cereb Circ 40(4):1269–1274. doi: 10.1161/STROKEAHA.108.531343 Google Scholar
  164. 164.
    Lewis TL, Cao D, Lu H, Mans RA, Su YR, Jungbauer L, Linton MF, Fazio S, LaDu MJ, Li L (2010) Overexpression of human apolipoprotein A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of Alzheimer disease. J Biol Chem 285(47):36958–36968. doi: 10.1074/jbc.M110.127829 PubMedCentralPubMedGoogle Scholar
  165. 165.
    Lefterov I, Fitz NF, Cronican AA, Fogg A, Lefterov P, Kodali R, Wetzel R, Koldamova R (2010) Apolipoprotein A-I deficiency increases cerebral amyloid angiopathy and cognitive deficits in APP/PS1DeltaE9 mice. J Biol Chem 285(47):36945–36957. doi: 10.1074/jbc.M110.127738 PubMedCentralPubMedGoogle Scholar
  166. 166.
    Thal DR, Papassotiropoulos A, Saido TC, Griffin WS, Mrak RE, Kolsch H, Del Tredici K, Attems J, Ghebremedhin E (2010) Capillary cerebral amyloid angiopathy identifies a distinct APOE epsilon4-associated subtype of sporadic Alzheimer’s disease. Acta Neuropathol 120(2):169–183. doi: 10.1007/s00401-010-0707-9 PubMedGoogle Scholar
  167. 167.
    Ruzali WA, Kehoe PG, Love S (2013) Influence of LRP-1 and apolipoprotein E on amyloid-beta uptake and toxicity to cerebrovascular smooth muscle cells. J Alzheim Dis: JAD 33(1):95–110. doi: 10.3233/JAD-2012-121336 Google Scholar
  168. 168.
    Bell RD, Deane R, Chow N, Long X, Sagare A, Singh I, Streb JW, Guo H, Rubio A, Van Nostrand W, Miano JM, Zlokovic BV (2009) SRF and myocardin regulate LRP-mediated amyloid-beta clearance in brain vascular cells. Nat Cell Biol 11(2):143–153. doi: 10.1038/ncb1819 PubMedCentralPubMedGoogle Scholar
  169. 169.
    Thanopoulou K, Fragkouli A, Stylianopoulou F, Georgopoulos S (2010) Scavenger receptor class B type I (SR-BI) regulates perivascular macrophages and modifies amyloid pathology in an Alzheimer mouse model. Proc Natl Acad Sci U S A 107(48):20816–20821. doi: 10.1073/pnas.1005888107 PubMedCentralPubMedGoogle Scholar
  170. 170.
    Olaisen B, Teisberg P, Gedde-Dahl T Jr (1982) The locus for apolipoprotein E (apoE) is linked to the complement component C3 (C3) locus on chromosome 19 in man. Hum Genet 62(3):233–236PubMedGoogle Scholar
  171. 171.
    Sadigh-Eteghad S, Talebi M, Farhoudi M (2012) Association of apolipoprotein E epsilon 4 allele with sporadic late onset Alzheimer’s disease. A meta-analysis. Neurosciences 17(4):321–326PubMedGoogle Scholar
  172. 172.
    Tan L, Yu JT, Zhang W, Wu ZC, Zhang Q, Liu QY, Wang W, Wang HF, Ma XY, Cui WZ (2013) Association of GWAS-linked loci with late-onset Alzheimer’s disease in a northern Han Chinese population. Alzheim Dement: J Alzheim Assoc 9(5):546–553. doi: 10.1016/j.jalz.2012.08.007 Google Scholar
  173. 173.
    Liu CC, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9(2):106–118. doi: 10.1038/nrneurol.2012.263 PubMedCentralPubMedGoogle Scholar
  174. 174.
    Kariv-Inbal Z, Yacobson S, Berkecz R, Peter M, Janaky T, Lutjohann D, Broersen LM, Hartmann T, Michaelson DM (2012) The isoform-specific pathological effects of apoE4 in vivo are prevented by a fish oil (DHA) diet and are modified by cholesterol. J Alzheim Dis: JAD 28(3):667–683. doi: 10.3233/JAD-2011-111265 Google Scholar
  175. 175.
