Skip to main content

Advertisement

Log in

Interconnection Between Brain and Retinal Neurodegenerations

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The eye is a special sensory organ, which is basically an extension of the brain. Both are derived from neural tube and consist of neurons. Therefore, diseases of both the brain and eye should have some similarity. Neurodegenerative disorders like Alzheimer’s disease (AD) is the major cause of dementia in the world. Amyloid deposition in the cerebral cortex and hippocampal region is the basic pathology in AD. But along with it, there are various changes that take place in the eye, i.e., abnormal pupillary reaction, decreased vision, decreased contrast sensitivity, visual field changes, loss of retinal ganglionic cells and retinal fiber layer, peripapillary atrophy, increased cup-disk ratio, retinal thinning, tortuosity of blood vessels, and deposition of Aβ-like substance in the retina. And these changes are present in the early part of the disease when only mild cognitive impairment is there. As the brain is covered by a hard bony skull which makes it difficult to directly visualize the changes occurring in the brain at molecular levels, finer details of disease progression are not available with us. But the eye is the window of the brain; with advanced modern techniques, we can directly visualize the changes in the retina at a very fine level. Therefore, by depicting neurodegenerative changes in the eye, we can diagnose and manage AD at very early stages. Along with it, retinal neurodegenerations like glaucoma and age-related macular degeneration (ARMD) are the major cause of loss of vision, and still, there are no effective treatment modalities for these blinding conditions. So if we can understand its pathogenesis and progression by correlating with brain neurodegenerations, we can come up with a better therapy for glaucoma and ARMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barber AG (2003) A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry 27:283–290

    Article  CAS  PubMed  Google Scholar 

  2. Asnaghi V, Gerhardinger C, Hoehn T, Adeboje A, Lorenzi M (2003) A role of the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes 52:506–511

    Article  CAS  PubMed  Google Scholar 

  3. Abu-El-Asar AM, Dralands L, Missoten L, Al-Jadaan IA, Geboes K (2004) Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophthalmol Vis Sci 45:2760–2766

    Article  Google Scholar 

  4. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    Article  CAS  PubMed  Google Scholar 

  5. Alzheimer’s Association (2005) Newest estimate of worldwide prevalence of Alzheimer’s disease = 26.6 million 2006. In: The 2nd Alzheimer’s Association international conference on prevention of dementia, Washington DC

  6. Davatzikos C, Resnick SM, Wu X, Parmpi P, Clark CM (2008) Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. NeuroImage 41(4):1199–1205

    Article  PubMed Central  PubMed  Google Scholar 

  7. Jagust WJ, Seab JP, Huesman RH, Valk PE, Mathis CA, Reed BR et al (1991) Diminished glucose transport in Alzheimer’s disease: dynamic PET studies. J Cereb Blood Flow Metab 11:323–330

    Article  CAS  PubMed  Google Scholar 

  8. Bouwman FH, Schoonenboom NS, Verwey NA, van Elk EJ, Kok A, Blankenstein MA et al (2009) CSF biomarker levels in early and late onset Alzheimer’s disease. Neurobiol Aging 30(12):1895–1901

    Article  CAS  PubMed  Google Scholar 

  9. Diniz BS, Pinto JA Jr, Forlenza OV (2007) Do CSF total tau, phosphorylated tau, and beta-amyloid 42 help to predict progression of mild cognitive impairment to Alzheimer’s disease? A systematic review and meta-analysis of the literature. World J Biol Psychiatry 1–119(3):172–182

    Google Scholar 

  10. Scinto LF, Daffner KR, Dressler D, Ransil BI, Rentz D, Weintraub S et al (1994) A potential noninvasive neurobiological test for Alzheimer’s disease. Science (New York, NY) 266:1051–1054

    Article  CAS  Google Scholar 

  11. Gomez-Tortosa E, del Barrio A, Jimenez-Alfaro I (1996) Pupil response to tropicamide in Alzheimer’s disease and other neurodegenerative disorders. Acta Neurol Scand 94:104–109

    Article  CAS  PubMed  Google Scholar 

  12. Higuchi S, Matsushita S, Hasegawa Y, Muramatsu T, Arai H (1997) Pupillary response to tropicamide in Japanese patients with alcoholic dementia, Alzheimer’s disease, and vascular dementia. Exp Neurol 144:199–201

