Molecular Neurobiology

, Volume 50, Issue 3, pp 1059–1084 | Cite as

The Glutathione System: A New Drug Target in Neuroimmune Disorders

  • Gerwyn Morris
  • George Anderson
  • Olivia Dean
  • Michael Berk
  • Piotr Galecki
  • Marta Martin-Subero
  • Michael Maes
Article

Abstract

Glutathione (GSH) has a crucial role in cellular signaling and antioxidant defenses either by reacting directly with reactive oxygen or nitrogen species or by acting as an essential cofactor for GSH S-transferases and glutathione peroxidases. GSH acting in concert with its dependent enzymes, known as the glutathione system, is responsible for the detoxification of reactive oxygen and nitrogen species (ROS/RNS) and electrophiles produced by xenobiotics. Adequate levels of GSH are essential for the optimal functioning of the immune system in general and T cell activation and differentiation in particular. GSH is a ubiquitous regulator of the cell cycle per se. GSH also has crucial functions in the brain as an antioxidant, neuromodulator, neurotransmitter, and enabler of neuron survival. Depletion of GSH leads to exacerbation of damage by oxidative and nitrosative stress; hypernitrosylation; increased levels of proinflammatory mediators and inflammatory potential; dysfunctions of intracellular signaling networks, e.g., p53, nuclear factor-κB, and Janus kinases; decreased cell proliferation and DNA synthesis; inactivation of complex I of the electron transport chain; activation of cytochrome c and the apoptotic machinery; blockade of the methionine cycle; and compromised epigenetic regulation of gene expression. As such, GSH depletion has marked consequences for the homeostatic control of the immune system, oxidative and nitrosative stress (O&NS) pathways, regulation of energy production, and mitochondrial survival as well. GSH depletion and concomitant increase in O&NS and mitochondrial dysfunctions play a role in the pathophysiology of diverse neuroimmune disorders, including depression, myalgic encephalomyelitis/chronic fatigue syndrome and Parkinson’s disease, suggesting that depleted GSH is an integral part of these diseases. Therapeutical interventions that aim to increase GSH concentrations in vivo include N-acetyl cysteine; Nrf-2 activation via hyperbaric oxygen therapy; dimethyl fumarate; phytochemicals, including curcumin, resveratrol, and cinnamon; and folate supplementation.

Keywords

Glutathione Oxidative and nitrosative stress Inflammation Cytokines Depression Myalgic encephalomyelitis Chronic fatigue Immune 

Notes

Funding

No specific funding was obtained for this specific review.

Conflict of Interests

The authors declare that they have no competing interests.

References

  1. 1.
    Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11:2685–700, PMID: 19558212PubMedCentralPubMedGoogle Scholar
  2. 2.
    Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 2012:736837, PMID: 22500213PubMedCentralPubMedGoogle Scholar
  3. 3.
    Haddad JJ, Harb HL (2005) l-Gamma-glutamyl-l-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Mol Immunol 42:987–1014, PMID: 15829290PubMedGoogle Scholar
  4. 4.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84, PMID: 16978905PubMedGoogle Scholar
  5. 5.
    Oja SS, Jenei Z, Janáky R, Saransaari P, Varga V (1994) Thiol reagents and brain glutamate receptors. Proc West Pharmacol Soc 37:59–62PubMedGoogle Scholar
  6. 6.
    Makarov P, Kropf S, Wiswedel I, Augustin W, Schild L (2006) Consumption of redox energy by glutathione metabolism contributes to hypoxia/reoxygenation-induced injury in astrocytes. Mol Cell Biochem 286:95–101, PMID: 16583144PubMedGoogle Scholar
  7. 7.
    Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendon Press, OxfordGoogle Scholar
  8. 8.
    Cooper AJ, Pulsinelli WA, Duffy TE (1980) Glutathione and ascorbate during ischemia and postischemic reperfusion in rat brain. J Neurochem 35:1242–5, PMID: 7452315PubMedGoogle Scholar
  9. 9.
    Kumar C, Igbaria A, D’Autreaux B, Planson AG, Junot C, Godat E, Bachhawat AK, Delaunay-Moisan A, Toledano MB (2011) Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control. EMBO J 30:2044–56. doi:10.1038/emboj.2011.105, PMID: 21478822PubMedCentralPubMedGoogle Scholar
  10. 10.
    Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–74. doi:10.1089/ars.2007.1957, PMID: 18522489PubMedCentralPubMedGoogle Scholar
  11. 11.
    Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16PubMedCentralPubMedGoogle Scholar
  12. 12.
    Zhang H, Forman HJ (2009) Redox regulation of gamma-glutamyl transpeptidase. Am J Respir Cell Mol Biol 41:509–15PubMedCentralPubMedGoogle Scholar
  13. 13.
    Cooper AJL, Hanigan MH (2010) 4.17—Enzymes involved in processing glutathione conjugates. In: Comprehensive toxicology 4:323–66. 2nd editionGoogle Scholar
  14. 14.
    McIlwain CC, Townsend DM, Tew KD (2006) Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 25:1639–48, PMID: 16550164PubMedGoogle Scholar
  15. 15.
    Coles BF, Morel F, Rauch C, Huber WW, Yang M, Teitel CH, Green B, Lang NP, Kadlubar FF (2001) Effect of polymorphism in the human glutathione S-transferase A1 promoter on hepatic GSTA1 and GSTA2 expression. Pharmacogenetics 11:663–9, PMID: 11692074PubMedGoogle Scholar
  16. 16.
    Fernandes AP, Holmgren A (2004) Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid Redox Signal 6:63–74, PMID: 14713336PubMedGoogle Scholar
  17. 17.
    Johnson WM, Wilson-Delfosse AL, Mieyal JJ (2012) Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4:1399–440. doi:10.3390/nu4101399, PMID: 23201762PubMedCentralPubMedGoogle Scholar
  18. 18.