    Stein EA (2003) The power of statins: aggressive lipid lowering. Clin Cardiol 26(4 Suppl 3):III25–III31PubMedGoogle Scholar
  176. 176.
    Cibickova L (2011) Statins and their influence on brain cholesterol. J Clin Lipidol 5(5):373–379. doi: 10.1016/j.jacl.2011.06.007 PubMedGoogle Scholar
  177. 177.
    Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, Runz H, Kuhl S, Bertsch T, von Bergmann K, Hennerici M, Beyreuther K, Hartmann T (2001) Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A 98(10):5856–5861. doi: 10.1073/pnas.081620098 PubMedCentralPubMedGoogle Scholar
  178. 178.
    Pedrini S, Carter TL, Prendergast G, Petanceska S, Ehrlich ME, Gandy S (2005) Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK. PLoS Med 2(1):e18. doi: 10.1371/journal.pmed.0020018 PubMedCentralPubMedGoogle Scholar
  179. 179.
    Ostrowski SM, Wilkinson BL, Golde TE, Landreth G (2007) Statins reduce amyloid-beta production through inhibition of protein isoprenylation. J Biol Chem 282(37):26832–26844. doi: 10.1074/jbc.M702640200 PubMedGoogle Scholar
  180. 180.
    Sagare AP, Deane R, Zlokovic BV (2012) Low-density lipoprotein receptor-related protein 1: a physiological Abeta homeostatic mechanism with multiple therapeutic opportunities. Pharmacol Ther 136(1):94–105. doi: 10.1016/j.pharmthera.2012.07.008 PubMedCentralPubMedGoogle Scholar
  181. 181.
    Metais C, Brennan K, Mably AJ, Scott M, Walsh DM, Herron CE (2013) Simvastatin treatment preserves synaptic plasticity in AbetaPPswe/PS1dE9 mice. J Alzheim Dis: JAD. doi: 10.3233/JAD-130257 Google Scholar
  182. 182.
    Matsuzawa A, Ichijo H (2008) Redox control of cell fate by MAP kinase: physiological roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta 1780(11):1325–1336. doi: 10.1016/j.bbagen.2007.12.011 PubMedGoogle Scholar
  183. 183.
    Zhao Z, Zhao S, Xu N, Yu C, Guan S, Liu X, Huang L, Liao W, Jia W (2010) Lovastatin improves neurological outcome after nucleus basalis magnocellularis lesion in rats. Neuroscience 167(3):954–963. doi: 10.1016/j.neuroscience.2010.02.054 PubMedGoogle Scholar
  184. 184.
    Tong XK, Lecrux C, Rosa-Neto P, Hamel E (2012) Age-dependent rescue by simvastatin of Alzheimer’s disease cerebrovascular and memory deficits. J Neurosci: Off J Soc Neuroscience 32(14):4705–4715. doi: 10.1523/JNEUROSCI.0169-12.2012 Google Scholar
  185. 185.
    Kou J, Song M, Pattanayak A, Lim JE, Yang J, Cao D, Li L, Fukuchi K (2012) Combined treatment of Abeta immunization with statin in a mouse model of Alzheimer’s disease. J Neuroimmunol 244(1–2):70–83. doi: 10.1016/j.jneuroim.2012.01.008 PubMedCentralPubMedGoogle Scholar
  186. 186.
    Hamano T, Yen SH, Gendron T, Ko LW, Kuriyama M (2012) Pitavastatin decreases tau levels via the inactivation of Rho/ROCK. Neurobiol Aging 33(10):2306–2320. doi: 10.1016/j.neurobiolaging.2011.10.020 PubMedGoogle Scholar
  187. 187.
    Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 57(10):1439–1443PubMedGoogle Scholar
  188. 188.
    Yaffe K, Barrett-Connor E, Lin F, Grady D (2002) Serum lipoprotein levels, statin use, and cognitive function in older women. Arch Neurol 59(3):378–384PubMedGoogle Scholar
  189. 189.
    Rodriguez EG, Dodge HH, Birzescu MA, Stoehr GP, Ganguli M (2002) Use of lipid-lowering drugs in older adults with and without dementia: a community-based epidemiological study. J Am Geriatr Soc 50(11):1852–1856PubMedGoogle Scholar
  190. 190.