    Article  CAS  PubMed  Google Scholar 

  13. Iijima A, Haida M, Ishikawa N, Ueno A, Minamitani H, Shinohara Y (2003) Re-evaluation of tropicamide in the pupillary response test for Alzheimer’s disease. Neurobiol Aging 24:789–796

    Article  CAS  PubMed  Google Scholar 

  14. Scinto LF (2008) Pupillary cholinergic hypersensitivity predicts cognitive decline in community dwelling elders. Neurobiol Aging 29:222–230

    Article  CAS  PubMed  Google Scholar 

  15. Fotiou DF, Brozou CG, Haidich AB, Tsiptsios D, Nakou M, Kabitsi A et al (2007) Pupil reaction to light in Alzheimer’s disease: evaluation of pupil size changes and mobility. Aging Clin Exp Res 19:364–371

    Article  PubMed  Google Scholar 

  16. Fotiou F, Fountoulakis KN, Tsolaki M, Goulas A, Palikaras A (2000) Changes in pupil reaction to light in Alzheimer’s disease patients: a preliminary report. Int J Psychophysiol 37:111–120

    Article  CAS  PubMed  Google Scholar 

  17. Goldstein LE, Muffat JA, Cherny RA, Moir RD, Ericsson MH, Huang X et al (2003) Cytosolic beta-amyloid deposition and supranuclear cataracts in lenses from people with Alzheimer’s disease. Lancet 361:1258–1265

    Article  CAS  PubMed  Google Scholar 

  18. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K et al (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    Article  CAS  PubMed  Google Scholar 

  19. Moncaster JA, Moir RD, Mocofanescu A, Burton M, Fu L, Xu W, et al. (2008) In vivo early detection of Alzheimer’s disease-linked ab peptide accumulation in the lens using quasi elastic light scattering ARVO

  20. Frederikse PH, Garland D, Zigler JS Jr, Piatigorsky J (1994) Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (Abeta) in mammalian lenses, and Abeta has toxic effects on lens epithelial cells. J Biol Chem 271:10169–10174

    Google Scholar 

  21. Li G, Percontino L, Sun Q, Qazi AS, Frederikse PH (2003) Beta-amyloid secretases and beta-amyloid degrading enzyme expression in lens. Mol Vis 9:179–183

    CAS  PubMed  Google Scholar 

  22. Sadun AA, Borchert M, DeVita E, Hinton DR, Bassi CJ (1987) Assessment of visual impairment in patients with Alzheimer’s disease. Am J Ophthalmol 104:113–120

    Article  CAS  PubMed  Google Scholar 

  23. Katz B, Rimmer S (1989) Ophthalmologic manifestations of Alzheimer’s disease. Surv Ophthalmol 34:31–43

    Article  CAS  PubMed  Google Scholar 

  24. Cronin-Golomb A, Corkin S, Rizzo JF, Cohen J, Growdon JH, Banks KS (1991) Visual dysfunction in Alzheimer’s disease: relation to normal aging. Ann Neurol 29:41–52

    Article  CAS  PubMed  Google Scholar 

  25. Mendez MF, Cherrier MM, Meadows RS (1996) Depth perception in Alzheimer’s disease. Percept Mot Skills 83:987–995

    Article  CAS  PubMed  Google Scholar 

  26. Hinton DR, Sadun AA, Blanks JC, Miller CA (1986) Optic-nerve degeneration in Alzheimer’s disease. N Engl J Med 315:485–487

    Article  CAS  PubMed  Google Scholar 

  27. Livingstone MS, Hubel DH (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 7:3416–3468

    CAS  PubMed  Google Scholar 

  28. Jackson GR, Owsley C (2003) Visual dysfunction, neurodegenerative diseases, and aging. Neurol Clin 21:709–728

    Article  PubMed  Google Scholar 

  29. Sadun AA, Bassi CJ (1990) Optic nerve damage in Alzheimer’s disease. Ophthalmology 97:9–17

    Article  CAS  PubMed  Google Scholar 

  30. Blanks JC, Hinton DR, Sadun AA, Miller CA (1989) Retinal ganglion cell degeneration in Alzheimer’s disease. Brain Res 501:364–372

    Article  CAS  PubMed  Google Scholar 

  31. Blanks JC, Schmidt SY, Torigoe Y, Porrello KV, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer’s disease. II. Regional neuron loss and glial changes in GCL. Neurobiol Aging 17:385–395