    Peltoniemi M, Kaarteenaho-Wiik R, Säily M, Sormunen R, Pääkkö P, Holmgren A, Soini Y, Kinnula VL (2004) Expression of glutaredoxin is highly cell specific in human lung and is decreased by transforming growth factor-beta in vitro and in interstitial lung diseases in vivo. Hum Pathol 35:1000–7, PMID: 15297967PubMedGoogle Scholar
  19. 19.
    Pai HV, Starke DW, Lesnefsky EJ, Hoppel CL, Mieyal JJ (2007) What is the functional significance of the unique location of glutaredoxin 1 (GRx1) in the intermembrane space of mitochondria? Antioxid Redox Signal 9:2027–33, PMID: 17845131PubMedGoogle Scholar
  20. 20.
    Hinchman CA, Ballatori N (1994) Glutathione conjugation and conversion to mercapturic acids can occur as an intrahepatic process. J Toxicol Environ Health 41:387–409PubMedGoogle Scholar
  21. 21.
    Kalyanaraman B, Karoui H, Singh RJ, Felix CC (1996) Detection of thiyl radical adducts formed during hydroxyl radical- and peroxynitrite-mediated oxidation of thiols—a high resolution ESR spin-trapping study at Q-band (35 Ghz). Anal Biochem 241:75–81PubMedGoogle Scholar
  22. 22.
    Gardner JM, Aust SD (2009) Quantification of hydroxyl radical produced during phacoemulsification. J Cataract Refract Surg 35:2149–53, PMID: 19969222PubMedGoogle Scholar
  23. 23.
    Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA (2009) Nitric oxide in cell survival: a Janus molecule. Antioxid Redox Signal 11:2717–39PubMedGoogle Scholar
  24. 24.
    Siems W, Crifo C, Capuozzo E, Uchida K, Grune T, Salerno C (2010) Metabolism of 4-hydroxy-2-nonenal in human polymorphonuclear leukocytes. Arch Biochem Biophys 503:248–52PubMedGoogle Scholar
  25. 25.
    Zhu X, Gallogly MM, Mieyal JJ, Anderson VE, Sayre LM (2009) Covalent cross-linking of glutathione and carnosine to proteins by 4-oxo-2-nonenal. Chem Res Toxicol 22:1050–9PubMedCentralPubMedGoogle Scholar
  26. 26.
    Jones DP, Park Y, Gletsu-Miller N, Liang Y, Yu T, Accardi CJ, Ziegler TR (2011) Dietary sulfur amino acid effects on fasting plasma cysteine/cystine redox potential in humans. Nutrition 27:199–205, PMID: 20471805PubMedCentralPubMedGoogle Scholar
  27. 27.
    Jones DP (2002) Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348:93–112PubMedGoogle Scholar
  28. 28.
    Holmgren A, Sengupta R (2010) The use of thiols by ribonucleotide reductase. Free Radical Biol Med 49:1617–28Google Scholar
  29. 29.
    Yang Y, Sharma R, Sharma A, Awasthi S, Awasthi YC (2003) Lipid peroxidation and cell cycle signaling: 4-hydroxynonenal, a key molecule in stress mediated signaling. Acta Biochim Pol 50:319–36PubMedGoogle Scholar
  30. 30.
    Zhang D, Lu H, Li J, Shi X, Huang C (2006) Essential roles of ERKs and p38K in up-regulation of GST A1 expression by Maotai content in human hepatoma cell line Hep3B. Mol Cell Biochem 293:161–71, PMID: 16786188PubMedGoogle Scholar
  31. 31.
    Yang Y, Cheng JZ, Singhal SS, Saini M, Pandya U, Awasthi S, Awasthi YC (2001) Role of glutathione S-transferases in protection against lipid peroxidation. Overexpression of hGSTA2-2 in K562 cells protects against hydrogen peroxide-induced apoptosis and inhibits JNK and caspase 3 activation. J Biol Chem 276:19220–30, PMID: 11279091PubMedGoogle Scholar
  32. 32.
    Sakai M, Muramatsu M (2007) Regulation of glutathione transferase P: a tumor marker of hepatocarcinogenesis. Biochem Biophys Res Commun 357:575–8, PMID: 17434454PubMedGoogle Scholar
  33. 33.
    Li Y, Cohenford MA, Dutta U, Dain JA (2008) The structural modification of DNA nucleosides by nonenzymatic glycation: an in vitro study based on the reactions of glyoxal and methylglyoxal with 2′-deoxyguanosine. Anal Bioanal Chem 390:679–88PubMedGoogle Scholar
  34. 34.
    Karlson EW, Watts J, Signorovitch J, Bonetti M, Wright E, Cooper GS, McAlindon TE, Costenbader KH, Massarotti EM, Fitzgerald LM, Jajoo R, Husni ME, Fossel AH, Pankey H, Ding WZ, Knorr R, Condon S, Fraser PA (2007) Effect of glutathione S-transferase polymorphisms and proximity to hazardous waste sites on time to systemic lupus erythematosus diagnosis: results from the Roxbury Lupus Project. Arthritis Rheum 56:244–54, PMID: 17195228PubMedGoogle Scholar
  35. 35.
    Gravina P, Spoletini I, Masini S, Valentini A, Vanni D, Paladini E, Bossu P, Caltagirone C, Federici G, Spalletta G, Bernardini S (2011) Genetic polymorphisms of glutathione S-transferases GSTM1, GSTT1, GSTP1 and GSTA1 as risk factors for schizophrenia. Psychiatry Res 187:454–6PubMedGoogle Scholar
  36. 36.
    Nafissi S, Saadat I, Saadat M (2011) Genetic polymorphisms of glutathione S-transferase Z1 in an Iranian population. Mol Biol Rep 38:3391–4. doi:10.1007/s11033-010-0447-x, PMID: 21107728PubMedGoogle Scholar
  37. 37.
