Molecular Neurobiology

, Volume 51, Issue 2, pp 791–807 | Cite as

Differentiating neurons derived from human umbilical cord blood stem cells work as a test system for developmental neurotoxicity

  • Mahendra P. Kashyap
  • Vivek Kumar
  • Abhishek K. Singh
  • Vinay K. Tripathi
  • Sadaf Jahan
  • Ankita Pandey
  • Ritesh K. Srivastava
  • Vinay K. Khanna
  • Aditya B. PantEmail author


Differentiating neuronal cells derived from human umbilical cord blood stem cells have been used as an in vitro tool for the assessment of developmental neurotoxicity of monocrotophos (MCP), an organophosphate pesticide. The differentiating cells were exposed to MCP during the different stages of maturation, viz., days 2, 4, and 8, and changes in the makers of cell proliferation, neuronal differentiation, neuronal injuries, and receptors were studied. We found significant upregulation in the different MAPKs, apoptosis, and neurogenesis markers and downregulation in the cell proliferation markers during neuronal differentiation. We further identified significant upregulation in the expression of different MAPKs and proteins involved in oxidative stress, apoptosis, and calpain pathways in the mid-differentiating cells exposed to MCP. The upregulated levels of these proteins seem to be the main cause of alteration during the differentiation process towards apoptosis as a fine-tune of pro-apoptotic and anti-apoptotic proteins are desirable for the process of differentiation without apoptosis. The decreased acetylcholinesterase activity, dopaminergic, and cholinergic receptors and increased acetylcholine levels in the differentiating neuronal cells indicate the vulnerability of these cells towards MCP-induced neurotoxicity. Our data confirms that differentiating neuronal cells derived from human umbilical cord stem cells could be used as a powerful tool to assess the developmental neurotoxicity in human beings.


Umbilical cord blood stem cells Developmental neurotoxicity Apoptosis Alternative testing strategies Monocrotophos Organophosphates 



Authors are grateful to the Director, the IITR, Lucknow, India, for his keen interest to the study. The work was supported by the Council of Scientific and Industrial Research (CSIR), New Delhi, India, [Grant No. BSC0111/INDEPTH/CSIR Network Project] and the Department of Biotechnology (DBT), New Delhi, India [Grant No. 102/IFD/SAN/PR-1524/2010-2011]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the article.

Declaration of no conflict of interest

Authors of this manuscript have no conflict of interest among them or anybody else regarding the scientific contents, financial matters, or otherwise.

Supplementary material

12035_2014_8716_MOESM1_ESM.doc (310 kb)
Figure S1 List of 96 genes studied using TaqMan low-density array (TLDA) in 384-well plate format (DOC 309 kb)