    Article  CAS  PubMed  Google Scholar 

  32. Blanks JC, Torigoe Y, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging 17:377–384

    Article  CAS  PubMed  Google Scholar 

  33. Loffler KU, Edward DP, Tso MO (1995) Immunoreactivity against tau, amyloid precursor protein, and beta-amyloid in the human retina. Invest Ophthalmol Vis Sci 36:24–31

    CAS  PubMed  Google Scholar 

  34. Perez SE, Lumayag S, Kovacs B, Mufson EJ, Xu S (2009) {beta}-amyloid deposition and functional impairment in the retina of the APPswe/PS1{Delta}E9 transgenic mouse model of Alzheimer’s disease. Invest Ophthalmol Vis Sci 50(2):793–800

    Article  PubMed Central  PubMed  Google Scholar 

  35. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W et al (1991) Optical coherence tomography. Science (New York, NY) 254:1178–1181

    Article  CAS  Google Scholar 

  36. Iseri PK, Altinas O, Tokay T, Yuksel N (2006) Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuroophthalmol 26:18–24

    Article  PubMed  Google Scholar 

  37. Parisi V (2003) Correlation between morphological and functional retinal impairment in patients affected by ocular hypertension, glaucoma, demyelinating optic neuritis and Alzheimer’s disease. Semin Ophthalmol 18:50–57

    PubMed  Google Scholar 

  38. Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci MG, Pierelli F (2001) Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol 112:1860–1867

    Article  CAS  PubMed  Google Scholar 

  39. Berisha F, Feke GT, Trempe CL, McMeel JW, Schepens CL (2007) Retinal abnormalities in early Alzheimer’s disease. Invest Ophthalmol Vis Sci 48:2285–2289

    Article  PubMed  Google Scholar 

  40. Katz B, Rimmer S, Iragui V, Katzman R (1989) Abnormal pattern electroretinogram in Alzheimer’s disease: evidence for retinal ganglion cell degeneration? Ann Neurol 26:221–225

    Article  CAS  PubMed  Google Scholar 

  41. Hollander H, Bisti S, Maffei L, Hebel R (1996) Electroretinographic responses and retrograde changes of retinal morphology after intracranial optic nerve section. A quantitative analysis in the cat. Exp Brain Res Exp Hirnforsch 55:483–493

    Google Scholar 

  42. Danesh-Meyer HV, Birch H, Ku JY, Carroll S, Gamble G (2006) Reduction of optic nerve fibers in patients with Alzheimer disease identified by laser imaging. Neurology 67:1852–1854

    Article  CAS  PubMed  Google Scholar 

  43. Tsai CS, Ritch R, Schwartz B, Lee SS, Miller NR, Chi T et al (1991) Optic nerve head and nerve fiber layer in Alzheimer’s disease. Arch Ophthalmol 109:199–204

    Article  CAS  PubMed  Google Scholar 

  44. Ruitenberg A, den Heijer T, Bakker SL, van Swieten JC, Koudstaal PJ, Hofman A et al (2005) Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol 57:789–794

    Article  PubMed  Google Scholar 

  45. Cordeiro MF, Guo L, Luong V, Harding G, Wang W, Jones HE et al (2004) Real-time imaging of single nerve cell apoptosis in retinal neurodegeneration. Proc Natl Acad Sci U S A 101:13352–13356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Guo L, Salt TE, Luong V, Wood N, Cheung W, Maass A et al (2007) Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci U S A 104:13444–13449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Oliver JE, Hattenhauer MG, Herman D, Hodge DO, Kennedy R, Fang-Yen M et al (2002) Blindness and glaucoma: a comparison of patients progressing to blindness from glaucoma with patients maintaining vision. Am J Ophthalmol 133:764–772

    Article  PubMed  Google Scholar 

  48. Collaborative Normal-Tension Glaucoma Study Group T (1998) Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol 126:487–497

    Article  Google Scholar 

  49. Bayer AU, Ferrari F, Erb C (2002) High occurrence rate of glaucoma among patients with Alzheimer’s disease. Eur Neurol 47:165–168

    Article  CAS  PubMed  Google Scholar 

  50. Bayer AU, Keller ON, Ferrari F, Maag KP (2002) Association of glaucoma with neurodegenerative diseases with apoptotic cell death: Alzheimer’s disease and Parkinson’s disease. Am J Ophthalmol 133:135–137