    Williams TA, Mars AE, Buyske SG, Stenroos ES, Wang R, Factura-Santiago MF, Lambert GH, Johnson WG (2007) Risk of autistic disorder in affected offspring of mothers with a glutathione S-transferase P1 haplotype. Arch Pediatr Adolesc Med 161:356–61, PMID: 17404132PubMedGoogle Scholar
  38. 38.
    Rezaei Z, Saadat I, Saadat M (2012) Association between three genetic polymorphisms of glutathione S-transferase Z1 (GSTZ1) and susceptibility to bipolar disorder. Psychiatry Res 30:166–8. doi:10.1016/j.psychres.2011.09.002, PMID: 22374552Google Scholar
  39. 39.
    Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 76:391–6PubMedGoogle Scholar
  40. 40.
    Wu Y, Zhang X, Bardag-Gorce F, Robel RC, Aguilo J, Chen L, Zeng Y, Hwang K, French SW, Lu SC, Wan YJ (2004) Retinoid X receptor alpha regulates glutathione homeostasis and xenobiotic detoxification processes in mouse liver. Mol Pharmacol 65:550–7, PMID: 14978233PubMedGoogle Scholar
  41. 41.
    Coles BF, Kadlubar FF (2003) Detoxification of electrophilic compounds by glutathione S-transferase catalysis: determinants of individual response to chemical carcinogens and chemotherapeutic drugs? Biofactors 17:115–30PubMedGoogle Scholar
  42. 42.
    Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88PubMedGoogle Scholar
  43. 43.
    Huang KP, Huang FL (2002) Glutathionylation of proteins by glutathione disulfide S-oxide. Biochem Pharmacol 64:1049–56, PMID: 12213604PubMedGoogle Scholar
  44. 44.
    Poole LB, Karplus PA, Claiborne A (2004) Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 44:325–47, PMID: 14744249PubMedGoogle Scholar
  45. 45.
    Holmgren A, Lu J (2010) Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 396:120–4PubMedGoogle Scholar
  46. 46.
    Townsend DM (2008) S-glutathionylation: indicator of cell stress and regulator of the unfolded protein response. Mol Interv 7:313–24Google Scholar
  47. 47.
    Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD (2008) Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 10:1941–88PubMedCentralPubMedGoogle Scholar
  48. 48.
    Manevich Y, Feinstein SI, Fisher AB (2004) Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST. Proc Natl Acad Sci U S A 101:3780–5, PMID: 15004285PubMedCentralPubMedGoogle Scholar
  49. 49.
    Townsend DM, Manevich Y, He L, Hutchens S, Pazoles CJ, Tew KD (2009) Novel role for glutathione S-transferase pi Regulator of protein S-glutathionylation following oxidative and nitrosative stress. J Biol Chem 284:436–45. doi:10.1074/jbc.M805586200, PMID: 18990698PubMedCentralPubMedGoogle Scholar
  50. 50.
    Mieyal JJ, Starke DW, Gravina SA, Hocevar BA (1991) Thioltransferase in human red blood cells: kinetics and equilibrium. Biochemistry 30:8883–91PubMedGoogle Scholar
  51. 51.
    Lind C, Gerdes R, Schuppe-Koistinen I, Cotgreave IA (1998) Studies on the mechanism of oxidative modification of human glyceraldehyde-3-phosphate dehydrogenase by glutathione: catalysis by glutaredoxin. Biochem Biophys Res Commun 247:481–6, PMID: 9642155PubMedGoogle Scholar
  52. 52.
    Reddy S, Jones AD, Cross CE, Wong PS, Van Der Vliet A (2000) Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue. Biochem J 347:821–7, PMID: 10769188PubMedCentralPubMedGoogle Scholar
  53. 53.
    Pineda-Molina E, Klatt P, Vázquez J, Marina A, García de Lacoba M, Pérez-Sala D, Lamas S (2001) Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 40:14134–42, PMID: 11714266PubMedGoogle Scholar
  54. 54.
    Reynaert NL, van der Vliet A, Guala AS, McGovern T, Hristova M, Pantano C, Heintz NH, Heim J, Ho YS, Matthews DE, Wouters EF, Janssen–Heininger YM (2006) Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci U S A 103:13086–91, PMID: 16916935PubMedCentralPubMedGoogle Scholar
  55. 55.
    Rao RK, Clayton LW (2002) Regulation of protein phosphatase 2A by hydrogen peroxide and glutathionylation. Biochem Biophys Res Commun 293:610–6PubMedGoogle Scholar
  56. 56.
    Taylor ER, Hurrell F, Shannon RJ, Lin TK, Hirst J, Murphy MP (2003) Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem 278:19603–10PubMedGoogle Scholar
  57. 57.
    Chen YR, Chen CL, Pfeiffer DR, Zweier JL (2007) Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. J Biol Chem 282:32640–54PubMedGoogle Scholar
  58. 58.
    Humphries KM, Juliano C, Taylor SS (2002) Regulation of cAMP-dependent protein kinase activity by glutathionylation. J Biol Chem 277:43505–11PubMedGoogle Scholar
  59. 59.
    Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H (2001) Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem 276:29596–602PubMedGoogle Scholar
  60. 60.
    Fratelli M, Demol H, Puype M, Casagrande S, Eberini I, Salmona M, Bonetto V, Mengozzi M, Duffieux F, Miclet E, Bachi A, Vanekerckhove J, Gianazza E, Ghezzi P (2002) Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci U S A 99:3505–10PubMedCentralPubMedGoogle Scholar
  61. 61.
    Brown GC, Borutaite V (2004) Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim Biophys Acta 1658:44–49, PMID: 15282173PubMedGoogle Scholar
  62. 62.
    Martínez-Ruiz A, Lamas S (2004) S-nitrosylation: a potential new paradigm in signal transduction. Cardiovasc Res 62:43–52, PMID: 15023551PubMedGoogle Scholar
  63. 63.
    Jourd'heuil D, Jourd’heuil FL, Feelisch M (2003) Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanis. J Biol Chem 278:15720–6PubMedGoogle Scholar
  64. 64.