    Rea TD, Breitner JC, Psaty BM, Fitzpatrick AL, Lopez OL, Newman AB, Hazzard WR, Zandi PP, Burke GL, Lyketsos CG, Bernick C, Kuller LH (2005) Statin use and the risk of incident dementia: the Cardiovascular Health Study. Arch Neurol 62(7):1047–1051. doi: 10.1001/archneur.62.7.1047 PubMedGoogle Scholar
  191. 191.
    Zandi PP, Sparks DL, Khachaturian AS, Tschanz J, Norton M, Steinberg M, Welsh-Bohmer KA, Breitner JC, Cache County Study i (2005) Do statins reduce risk of incident dementia and Alzheimer disease? The Cache County Study. Arch Gen Psychiatry 62(2):217–224. doi: 10.1001/archpsyc.62.2.217 PubMedGoogle Scholar
  192. 192.
    Padala KP, Padala PR, McNeilly DP, Geske JA, Sullivan DH, Potter JF (2012) The effect of HMG-CoA reductase inhibitors on cognition in patients with Alzheimer’s dementia: a prospective withdrawal and rechallenge pilot study. Am J Geriatr Pharmacother 10(5):296–302. doi: 10.1016/j.amjopharm.2012.08.002 PubMedGoogle Scholar
  193. 193.
    Hoglund K, Syversen S, Lewczuk P, Wallin A, Wiltfang J, Blennow K (2005) Statin treatment and a disease-specific pattern of beta-amyloid peptides in Alzheimer’s disease. Exp Brain Res Exp Hirnforschung Exp Cereb 164(2):205–214. doi: 10.1007/s00221-005-2243-8 Google Scholar
  194. 194.
    Hoglund K, Wiklund O, Vanderstichele H, Eikenberg O, Vanmechelen E, Blennow K (2004) Plasma levels of beta-amyloid(1-40), beta-amyloid(1-42), and total beta-amyloid remain unaffected in adult patients with hypercholesterolemia after treatment with statins. Arch Neurol 61(3):333–337. doi: 10.1001/archneur.61.3.333 PubMedGoogle Scholar
  195. 195.
    Serrano-Pozo A, Vega GL, Lutjohann D, Locascio JJ, Tennis MK, Deng A, Atri A, Hyman BT, Irizarry MC, Growdon JH (2010) Effects of simvastatin on cholesterol metabolism and Alzheimer disease biomarkers. Alzheim Dis Assoc Disord 24(3):220–226. doi: 10.1097/WAD.0b013e3181d61fea Google Scholar
  196. 196.
    Carlsson CM, Gleason CE, Hess TM, Moreland KA, Blazel HM, Koscik RL, Schreiber NT, Johnson SC, Atwood CS, Puglielli L, Hermann BP, McBride PE, Stein JH, Sager MA, Asthana S (2008) Effects of simvastatin on cerebrospinal fluid biomarkers and cognition in middle-aged adults at risk for Alzheimer’s disease. J Alzheim Dis: JAD 13(2):187–197Google Scholar
  197. 197.
    Sparks DL, Petanceska S, Sabbagh M, Connor D, Soares H, Adler C, Lopez J, Ziolkowski C, Lochhead J, Browne P (2005) Cholesterol, copper and Abeta in controls, MCI, AD and the AD cholesterol-lowering treatment trial (ADCLT). Curr Alzheimer Res 2(5):527–539PubMedGoogle Scholar
  198. 198.
    Wolozin B, Wang SW, Li NC, Lee A, Lee TA, Kazis LE (2007) Simvastatin is associated with a reduced incidence of dementia and Parkinson’s disease. BMC Med 5:20. doi: 10.1186/1741-7015-5-20 PubMedCentralPubMedGoogle Scholar
  199. 199.
    Sparks DL, Connor DJ, Sabbagh MN, Petersen RB, Lopez J, Browne P (2006) Circulating cholesterol levels, apolipoprotein E genotype and dementia severity influence the benefit of atorvastatin treatment in Alzheimer’s disease: results of the Alzheimer’s disease Cholesterol-Lowering Treatment (ADCLT) trial. Acta Neurol Scand Suppl 185:3–7. doi: 10.1111/j.1600-0404.2006.00690.x PubMedGoogle Scholar
  200. 200.