    Article  PubMed  Google Scholar 

  51. Tamura H, Kawakami H, Kanamoto T, Kato T, Yokoyama T, Sasaki K et al (2006) High frequency of open-angle glaucoma in Japanese patients with Alzheimer’s disease. J Neurol Sci 246:79–83

    Article  PubMed  Google Scholar 

  52. Bayer AU, Ferrari F (2002) Severe progression of glaucomatous optic neuropathy in patients with Alzheimer’s disease. Eye 16:209–212

    Article  CAS  PubMed  Google Scholar 

  53. Yoneda S, Hara H, Hirata A, Fukushima M, Inomata Y, Tanihara H (2005) Vitreous fluid levels of beta-amyloid((1-42)) and tau in patients with retinal diseases. Jpn J Ophthalmol 49:106–108

    Article  CAS  PubMed  Google Scholar 

  54. Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613

    Article  CAS  PubMed  Google Scholar 

  55. Strozyk D, Blennow K, White LR, Launer LJ (2003) CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60:652–656

    Article  CAS  PubMed  Google Scholar 

  56. Motter R, Vigo-Pelfrey C, Kholodenko D, Barbour R, Johnson-Wood K, Galasko D et al (1995) Reduction of beta-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol 38:643–648

    Article  CAS  PubMed  Google Scholar 

  57. McKinnon SJ, Lehman DM, Kerrigan-Baumrind LA, Merges CA, Pease ME, Kerrigan DF et al (2002) Caspase activation and amyloid precursor protein cleavage in rat ocular hypertension. Invest Ophthalmol Vis Sci 43:1077–1087

    PubMed  Google Scholar 

  58. Gupta N, Fong J, Ang LC, Yucel YH (2008) Retinal tau pathology in human glaucomas. Can J Ophthalmol 43:53–60

    Article  PubMed  Google Scholar 

  59. Crawford ML, Harwerth RS, Smith EL 3rd, Mills S, Ewing B (2001) Experimental glaucoma in primates: changes in cytochrome oxidase blobs in V1 cortex. Invest Ophthalmol Vis Sci 42:358–364

    CAS  PubMed  Google Scholar 

  60. Crawford ML, Harwerth RS, Smith EL 3rd, Shen F, Carter-Dawson L (2000) Glaucoma in primates: cytochrome oxidase reactivity in parvo- and magnocellular pathways. Invest Ophthalmol Vis Sci 41:1791–1802

    CAS  PubMed  Google Scholar 

  61. Yucel YH, Zhang Q, Gupta N, Kaufman PL, Weinreb RN (2000) Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. Arch Ophthalmol 118:378–384

    Article  CAS  PubMed  Google Scholar 

  62. Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N (2001) Atrophy of relay neurons in magno- and parvocellular layers in the lateral geniculate nucleus in experimental glaucoma. Invest Ophthalmol Vis Sci 42:3216–3222

    CAS  PubMed  Google Scholar 

  63. Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N (2003) Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 22:465–481

    Article  PubMed  Google Scholar 

  64. Duncan RO, Sample PA, Weinreb RN, Bowd C, Zangwill LM (2007) Retinotopic organization of primary visual cortex in glaucoma: a method for comparing cortical function with damage to the optic disk. Invest Ophthalmol Vis Sci 48:733–744

    Article  PubMed  Google Scholar 

  65. Friedman DS, O’Colmain BJ, Munoz B et al (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122:564–572

    Article  PubMed  Google Scholar 

  66. Klein R, Peto T, Bird A, Vannewkirk MR (2004) The epidemiology of age-related macular degeneration. Am J Ophthalmol 137:486–495

    Article  PubMed  Google Scholar 

  67. Sparrow JR (2010) Bisretinoids of RPE lipofuscin: trigger for complement activation in age-related macular degeneration. Adv Exp Med Biol 703:63–74

    Article  CAS  PubMed  Google Scholar 

  68. Atwood CS, Martins RN, Smith MA, Perry G (2002) Senile plaque composition and posttranslational modification of amyloidbeta peptide and associated proteins. Peptides 23:1343–1350

    Article  CAS  PubMed  Google Scholar 

  69. Hoh Kam J, Lenassi E, Jeffery G (2010) Viewing ageing eyes: diverse sites of amyloid Beta accumulation in the ageing mouse retina and the up-regulation of macrophages. PLoS One 5, doi:10.1371/journal.pone.0013127