  1. 1.
    Goldman LR, Koduru S (2000) Chemicals in the environment and developmental toxicity to children: a public health and policy perspective. Environ Health Perspect 108(Suppl 3):443–448CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Roberts EM, English PB, Grether JK, Windham GC, Somberg L, Wolff C (2007) Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environ Health Perspect 115:1482–1489PubMedCentralPubMedGoogle Scholar
  3. 3.
    Bradman A, Barr DB, Claus Henn BG, Drumheller T, Curry C, Eskenazi B (2003) Measurement of pesticides and other toxicants in amniotic fluid as a potential biomarker of prenatal exposure: a validation study. Environ Health Perspect 111:1779–1782CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Whyatt RM, Camann D, Perera FP, Rauh VA, Tang D, Kinney PL, Garfinkel R, Andrews H, Hoepner L, Barr DB (2005) Biomarkers in assessing residential insecticide exposures during pregnancy and effects on fetal growth. Toxicol Appl Pharmacol 206:246–254CrossRefPubMedGoogle Scholar
  5. 5.
    Berkowitz GS, Wetmur JG, Birman-Deych E, Obel J, Lapinski RH, Godbold JH, Holzman IR, Wolff MS (2004) In utero pesticide exposure, maternal paraoxonase activity, and head circumference. Environ Health Perspect 112:388–391CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Whyatt RM, Rauh V, Barr DB, Camann DE, Andrews HF, Garfinkel R, Hoepner LA, Diaz D, Dietrich J, Reyes A, Tang D, Kinney PL, Perera FP (2004) Prenatal insecticide exposures and birth weight and length among an urban minority cohort. Environ Health Perspect 112:1125–1132CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Young JG, Eskenazi B, Gladstone EA, Bradman A, Pedersen L, Johnson C, Barr DB, Furlong CE, Holland NT (2005) Association between in utero organophosphate pesticide exposure and abnormal reflexes in neonates. Neurotoxicology 26:199–209CrossRefPubMedGoogle Scholar
  8. 8.
    Engel SM, Berkowitz GS, Barr DB, Teitelbaum SL, Siskind J, Meisel SJ, Wetmur JG, Wolff MS (2007) Prenatal organophosphate metabolite and organochlorine levels and performance on the Brazelton Neonatal Behavioral Assessment Scale in a multiethnic pregnancy cohort. Am J Epidemiol 165:1397–1404CrossRefPubMedGoogle Scholar
  9. 9.
    Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedar M, Calderon N, Trujillo C, Johnson C, Bradman A, Barr DB, Eskenazi B (2011) Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environ Health Perspect 119:1189–1195CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Engel SM, Wetmur J, Chen J, Zhu C, Barr DB, Canfield RL, Wolff MS (2011) Prenatal exposure to organophosphates, paraoxonase 1, and cognitive development in childhood. Environ Health Perspect 119:1182–1188CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Rauh V, Arunajadai S, Horton M, Perera F, Hoepner L, Barr DB, Whyatt R (2011) Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect 119:1196–1201CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Kashyap MP, Singh AK, Kumar V, Tripathi VK, Srivastava RK, Agrawal M, Khanna VK, Yadav S, Jain SK, Pant AB (2011) Monocrotophos induced apoptosis in PC12 cells: role of xenobiotic metabolizing cytochrome P450s. PLoS ONE 6:e17757CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Kashyap MP, Singh AK, Kumar V, Yadav DK, Khan F, Jahan S, Khanna VK, Yadav S, Pant AB (2013) Pkb/Akt1 mediates Wnt/GSK3beta/beta-catenin signaling-induced apoptosis in human cord blood stem cells exposed to organophosphate pesticide monocrotophos. Stem Cells Dev 22(2):224–238CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Kashyap MP, Singh AK, Siddiqui MA, Kumar V, Tripathi VK, Khanna VK, Yadav S, Jain SK, Pant AB (2010) Caspase cascade regulated mitochondria mediated apoptosis in monocrotophos exposed PC12 cells. Chem Res Toxicol 23:1663–1672CrossRefPubMedGoogle Scholar