    Mannick JB, Schonhoff CM (2002) Nitrosylation: the next phosphorylation? Arch Biochem Biophys 408:1–6, PMID: 12485597PubMedGoogle Scholar
  65. 65.
    Hogg N (2002) The biochemistry and physiology of S-nitrosothiols. Ann Rev Pharmacol Toxicol 42:585–600, PMID: 11807184Google Scholar
  66. 66.
    Martínez-Ruiz A, Lamas S (2007) Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences. Cardiovasc Res 75:220–8, PMID: 17451659PubMedGoogle Scholar
  67. 67.
    Giustarini D, Rossi R, Milzani A, Colombo R, Dalle-Donne I (2004) S-glutathionylation: from redox regulation of protein functions to human diseases. J Cell Mol Med 8:201–12, PMID: 15256068PubMedGoogle Scholar
  68. 68.
    Aracena-Parks P, Goonasekera SA, Gilman C, Dirksen RT, Hidalgo C, Hamilton SL (2006) Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in RyR1. J Biol Chem 281:40354PubMedGoogle Scholar
  69. 69.
    Yang Y, Loscalzo J (2005) S-nitrosoprotein formation and localization in endothelial cells. Proc Natl Acad Sci U S A 102:117–22, PMID: 15618409PubMedCentralPubMedGoogle Scholar
  70. 70.
    Qanungo S, Starke DW, Pai HV, Mieyal JJ, Nieminen AL (2007) Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB. J Biol Chem 282:18427–36PubMedGoogle Scholar
  71. 71.
    Pineda-Molina E, Klatt P, Vazquez J, Marina A, Garcia DL (2001) Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry 40:14134–42PubMedGoogle Scholar
  72. 72.
    Morris G, Maes M (2013) A neuro-immune model of myalgic encephalomyelitis/chronic fatigue syndrome. Metab Brain Dis 28:523–40. doi:10.1007/s11011-012-9324-8, PMID: 22718491PubMedGoogle Scholar
  73. 73.
    Morris G, Maes M (2012) Increased nuclear factor-κB and loss of p53 are key mechanisms in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Hypotheses 79:607–13. doi:10.1016/j.mehy.2012.07.034, PMID: 22951418PubMedGoogle Scholar
  74. 74.
    Marshall HE, Stamler JS (2001) Inhibition of NF-kappa B by S-nitrosylation. Biochemistry 40:1688–93, PMID: 11327828PubMedGoogle Scholar
  75. 75.
    Marshall HE, Hess DT, Stamler JS (2004) S-nitrosylation: physiological regulation of NF-kappaB. Proc Natl Acad Sci U S A 101:8841–2, PMID: 15187230PubMedCentralPubMedGoogle Scholar
  76. 76.
    Into T, Inomata M, Nakashima M, Shibata K, Häcker H, Matsushita K (2008) Regulation of MyD88-dependent signaling events by S nitrosylation retards toll-like receptor signal transduction and initiation of acute-phase immune responses. Mol Cell Biol 28:1338–47, PMID: 18086890PubMedCentralPubMedGoogle Scholar
  77. 77.
    Haddad JJ (2002) The involvement of l-gamma-glutamyl-l-cysteinyl-glycine (glutathione/GSH) in the mechanism of redox signaling mediating MAPK(p38)-dependent regulation of pro-inflammatory cytokine production. Biochem Pharmacol 63:305–20, PMID: 11841806PubMedGoogle Scholar
  78. 78.
    Haddad JJ (2011) A redox microenvironment is essential for MAPK-dependent secretion of pro-inflammatory cytokines: modulation by glutathione (GSH/GSSG) biosynthesis and equilibrium in the alveolar epithelium. Cell Immunol 270:53–61. doi:10.1016/j.cellimm.2011.04.001, PMID: 21550026PubMedGoogle Scholar
  79. 79.
    Gosset P, Wallaert B, Tonnel AB, Fourneau C (1999) Thiol regulation of the production of TNF-α, IL-6 and IL-8 by human alveolar macrophages. Eur Respir J 14:98–105PubMedGoogle Scholar
  80. 80.
    Jeannin P, Delneste Y, Lecoanet-Henchoz S, Gauchat JF, Life P, Holmes D, Bonnefoy JY (1995) Thiols decrease human interleukin (IL) 4 production and IL-4-induced immunoglobulin synthesis. J Exp Med 182:1785–92, PMID: 7500023PubMedGoogle Scholar
  81. 81.
    Neuschwander-Tetri BA, Bellezzo JM, Britton RS, Bacon BR, Fox ES (1996) Thiol regulation of endotoxin-induced release of tumor necrosis factor a from isolated rat Kupffer cells. Biochem J 320:1005–10PubMedCentralPubMedGoogle Scholar
  82. 82.
    Chen CY, Huang YL, Lin TH (1998) Association between oxidative stress and cytokine production in nickel-treated rats. Arch Biochem Biophys 356:127–32PubMedGoogle Scholar
  83. 83.
    Helbling B, von Overbeck J, Lauterburg BH (1996) Decreased release of glutathione into the systemic circulation of patients with HIV infection. Eur J Clin Invest 26:38–44, PMID: 8682153PubMedGoogle Scholar
  84. 84.
    Brigelius-Flohé R, Banning A, Kny M, Böl G (2004) Redox events in interleukin-1 signaling. Arch Biochem Biophys 423:66–73PubMedGoogle Scholar
  85. 85.
    Palamara AT, Perno CF, Aquaro S, Bue MC, Dini L, Garaci E (1996) Glutathione inhibits HIV replication by acting at late stages of the virus life cycle. AIDS Res Hum Retroviruses 12:1537–41PubMedGoogle Scholar
  86. 86.