    Sparks DL, Sabbagh MN, Connor DJ, Lopez J, Launer LJ, Browne P, Wasser D, Johnson-Traver S, Lochhead J, Ziolwolski C (2005) Atorvastatin for the treatment of mild to moderate Alzheimer disease: preliminary results. Arch Neurol 62(5):753–757. doi: 10.1001/archneur.62.5.753 PubMedGoogle Scholar
  201. 201.
    Carlsson CM, Xu G, Wen Z, Barnet JH, Blazel HM, Chappell RJ, Stein JH, Asthana S, Sager MA, Alsop DC, Rowley HA, Fain SB, Johnson SC (2012) Effects of atorvastatin on cerebral blood flow in middle-aged adults at risk for Alzheimer’s disease: a pilot study. Curr Alzheimer Res 9(8):990–997PubMedCentralPubMedGoogle Scholar
  202. 202.
    Riekse RG, Li G, Petrie EC, Leverenz JB, Vavrek D, Vuletic S, Albers JJ, Montine TJ, Lee VM, Lee M, Seubert P, Galasko D, Schellenberg GD, Hazzard WR, Peskind ER (2006) Effect of statins on Alzheimer’s disease biomarkers in cerebrospinal fluid. J Alzheim Dis: JAD 10(4):399–406Google Scholar
  203. 203.
    Chang TY, Chang CC, Cheng D (1997) Acyl-coenzyme A:cholesterol acyltransferase. Annu Rev Biochem 66:613–638. doi: 10.1146/annurev.biochem.66.1.613 PubMedGoogle Scholar
  204. 204.
    Bhattacharyya R, Kovacs DM (2010) ACAT inhibition and amyloid beta reduction. Biochim Biophys Acta 1801(8):960–965. doi: 10.1016/j.bbalip.2010.04.003 PubMedCentralPubMedGoogle Scholar
  205. 205.
    Puglielli L, Konopka G, Pack-Chung E, Ingano LA, Berezovska O, Hyman BT, Chang TY, Tanzi RE, Kovacs DM (2001) Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol 3(10):905–912. doi: 10.1038/ncb1001-905 PubMedGoogle Scholar
  206. 206.
    Huttunen HJ, Havas D, Peach C, Barren C, Duller S, Xia W, Frosch MP, Hutter-Paier B, Windisch M, Kovacs DM (2010) The acyl-coenzyme A: cholesterol acyltransferase inhibitor CI-1011 reverses diffuse brain amyloid pathology in aged amyloid precursor protein transgenic mice. J Neuropathol Exp Neurol 69(8):777–788. doi: 10.1097/NEN.0b013e3181e77ed9 PubMedCentralPubMedGoogle Scholar
  207. 207.
    Hutter-Paier B, Huttunen HJ, Puglielli L, Eckman CB, Kim DY, Hofmeister A, Moir RD, Domnitz SB, Frosch MP, Windisch M, Kovacs DM (2004) The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer’s disease. Neuron 44(2):227–238. doi: 10.1016/j.neuron.2004.08.043 PubMedGoogle Scholar
  208. 208.
    Bryleva EY, Rogers MA, Chang CC, Buen F, Harris BT, Rousselet E, Seidah NG, Oddo S, LaFerla FM, Spencer TA, Hickey WF, Chang TY (2010) ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. Proc Natl Acad Sci U S A 107(7):3081–3086. doi: 10.1073/pnas.0913828107 PubMedCentralPubMedGoogle Scholar
  209. 209.
    Huttunen HJ, Peach C, Bhattacharyya R, Barren C, Pettingell W, Hutter-Paier B, Windisch M, Berezovska O, Kovacs DM (2009) Inhibition of acyl-coenzyme A: cholesterol acyl transferase modulates amyloid precursor protein trafficking in the early secretory pathway. FASEB J: Off Publ Fed Am Soc Exp Biol 23(11):3819–3828. doi: 10.1096/fj.09-134999 Google Scholar
  210. 210.
    Bhattacharyya R, Barren C, Kovacs DM (2013) Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J Neurosci: Off J Soc Neurosci 33(27):11169–11183. doi: 10.1523/JNEUROSCI.4704-12.2013 Google Scholar
  211. 211.