  15. 15.
    Singh AK, Kashyap MP, Jahan S, Kumar V, Tripathi VK, Siddiqui MA, Yadav S, Khanna VK, Das V, Jain SK, Pant AB (2012) Expression and inducibility of cytochrome P450s (CYP1A1, 2B6, 2E1, 3A4) in human cord blood CD34+ stem cell-derived differentiating neuronal cells. Toxicol Sci 129:392–410CrossRefPubMedGoogle Scholar
  16. 16.
    Rauh VA, Perera FP, Horton MK, Whyatt RM, Bansal R, Hao X, Liu J, Barr DB, Slotkin TA, Peterson BS (2012) Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc Natl Acad Sci U S A 109:7871–7876CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Lein P, Locke P, Goldberg A (2007) Meeting report: alternatives for developmental neurotoxicity testing. Environ Health Perspect 115:764–768CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Eddleston M, Buckley NA, Eyer P, Dawson AH (2008) Management of acute organophosphorus pesticide poisoning. Lancet 371:597–607CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Slotkin TA, Seidler FJ (2011) Developmental exposure to organophosphates triggers transcriptional changes in genes associated with Parkinson's disease in vitro and in vivo. Brain Res Bull 86:340–347CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Slotkin TA, Seidler FJ (2012) Developmental neurotoxicity of organophosphates targets cell cycle and apoptosis, revealed by transcriptional profiles in vivo and in vitro. Neurotoxicol Teratol 34:232–241CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368:2167–2178CrossRefPubMedGoogle Scholar
  22. 22.
    Lein P, Silbergeld E, Locke P, Goldberg AM (2005) In vitro and other alternative approaches to developmental neurotoxicity testing (DNT). Environ Toxicol Pharmacol 19:735–744CrossRefPubMedGoogle Scholar
  23. 23.
    Resnik DB, Portier C (2005) Pesticide testing on human subjects: weighing benefits and risks. Environ Health Perspect 113:813–817CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Slotkin TA, Card J, Seidler FJ (2012) Chlorpyrifos developmental neurotoxicity: interaction with glucocorticoids in PC12 cells. Neurotoxicol Teratol 34:505–512CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Dishaw LV, Powers CM, Ryde IT, Roberts SC, Seidler FJ, Slotkin TA, Stapleton HM (2011) Is the PentaBDE replacement, tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a developmental neurotoxicant? Studies in PC12 cells. Toxicol Appl Pharmacol 256:281–289CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    de Groot MW, Westerink RH, Dingemans MM (2012) Don't judge a neuron only by its cover: neuronal function in in vitro developmental neurotoxicity testing. Toxicol Sci 132(1):1–7CrossRefPubMedGoogle Scholar
  27. 27.
    Visan A, Hayess K, Sittner D, Pohl EE, Riebeling C, Slawik B, Gulich K, Oelgeschlager M, Luch A, Seiler AE (2012) Neural differentiation of mouse embryonic stem cells as a tool to assess developmental neurotoxicity in vitro. Neurotoxicology 33:1135–1146CrossRefPubMedGoogle Scholar
  28. 28.
    Fritsche E, Gassmann K, Schreiber T (2011) Neurospheres as a model for developmental neurotoxicity testing. Methods Mol Biol 758:99–114CrossRefPubMedGoogle Scholar
  29. 29.
    Siddiqui MA, Singh G, Kashyap MP, Khanna VK, Yadav S, Chandra D, Pant AB (2008) Influence of cytotoxic doses of 4-hydroxynonenal on selected neurotransmitter receptors in PC-12 cells. Toxicol In Vitro 22:1681–1688CrossRefPubMedGoogle Scholar
  30. 30.
    Gluckman E (2011) Milestones in umbilical cord blood transplantation. Blood Rev 25:255–259CrossRefPubMedGoogle Scholar
  31. 31.
    Zanier ER, Montinaro M, Vigano M, Villa P, Fumagalli S, Pischiutta F, Longhi L, Leoni ML, Rebulla P, Stocchetti N, Lazzari L, De Simoni MG (2011) Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma. Crit Care Med 39:2501–2510CrossRefPubMedGoogle Scholar
  32. 32.