    Novaes R, Freire-de-Lima CG, de Albuquerque RC, Affonso-Mitidieri OR, Espindola O, Lima MA, de Andrada Serpa MJ, Echevarria-Lima J (2013) Modulation of glutathione intracellular levels alters the spontaneous proliferation of lymphocyte from HTLV-1 infected patients. Immunobiol 218:1166–74. doi:10.1016/j.imbio.2013.04.002, PMID: 23669236Google Scholar
  87. 87.
    Fraternale A, Paoletti MF, Casabianca A, Orlandi C, Schiavano GF, Chiarantini L, Clayette P, Oiry J, Vogel JU, Cinatl J Jr, Magnani M (2008) Inhibition of murine AIDS by pro-glutathione (GSH) molecules. Antiviral Res 77:120–7. doi:10.1016/j.antiviral.2007.11.004 PubMedGoogle Scholar
  88. 88.
    Cai J, Chen Y, Seth S, Furukawa S, Compans RW, Jones DP (2003) Inhibition of influenza infection by glutathione. Free Radic Biol Med 34:928–36, PMID: 12654482PubMedGoogle Scholar
  89. 89.
    Palamara AT, Perno CF, Ciriolo MR, Dini L, Balestra E, D’Agostini C, Di Francesco P, Favalli C, Rotilio G, Garaci E (1995) Evidence for antiviral activity of glutathione: in vitro inhibition of herpes simplex virus type 1 replication. Antiviral Res 27:237–53PubMedGoogle Scholar
  90. 90.
    Garaci E, Palamara AT, Ciriolo MR, D’Agostini C, Abdel-Latif MS, Aquaro S, Lafavia E, Rotilio G (1997) Intracellular GSH content and HIV replication in human macrophages. J Leukoc Biol 62:54–59PubMedGoogle Scholar
  91. 91.
    Wang J, Chen Y, Gao N, Wang Y, Tian Y, Wu J, Zhang J, Zhu J, Fan D, An J (2013) Inhibitory effect of glutathione on oxidative liver injury induced by dengue virus serotype 2 infections in mice. PLoS One 8:e55407. doi:10.1371/journal.pone.0055407 PubMedCentralPubMedGoogle Scholar
  92. 92.
    Tian Y, Jiang W, Gao N, Zhang J, Chen W, Fan D, Zhou D, An J (2010) Inhibitory effects of glutathione on dengue virus production. Biochem Biophys Res Commun 397:420–4. doi:10.1016/j.bbrc.2010.05.108 PubMedGoogle Scholar
  93. 93.
    Angelini G, Gardella S, Ardy M, Ciriolo MR, Filomeni G, Di Trapani G, Clarke F, Sitia R, Rubartelli A (2002) Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proc Natl Acad Sci U S A 99:1491–6, PMID: 11792859PubMedCentralPubMedGoogle Scholar
  94. 94.
    Ishii T, Hishinuma I, Bannai S, Sugita Y (1981) Mechanism of growth promotion of mouse lymphoma L1210 cells in vitro by feeder layer or 2-mercaptoethanol. J Cell Physiol 107:283–93, PMID: 7251686PubMedGoogle Scholar
  95. 95.
    Yan Z, Garg SK, Kipnis J, Banerjee R (2009) Extracellular redox modulation by regulatory T cells. Nat Chem Biol 5:721–3. doi:10.1038/nchembio.212, PMID: 19718041PubMedCentralPubMedGoogle Scholar
  96. 96.
    Sido B, Braunstein J, Breitkreutz R, Herfarth C, Meuer SC (2000) Thiol-mediated redox regulation of intestinal lamina propria T lymphocytes. J Exp Med 192:907–12, PMID: 10993921PubMedCentralPubMedGoogle Scholar
  97. 97.
    Garg SK, Yan Z, Vitvitsky V, Banerjee R (2011) Differential dependence on cysteine from transsulfuration versus transport during T cell activation. Antioxid Redox Signal 15:39–47. doi:10.1089/ars.2010.3496, PMID: 20673163PubMedCentralPubMedGoogle Scholar
  98. 98.
    Yan Z, Banerjee R (2010) Redox remodeling as an immunoregulatory strategy. Biochem 49:1059–66. doi:10.1021/bi902022n, PMID: 20070126Google Scholar
  99. 99.
    Yan Z, Garg SK, Kipnis J, Banerjee R (2009) Extracellular redox modulation by regulatory T cells. Nat Chem Biol 5:721–3. doi:10.1038/nchembio.212, PMID: 19718041PubMedCentralPubMedGoogle Scholar
  100. 100.
    Zahedi Avval F, Holmgren A (2009) Molecular mechanisms of thioredoxin and glutaredoxin as hydrogen donors for mammalian S phase ribonucleotide reductase. J Biol Chem 284:8233–40. doi:10.1074/jbc.M809338200, PMID: 19176520PubMedGoogle Scholar
  101. 101.
    Suthanthiran M, Anderson ME, Sharma VK, Meister A (1990) Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci U S A 87:3343–47, PMID: 1970635PubMedCentralPubMedGoogle Scholar
  102. 102.
    Messina JP, Lawrence DA (1989) Cell cycle progression of glutathione-depleted human peripheral blood mononuclear cells is inhibited at S phase. J Immunol 143:1974–81PubMedGoogle Scholar
  103. 103.
    Yan Z, Garg SK, Banerjee R (2010) Regulatory T cells interfere with glutathione metabolism in dendritic cells and T cells. J Biol Chem 285:41525–32. doi:10.1074/jbc.M110.189944, PMID: 21037289PubMedCentralPubMedGoogle Scholar
  104. 104.
    Kamide Y, Utsugi M, Dobashi K, Ono A, Ishizuka T, Hisada T, Koga Y, Uno K, Hamuro J, Mori M (2011) Intracellular glutathione redox status in human dendritic cells regulates IL-27 production and T-cell polarization. Allergy 66:1183–92. doi:10.1111/j.1398-9995.2011.02611.x, PMID: 21545428PubMedGoogle Scholar
  105. 105.