  70. Dentchev T, Milam AH, Lee VM, Trojanowski JQ, Dunaief JL (2003) Amyloid-beta is found in drusen from some age-related macular degeneration retinas, but not in drusen from normal retinas. Mol Vis 9:184–190

    CAS  PubMed  Google Scholar 

  71. Johnson LV, Leitner WP, Rivest AJ, Staples MK, Radeke MJ, Anderson DH (2002) The Alzheimer’s A beta-peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration. Proc Natl Acad Sci U S A 99:11830–11835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Yoshida T, Ohno-Matsui K, Ichinose S et al (2005) The potential role of amyloid beta in the pathogenesis of age-related macular degeneration. J Clin Invest 115:2793–2800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Seddon JM, Ajani UA, Mitchell BD (1997) Familial aggregation of age-related maculopathy. Am J Ophthalmol 123:199–206

    Article  CAS  PubMed  Google Scholar 

  74. Souied EH, Benlian P, Amouyel P, Feingold J, Lagarde JP, Munnich A et al (1998) The epsilon4 allele of the apolipoprotein E gene as a potential protective factor for exudative age-related macular degeneration. Am J Ophthalmol 125:353–359

    Article  CAS  PubMed  Google Scholar 

  75. Russ MO, Cleff U, Lanfermann H, Schalnus R, Enzensberger W, Kleinschmidt A (2002) Functional magnetic resonance imaging in acute unilateral optic neuritis. J Neuroimaging 12:339–350

    Article  PubMed  Google Scholar 

  76. Klaver CC, Kliffen M, van Duijn CM, Hofman A, Cruts M, Grobbee DE et al (1998) Genetic association of apolipoprotein E with age-related macular degeneration. Am J Hum Genet 63:200–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Baird PN, Guida E, Chu DT, Vu HT, Guymer RH (2004) The epsilon2 and epsilon4 alleles of the apolipoprotein gene are associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 45:1311–1315

    Article  PubMed  Google Scholar 

  78. Cedazo-Minguez A, Apolipoprotein E (2007) Alzheimer’s disease: molecular mechanisms and therapeutic opportunities. J Cell Mol Med 11:1227–1238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Wong TY, Shankar A, Klein R et al (2006) Apolipoprotein E gene and early age-related maculopathy: the Atherosclerosis Riskin Communities Study. Ophthalmology 113:255–259

    Article  PubMed  Google Scholar 

  80. Anderson DH, Radeke MJ, Gallo NB et al (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29:95–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Edwards AO, Ritter R III, Abel KJ, Manning A, Panhuysen C, Farrer LA (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424

    Article  CAS  PubMed  Google Scholar 

  82. Johnson LV, Leitner WP, Staples MK, Anderson DH (2001) Complement activation and inflammatory processes in drusen formation and age related macular degeneration. Exp Eye Res 73:887–896

    Article  CAS  PubMed  Google Scholar 

  83. Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14:835–846

    CAS  PubMed  Google Scholar 

  84. Umeda S, Suzuki MT, Okamoto H et al (2005) Molecular composition of drusen and possible involvement of anti-retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (Macaca fascicularis). FASEB J 19:1683–1685

    CAS  PubMed  Google Scholar 

  85. Eikelenboom P, Stam FC (1982) Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study. Acta Neuropathol 57:239–242

    Article  CAS  PubMed  Google Scholar 

  86. Shen Y, Sullivan T, Lee CM, Meri S, Shiosaki K, Lin CW (1998) Induced expression of neuronal membrane attack complex and cell death by Alzheimer’s beta-amyloid peptide. Brain Res 796:187–197

    Article  CAS  PubMed  Google Scholar 

  87. Strohmeyer R, Shen Y, Rogers J (2000) Detection of complement alternative pathway mRNA and proteins in the Alzheimer’s disease brain. Brain Res Mol Brain Res 81:7–18

    Article  CAS  PubMed  Google Scholar 

  88. Yasojima K, Schwab C, McGeer EG, McGeer PL (1999) Up-regulated production and activation of the complement system in Alzheimer’s disease brain. Am J Pathol 154:927–936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Jindal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jindal, V. Interconnection Between Brain and Retinal Neurodegenerations. Mol Neurobiol 51, 885–892 (2015). https://doi.org/10.1007/s12035-014-8733-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8733-6

Keywords

Navigation