    Larosa F, Deconinck E, Helias P, Fontan J, Heczko M, Brion A, Ledu K, Delaby P, Vuiller J, Ferrand C, Saas P, Pouthier F, Dormoy A, Chabod J, Malugani C, Rohrlich PS, Legrand F (2011) Successful mobilization and engraftment of PBSCs derived from donor cord blood cells after a previous allogeneic RIC single unrelated cord blood transplantation. Blood 118:476–478CrossRefPubMedGoogle Scholar
  33. 33.
    Moore MA (1991) Review: Stratton Lecture 1990. Clinical implications of positive and negative hematopoietic stem cell regulators. Blood 78:1–19PubMedGoogle Scholar
  34. 34.
    Ogawa M (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81:2844–2853PubMedGoogle Scholar
  35. 35.
    Metcalf D (1993) Hematopoietic regulators: redundancy or subtlety? Blood 82:3515–3523PubMedGoogle Scholar
  36. 36.
    Lyman SD (1995) Biology of flt3 ligand and receptor. Int J Hematol 62:63–73CrossRefPubMedGoogle Scholar
  37. 37.
    Borge OJ, Ramsfjell V, Cui L, Jacobsen SE (1997) Ability of early acting cytokines to directly promote survival and suppress apoptosis of human primitive CD34 + CD38− bone marrow cells with multilineage potential at the single-cell level: key role of thrombopoietin. Blood 90:2282–2292PubMedGoogle Scholar
  38. 38.
    Tsukahara S, Ikeda R, Goto S, Yoshida K, Mitsumori R, Sakamoto Y, Tajima A, Yokoyama T, Toh S, Furukawa K, Inoue I (2006) Tumour necrosis factor alpha-stimulated gene-6 inhibits osteoblastic differentiation of human mesenchymal stem cells induced by osteogenic differentiation medium and BMP-2. Biochem J 398:595–603CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Zheng Y, Sun A, Han ZC (2005) Stem cell factor improves SCID-repopulating activity of human umbilical cord blood-derived hematopoietic stem/progenitor cells in xenotransplanted NOD/SCID mouse model. Bone Marrow Transplant 35:137–142CrossRefPubMedGoogle Scholar
  40. 40.
    Taguchi A (2011) Cell-based therapy for patients with vascular dementia. Psychogeriatrics 11:113–115CrossRefPubMedGoogle Scholar
  41. 41.
    Stellos K, Panagiota V, Sachsenmaier S, Trunk T, Straten G, Leyhe T, Seizer P, Geisler T, Gawaz M, Laske C (2010) Increased circulating progenitor cells in Alzheimer's disease patients with moderate to severe dementia: evidence for vascular repair and tissue regeneration? J Alzheimers Dis 19:591–600PubMedGoogle Scholar
  42. 42.
    Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Woo CW, Lucarelli E, Thiele CJ (2004) NGF activation of TrkA decreases N-myc expression via MAPK path leading to a decrease in neuroblastoma cell number. Oncogene 23:1522–1530CrossRefPubMedGoogle Scholar
  44. 44.
    Benito-Gutierrez E, Garcia-Fernandez J, Comella JX (2006) Origin and evolution of the Trk family of neurotrophic receptors. Mol Cell Neurosci 31:179–192CrossRefPubMedGoogle Scholar
  45. 45.
    Sanchez-Ramos JR, Song S, Kamath SG, Zigova T, Willing A, Cardozo-Pelaez F, Stedeford T, Chopp M, Sanberg PR (2001) Expression of neural markers in human umbilical cord blood. Exp Neurol 171:109–115CrossRefPubMedGoogle Scholar
  46. 46.
    Zigova T, Song S, Willing AE, Hudson JE, Newman MB, Saporta S, Sanchez-Ramos J, Sanberg PR (2002) Human umbilical cord blood cells express neural antigens after transplantation into the developing rat brain. Cell Transplant 11:265–274PubMedGoogle Scholar
  47. 47.
    Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183PubMedGoogle Scholar
  48. 48.
    Obara Y, Nakahata N (2010) The signaling pathway leading to extracellular signal-regulated kinase 5 (ERK5) activation via G-proteins and ERK5-dependent neurotrophic effects. Mol Pharmacol 77:10–16CrossRefPubMedGoogle Scholar
  49. 49.