    Murata Y, Ohteki T, Koyasu S, Hamuro J (2002) IFN-gamma and pro-inflammatory cytokine production by antigen-presenting cells is dictated by intracellular thiol redox status regulated by oxygen tension. Eur J Immunol 32:2866–73, PMID: 12355439PubMedGoogle Scholar
  106. 106.
    Palomares T, Alonso-Varona A, Alvarez A, Castro B, Calle Y, Bilbao P (1997) Interleukin-2 increases intracellular glutathione levels and reverses the growth inhibiting effects of cyclophosphamide on B16 melanoma cells. Clin Exp Metastasis 15:329–37, PMID: 9174132PubMedGoogle Scholar
  107. 107.
    Gmünder H, Roth S, Eck HP, Gallas H, Mihm S, Dröge W (1990) Interleukin-2 mRNA expression, lymphokine production and DNA synthesis in glutathione-depleted T cells. Cell Immunol 130:520–8, PMID: 2208308PubMedGoogle Scholar
  108. 108.
    Yamauchi A, Bloom ET (1997) Control of cell cycle progression in human natural killer cells through redox regulation of expression and phosphorylation of retinoblastoma gene product protein. Blood 89:4092–9, PMID: 9166850PubMedGoogle Scholar
  109. 109.
    Liang CM, Lee N, Cattell D, Liang SM (1989) Glutathione regulates interleukin-2 activity on cytotoxic T-cells. J Biol Chem 264:13519–23PubMedGoogle Scholar
  110. 110.
    Chen J, Stewart V, Spyrou G, Hilberg F, Wagner EF, Alt FW (1994) Generation of normal T and B lymphocytes by c-jun deficient embryonic stem cells. Immunity 1:65–72PubMedGoogle Scholar
  111. 111.
    Pallardó FV, Markovic J, García JL, Viña J (2009) Role of nuclear glutathione as a key regulator of cell proliferation. Mol Aspects Med 30:77–85. doi:10.1016/j.mam.2009.01.001, PMID: 19232542PubMedGoogle Scholar
  112. 112.
    Markovic J, García-Gimenez JL, Gimeno A, Viña J, Pallardó FV (2010) Role of glutathione in cell nucleus. Free Radic Res 44(7):721–33. doi:10.3109/10715762.2010.485989 PubMedGoogle Scholar
  113. 113.
    Diaz Vivancos P, Wolff T, Markovic J, Pallardó FV, Foyer CH (2010) A nuclear glutathione cycle within the cell cycle. Biochem J 431:169–78PubMedGoogle Scholar
  114. 114.
    García-Giménez JL, Markovic J, Dasí F, Queval G, Schnaubelt D, Foyer CH, Pallardó FV (2013) Nuclear glutathione. Biochim Biophys Acta 1830:3304–16. doi:10.1016/j.bbagen.2012.10.005, PMID: 23069719PubMedGoogle Scholar
  115. 115.
    Ashtiani HRA, Bakhshandi AK, Rahbar M, Mirzaei A, Malekpour A, Rastegar H (2011) Glutathione, cell proliferation and differentiation. Afr J Biotechnol 10:6348–63Google Scholar
  116. 116.
    Cuadrado A, Garcia-Fernandez LF, Gonzalez L, Suarez Y, Losada A, Alcaide V, Martinez T, Fernandez-Sousa JM, Sanchez-Puelles JM, Munoz A (2003) Aplidin induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK. J Biol Chem 278:241–50, PMID: 12414812PubMedGoogle Scholar
  117. 117.
    Day RM, Suzuki YJ (2006) Cell proliferation, reactive oxygen and cellular glutathione. Dose Response 3:425–42. doi:10.2203/dose-response.003.03.010, PMID: 18648617PubMedCentralPubMedGoogle Scholar
  118. 118.
    Circu ML, Aw TY (2008) Glutathione and apoptosis. Free Radic Res 42:689–706. doi:10.1080/10715760802317663, PMID: 18671159PubMedCentralPubMedGoogle Scholar
  119. 119.
    Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–14. doi:10.1038/cdd.2009.107, PMID: 19662025PubMedGoogle Scholar
  120. 120.
    Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–95, PMID: 15734681PubMedGoogle Scholar
  121. 121.
    Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8:967–75PubMedCentralPubMedGoogle Scholar
  122. 122.
    Orrenius S, Gogvadze V, Zhivotovsky B (2007) Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47:143–83, PMID: 17029566PubMedGoogle Scholar
  123. 123.
    Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW, Bedja D, Chen K, Gabrielson KL, Blakely RD, Shih JC, Pacak K, Kass DA, Di Lisa F, Paolocci N (2010) Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res 106:193–202. doi:10.1161/CIRCRESAHA.109.198366, PMID: 19910579PubMedCentralPubMedGoogle Scholar
  124. 124.
    Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF (2004) Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci 24(36):7779–88, PubMed PMID: 15356189PubMedGoogle Scholar
  125. 125.
    Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J (2010) NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A 107:15565–70. doi:10.1073/pnas.1002178107, PMID: 20713697PubMedCentralPubMedGoogle Scholar
  126. 126.
    Adam-Vizi V, Chinopoulos C (2006) Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci 27:639–45, PMID: 17056127PubMedGoogle Scholar
  127. 127.
    Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70:200–14, PMID: 15807660Google Scholar
  128. 128.
    Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13. doi:10.1042/BJ20081386, PMID: 19061483PubMedCentralPubMedGoogle Scholar
  129. 129.
    Cox AG, Winterbourn CC, Hampton MB (2009) Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. Biochem J 425:313–25. doi:10.1042/BJ20091541, PMID: 20025614PubMedGoogle Scholar
  130. 130.
    Aon MA, Cortassa S, O’Rourke B (2010) Redox-optimized ROS balance: a unifying hypothesis. Biochim Biophys Acta 1797:865–77. doi:10.1016/j.bbabio.2010.02.016, PMID: 20175987PubMedCentralPubMedGoogle Scholar
  131. 131.