    Apfel R, Benbrook D, Lernhardt E, Ortiz MA, Salbert G, Pfahl M (1994) A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily. Mol Cell Biol 14(10):7025–7035PubMedCentralPubMedGoogle Scholar
  212. 212.
    Whitney KD, Watson MA, Collins JL, Benson WG, Stone TM, Numerick MJ, Tippin TK, Wilson JG, Winegar DA, Kliewer SA (2002) Regulation of cholesterol homeostasis by the liver X receptors in the central nervous system. Mol Endocrinol 16(6):1378–1385. doi: 10.1210/mend.16.6.0835 PubMedGoogle Scholar
  213. 213.
    Fan J, Donkin J, Wellington C (2009) Greasing the wheels of Abeta clearance in Alzheimer’s disease: the role of lipids and apolipoprotein E. BioFactors 35(3):239–248. doi: 10.1002/biof.37 PubMedGoogle Scholar
  214. 214.
    Namjoshi DR, Martin G, Donkin J, Wilkinson A, Stukas S, Fan J, Carr M, Tabarestani S, Wuerth K, Hancock RE, Wellington CL (2013) The liver X receptor agonist GW3965 improves recovery from mild repetitive traumatic brain injury in mice partly through apolipoprotein E. PLoS One 8(1):e53529. doi: 10.1371/journal.pone.0053529 PubMedCentralPubMedGoogle Scholar
  215. 215.
    Wang Q, Wang S, Shi Y, Yao M, Hou L, Jiang L (2014) Reduction of liver X receptor beta expression in primary rat neurons by antisense oligodeoxynucleotides decreases secreted amyloid beta levels. Neurosci Lett. doi: 10.1016/j.neulet.2013.12.055 Google Scholar
  216. 216.
    Cui W, Sun Y, Wang Z, Xu C, Xu L, Wang F, Chen Z, Peng Y, Li R (2011) Activation of liver X receptor decreases BACE1 expression and activity by reducing membrane cholesterol levels. Neurochem Res 36(10):1910–1921. doi: 10.1007/s11064-011-0513-3 PubMedGoogle Scholar
  217. 217.
    Wang L, Zhang X, Lu Y, Tian M, Li Y (2014) Dynamic changes of Apo A1 mediated by LXR/RXR/ABCA1 pathway in brains of the aging rats with cerebral hypoperfusion. Brain Res Bull 100:84–92. doi: 10.1016/j.brainresbull.2013.11.004 PubMedGoogle Scholar
  218. 218.
    Stukas S, May S, Wilkinson A, Chan J, Donkin J, Wellington CL (2012) The LXR agonist GW3965 increases apoA-I protein levels in the central nervous system independent of ABCA1. Biochim Biophys Acta 1821(3):536–546. doi: 10.1016/j.bbalip.2011.08.014 PubMedGoogle Scholar
  219. 219.
    Riddell DR, Zhou H, Comery TA, Kouranova E, Lo CF, Warwick HK, Ring RH, Kirksey Y, Aschmies S, Xu J, Kubek K, Hirst WD, Gonzales C, Chen Y, Murphy E, Leonard S, Vasylyev D, Oganesian A, Martone RL, Pangalos MN, Reinhart PH, Jacobsen JS (2007) The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer’s disease. Mol Cell Neurosci 34(4):621–628. doi: 10.1016/j.mcn.2007.01.011 PubMedGoogle Scholar
  220. 220.
    Aicardi G (2013) New hope from an old drug: fighting Alzheimer’s disease with the cancer drug bexarotene (targretin)? Rejuvenation Res 16(6):524–528. doi: 10.1089/rej.2013.1497 PubMedGoogle Scholar
  221. 221.
    Lefebvre P, Benomar Y, Staels B (2010) Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol Metab: TEM 21(11):676–683. doi: 10.1016/j.tem.2010.06.009 PubMedGoogle Scholar
  222. 222.
    Cramer PE, Cirrito JR, Wesson DW, Lee CY, Karlo JC, Zinn AE, Casali BT, Restivo JL, Goebel WD, James MJ, Brunden KR, Wilson DA, Landreth GE (2012) ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science 335(6075):1503–1506. doi: 10.1126/science.1217697 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Neurology, Qingdao Municipal Hospital, School of MedicineQingdao UniversityQingdaoChina

Personalised recommendations