    Besnard A, Galan-Rodriguez B, Vanhoutte P, Caboche J (2011) Elk-1 a transcription factor with multiple facets in the brain. Front Neurosci 5:35CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Greenblatt MB, Shim JH, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park JM, Arthur S, Xie M, Schneider MD, Zhai B, Gygi S, Davis R, Glimcher LH (2010) The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest 120:2457–2473CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Hamidouche Z, Fromigue O, Ringe J, Haupl T, Marie PJ (2010) Crosstalks between integrin alpha 5 and IGF2/IGFBP2 signalling trigger human bone marrow-derived mesenchymal stromal osteogenic differentiation. BMC Cell Biol 11:44CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Kiec-Wilk B, Grzybowska-Galuszka J, Polus A, Pryjma J, Knapp A, Kristiansen K (2010) The MAPK-dependent regulation of the Jagged/Notch gene expression by VEGF, bFGF or PPAR gamma mediated angiogenesis in HUVEC. J Physiol Pharmacol 61:217–225PubMedGoogle Scholar
  53. 53.
    Li Z, Theus MH, Wei L (2006) Role of ERK 1/2 signaling in neuronal differentiation of cultured embryonic stem cells. Dev Growth Differ 48:513–523CrossRefPubMedGoogle Scholar
  54. 54.
    Gerety SS, Wilkinson DG (2011) Morpholino artifacts provide pitfalls and reveal a novel role for pro-apoptotic genes in hindbrain boundary development. Dev Biol 350:279–289CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Fernando P, Brunette S, Megeney LA (2005) Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 19:1671–1673PubMedGoogle Scholar
  56. 56.
    Sakamaki K, Inoue T, Asano M, Sudo K, Kazama H, Sakagami J, Sakata S, Ozaki M, Nakamura S, Toyokuni S, Osumi N, Iwakura Y, Yonehara S (2002) Ex vivo whole-embryo culture of caspase-8-deficient embryos normalize their aberrant phenotypes in the developing neural tube and heart. Cell Death Differ 9:1196–1206CrossRefPubMedGoogle Scholar
  57. 57.
    Rebe C, Cathelin S, Launay S, Filomenko R, Prevotat L, L'Ollivier C, Gyan E, Micheau O, Grant S, Dubart-Kupperschmitt A, Fontenay M, Solary E (2007) Caspase-8 prevents sustained activation of NF-kappaB in monocytes undergoing macrophagic differentiation. Blood 109:1442–1450CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Cullen SP, Martin SJ (2009) Caspase activation pathways: some recent progress. Cell Death Differ 16:935–938CrossRefPubMedGoogle Scholar
  59. 59.
    Conacci-Sorrell M, Eisenman RN (2011) Post-translational control of Myc function during differentiation. Cell Cycle 10:604–610CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Damon DH, Teriele JA, Marko SB (2007) Vascular-derived artemin: a determinant of vascular sympathetic innervation? Am J Physiol Heart Circ Physiol 293:H266–H273CrossRefPubMedGoogle Scholar
  61. 61.
    Jeong DG, Park WK, Park S (2008) Artemin activates axonal growth via SFK and ERK-dependent signalling pathways in mature dorsal root ganglia neurons. Cell Biochem Funct 26:210–220CrossRefPubMedGoogle Scholar
  62. 62.
    Isoda H, Talorete TP, Han J, Oka S, Abe Y, Inamori Y (2005) Effects of organophosphorous pesticides used in china on various mammalian cells. Environ Sci 12:9–19PubMedGoogle Scholar
  63. 63.
    Das PP, Shaik AP, Jamil K (2007) Genotoxicity induced by pesticide mixtures: in-vitro studies on human peripheral blood lymphocytes. Toxicol Ind Health 23:449–458CrossRefPubMedGoogle Scholar
  64. 64.
    Jose S, Jayesh P, Mohandas A, Philip R, Bright Singh IS (2011) Application of primary haemocyte culture of Penaeus monodon in the assessment of cytotoxicity and genotoxicity of heavy metals and pesticides. Mar Environ Res 71:169–177CrossRefPubMedGoogle Scholar
  65. 65.
    Moser VC (2011) Age-related differences in acute neurotoxicity produced by mevinphos, monocrotophos, dicrotophos, and phosphamidon. Neurotoxicol Teratol 33:451–457CrossRefPubMedGoogle Scholar
  66. 66.