    Aon MA, Stanley BA, Sivakumaran V, Kembro JM, O’Rourke B, Paolocci N, Cortassa S (2012) Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study. J Gen Physiol 139:479–91. doi:10.1085/jgp.201210772, PMID: 22585969PubMedCentralPubMedGoogle Scholar
  132. 132.
    Sheeran FL, Rydström J, Shakhparonov MI, Pestov NB, Pepe S (2010) Diminished NADPH transhydrogenase activity and mitochondrial redox regulation in human failing myocardium. Biochim Biophys Acta 1797:1138–48. doi:10.1016/j.bbabio.2010.04.002, PMID: 20388492PubMedGoogle Scholar
  133. 133.
    Drechsel DA, Patel M (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 285:27850–58. doi:10.1074/jbc.M110.101196, PMID: 20558743PubMedCentralPubMedGoogle Scholar
  134. 134.
    Go YM, Jones DP (2008) Redox compartmentalization in eukaryotic cells. Biochim Biophys Acta 1780:1273–90. doi:10.1016/j.bbagen.2008.01.011, PMID: 18267127PubMedCentralPubMedGoogle Scholar
  135. 135.
    Hu J, Dong L, Outten CE (2008) The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J Biol Chem 283:29126–34. doi:10.1074/jbc.M803028200, PMID: 18708636PubMedCentralPubMedGoogle Scholar
  136. 136.
    Kakkar P, Singh BK (2007) Mitochondria: a hub of redox activities and cellular distress control. Mol Cell Biochem 305:235–53PubMedGoogle Scholar
  137. 137.
    Koehler CM, Beverly K, Leverich EP (2006) Redox pathways in the mitochondrion. Antioxid Redox Signal 8:813–22PubMedGoogle Scholar
  138. 138.
    Pedrajas JR, Kosmidou E, Miranda-Vizuete A, Gustafsson JA, Wright AP, Spyrou G (1999) Identification and functional characterization of a novel mitochondrial thioredoxin system in Saccharomyces cerevisiae. J Biol Chem 274:6366–73PubMedGoogle Scholar
  139. 139.
    Chae HZ, Kang SW, Rhee SG (1999) Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol 300:219–26PubMedGoogle Scholar
  140. 140.
    Orlowski M, Karkowsky A (1976) Glutathione metabolism and some possible functions of glutathione in the nervous system. Int Rev Neurobiol 19:75–121, PMID: 13046PubMedGoogle Scholar
  141. 141.
    Hjelle OP, Rinvik E, Huster D, Reichelt W, Ottersen OP (1998) In: Shaw CA (ed) Glutathione in the nervous system. Taylor & Francis, Washington, pp pp. 63–88Google Scholar
  142. 142.
    Nakanishi S (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258:597–603, PMID: 1329206PubMedGoogle Scholar
  143. 143.
    Récasens M, Mayat E, Vignes M (1992) The multiple excitatory amino acid receptor subtypes and their putative interactions. Mol Neuropharmacol 2:15–31Google Scholar
  144. 144.
    Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–95, PMID: 7901908PubMedGoogle Scholar
  145. 145.
    Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38:357–66, PMID: 7668820PubMedGoogle Scholar
  146. 146.
    Ogita K, Shuto M, Maeda H, Minami T, Yoneda Y (1998) Possible modulation by glutathione of glutamatergic neurotransmission. In: Shaw CA (ed) Glutathione in the nervous system. Taylor & Francis, Washington, pp pp. 137–161Google Scholar
  147. 147.
    Varga V, Janáky R, Saransaari P, Oja SS (1994) Endogenous gamma-l-glutamyl and beta-l-aspartyl peptides and excitatory aminoacidergic neurotransmission in the brain. Neuropeptides 27:19–26, PMID: 7969817PubMedGoogle Scholar
  148. 148.
    Oja SS, Janáky R, Varga V, Saransaari P (2000) Modulation of glutamate receptor functions by glutathione. Neurochem Int 37:299–306, PMID: 10812215PubMedGoogle Scholar
  149. 149.
    Varga V, Jenei Z, Janáky R, Saransaari P, Oja SS (1997) Glutathione is an endogenous ligand of rat brain N-methyl-d-aspartate (NMDA) and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. Neurochem Res 22:1165–71, PMID: 9251108PubMedGoogle Scholar
  150. 150.
    Matsuda T, Shimizu E, Ikehira H, Iyo M, Hashimoto K (2008) Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3 T 1H-MRS study. PLoS One 3:e1944, PMID: 18398470PubMedCentralPubMedGoogle Scholar
  151. 151.
    Janáky R, Ogita K, Pasqualotto BA, Bains JS, Oja SS, Yoneda Y, Shaw CA (1999) Glutathione and signal transduction in the mammalian CNS. J Neurochem 73:889–902, PMID: 10461878PubMedGoogle Scholar
  152. 152.
    Varga V, Janáky R, Marnela KM, Gulyás J, Kontro P, Oja SS (1989) Displacement of excitatory amino acid receptor ligands by acidic oligopeptides. Neurochem Res 14:1223–7, PMID: 2576463PubMedGoogle Scholar
  153. 153.
    Jenei Z, Janáky R, Varga V, Saransaari P, Oja SS (1998) Interference of S-alkyl derivatives of glutathione with brain ionotropic glutamate receptors. Neurochem Res 23:1085–91, PMID: 9704598PubMedGoogle Scholar
  154. 154.
    Gilbert KR, Aizenman E, Reynolds IJ (1991) Oxidized glutathione modulates N-methyl-d-aspartate- and depolarization-induced increases in intracellular Ca2+ in cultured rat forebrain neurons. Neurosci Lett 133:11–4, PMID: 1838798PubMedGoogle Scholar
  155. 155.