    Casale GP, Vennerstrom JL, Bavari S, Wang TL (1993) Inhibition of interleukin 2 driven proliferation of mouse CTLL2 cells, by selected carbamate and organophosphate insecticides and congeners of carbaryl. Immunopharmacol Immunotoxicol 15:199–215CrossRefPubMedGoogle Scholar
  67. 67.
    Kirby LA, Schott JT, Noble BL, Mendez DC, Caseley PS, Peterson SC, Routledge TJ, Patel NV (2012) Glycogen synthase kinase 3 (GSK3) inhibitor, SB-216763, promotes pluripotency in mouse embryonic stem cells. PLoS ONE 7:e39329CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Doble BW, Patel S, Wood GA, Kockeritz LK, Woodgett JR (2007) Functional redundancy of GSK-3alpha and GSK-3beta in Wnt/beta-catenin signaling shown by using an allelic series of embryonic stem cell lines. Dev Cell 12:957–971CrossRefPubMedGoogle Scholar
  69. 69.
    Kelly KF, Ng DY, Jayakumaran G, Wood GA, Koide H, Doble BW (2011) Beta-catenin enhances Oct-4 activity and reinforces pluripotency through a TCF-independent mechanism. Cell Stem Cell 8:214–227CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Wray J, Kalkan T, Gomez-Lopez S, Eckardt D, Cook A, Kemler R, Smith A (2011) Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol 13:838–845CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Niwa H, Ogawa K, Shimosato D, Adachi K (2009) A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460:118–122CrossRefPubMedGoogle Scholar
  72. 72.
    Zimmer B, Schildknecht S, Kuegler PB, Tanavde V, Kadereit S, Leist M (2011) Sensitivity of dopaminergic neuron differentiation from stem cells to chronic low-dose methylmercury exposure. Toxicol Sci 121:357–367CrossRefPubMedGoogle Scholar
  73. 73.
    Niquet J, Auvin S, Archie M, Seo DW, Allen S, Sankar R, Wasterlain CG (2007) Status epilepticus triggers caspase-3 activation and necrosis in the immature rat brain. Epilepsia 48:1203–1206CrossRefPubMedGoogle Scholar
  74. 74.
    Lopez-Meraz ML, Wasterlain CG, Rocha LL, Allen S, Niquet J (2010) Vulnerability of postnatal hippocampal neurons to seizures varies regionally with their maturational stage. Neurobiol Dis 37:394–402CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Carloni S, Carnevali A, Cimino M, Balduini W (2007) Extended role of necrotic cell death after hypoxia-ischemia-induced neurodegeneration in the neonatal rat. Neurobiol Dis 27:354–361CrossRefPubMedGoogle Scholar
  76. 76.
    Kazi AI, Oommen A (2012) The effect of acute severe monocrotophos poisoning on inhibition, expression and activity of acetylcholinesterase in different rat brain regions. Neurotoxicology 33:1284–1290CrossRefPubMedGoogle Scholar
  77. 77.
    Eskenazi B, Marks AR, Bradman A, Harley K, Barr DB, Johnson C, Morga N, Jewell NP (2007) Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environ Health Perspect 115:792–798CrossRefPubMedCentralPubMedGoogle Scholar
  78. 78.
    Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, Whitehead R, Tang D, Whyatt RW (2006) Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 118:e1845–e1859CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Bjorling-Poulsen M, Andersen HR, Grandjean P (2008) Potential developmental neurotoxicity of pesticides used in Europe. Environ Health 7:50CrossRefPubMedCentralPubMedGoogle Scholar
  80. 80.
    Brundin P, Kordower JH (2012) Neuropathology in transplants in Parkinson's disease: implications for disease pathogenesis and the future of cell therapy. Prog Brain Res 200:221–241CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mahendra P. Kashyap
    • 1
  • Vivek Kumar
    • 1
  • Abhishek K. Singh
    • 1
  • Vinay K. Tripathi
    • 1
  • Sadaf Jahan
    • 1
  • Ankita Pandey
    • 1
  • Ritesh K. Srivastava
    • 1
  • Vinay K. Khanna
    • 1
  • Aditya B. Pant
    • 1
    Email author
  1. 1.In Vitro Toxicology LaboratoryCSIR-Indian Institute of Toxicology ResearchLucknowIndia

Personalised recommendations