    Cooper AJL (1997) Role of astrocytes in maintaining cerebral glutathione homeostasis and in protecting the brain against xenobiotics and oxidative stress. In: Shaw CA (ed) Glutathione in the nervous system. Taylor and Francis, Washington, pp 91-1–115Google Scholar
  156. 156.
    Levy DI, Sucher NJ, Lipton SA (1991) Glutathione prevents N-methyl-d-aspartate receptor-mediated neurotoxicity. Neuroreport 2:345–47, PMID: 1832987PubMedGoogle Scholar
  157. 157.
    Owe SG, Marcaggi P, Attwell D (2006) The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J Physiol 577:591–9, PMID: 17008380PubMedCentralPubMedGoogle Scholar
  158. 158.
    Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–53, PMID: 7891138PubMedGoogle Scholar
  159. 159.
    Tanaka K (2000) Functions of glutamate transporters in the brain. Neurosci Res 37:15–9, PMID: 10802340PubMedGoogle Scholar
  160. 160.
    Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702, PMID: 9180080PubMedGoogle Scholar
  161. 161.
    Takaki J, Fujimori K, Miura M, Suzuki T, Sekino Y, Sato K (2012) l-glutamate released from activated microglia downregulates astrocytic l-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular l-glutamate concentration in neuroinflammation. J Neuroinflammation 9:275. doi:10.1186/1742-2094-9-275. PMID: 23259598 PubMedCentralPubMedGoogle Scholar
  162. 162.
    Bassi MT, Gasol E, Manzoni M, Pineda M, Riboni M, Martin R, Zorzano A, Borsani G, Palacin M (2001) Identification and characterisation of human xCT that co-expresses, with 4 F2 heavy chain, the amino acid transport activity system xc. Pflugers Arch 442:286–96PubMedGoogle Scholar
  163. 163.
    Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y, Makino N, Sugiyama F, Yagami K, Moriguchi T, Takahashi S, Bannai S (2005) Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem 280:37423–9, PMID: 16144837PubMedGoogle Scholar
  164. 164.
    Allen JW, Shanker G, Aschner M (2001) Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons. Brain Res 894:131–40PubMedGoogle Scholar
  165. 165.
    Qin S, Colin C, Hinners I, Gervais A, Cheret C, Mallat M (2006) System Xc- and apolipoprotein E expressed by microglia have opposite effects on the neurotoxicity of amyloid-beta peptide 1-40. J Neurosci 26:3345–56, PMID: 16554485PubMedGoogle Scholar
  166. 166.
    Barger SW, Goodwin ME, Porter MM, Beggs ML (2007) Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem 101:1205–13PubMedCentralPubMedGoogle Scholar
  167. 167.
    Kidd PM (2003) Glutathione: Systemic protectant against oxidative and free radical damage. Alt Med Rev 2:155–76Google Scholar
  168. 168.
    Gardner JM, Aust SD (2009) Quantification of hydroxyl radical produced during phacoemulsification. J Cataract Refract Surg 35:2149–53PubMedGoogle Scholar
  169. 169.
    Sagone AL Jr, Husney RM, O’Dorisio MS, Metz EN (1984) Mechanisms for the oxidation of reduced gluthathione by stimulated granulocytes. Blood 63:96–104PubMedGoogle Scholar
  170. 170.
    Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA (2009) Nitric oxide in cell survival: a Janus molecule. Antioxid Redox Signal 11:2717–39PubMedGoogle Scholar
  171. 171.
    Chang HL, Dedon PC, Deen WM (2008) Kinetic analysis of intracellular concentrations of reactive nitrogen species. Chem Res Toxicol 21:2134–47Google Scholar
  172. 172.
    Siems W, Crifo C, Capuozzo E, Uchida K, Grune T, Salerno C (2010) Metabolism of 4-hydroxy-2-nonenal in human polymorphonuclear leukocytes. Arch Biochem Biophys 503:248–52PubMedGoogle Scholar
  173. 173.
    Zhu X, Gallogly MM, Mieyal JJ, Anderson VE, Sayre LM (2009) Covalent cross-linking of glutathione and carnosine to proteins by 4-oxo-2-nonenal. Chem Res Toxicol 22:1050–9PubMedCentralPubMedGoogle Scholar
  174. 174.
    Lushchak VI (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol 153:175–190PubMedGoogle Scholar
  175. 175.
    Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicol 101:13–30Google Scholar
  176. 176.
    Belrose JC, Xie YF, Gierszewski LJ, MacDonald JF, Jackson MF (2012) Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons. Mol Brain 5:11. doi:10.1186/1756-6606-5-11, PMID: 22487454PubMedCentralPubMedGoogle Scholar
  177. 177.
    Dringen R, Hirrlinger J (2003) Glutathione pathways in the brain. Biol Chem 384:505–16PubMedGoogle Scholar
  178. 178.
    Lu GD, Shen HM, Chung MC, Ong CN (2007) Critical role of oxidative stress and sustained JNK activation in aloe-emodin-mediated apoptotic cell death in human hepatoma cells. Carcinogenesis 28:1937–45, PMID: 17698970PubMedGoogle Scholar
  179. 179.
    Neuschwander-Tetri BA, Bellezzo JM, Britton RS, Bacon BR, Fox ES (1996) Thiol regulation of endotoxin-induced release of tumour necrosis factor alpha from isolated rat Kupffer cells. Biochem J 320:1005–10, PMID: 9003392PubMedCentralPubMedGoogle Scholar
  180. 180.
    Nikulina MA, Andersen HU, Karlsen AE, Darville MI, Eizirik DL, Mandrup-Poluson T (2000) Glutathione depletion inhibits interleukin 1 beta-stimulated nitric oxide production by reducing inducible nitric oxide synthase gene expression. Cytokine+ 12:1391–4PubMedGoogle Scholar
  181. 181.
    Peristeris P, Clark BD, Gatti S, Faggini R, Mantovani A, Mengozzi M, Orencole SF, Sironi M, Ghezzi P (1992) N-acetylcysteine and glutathione as inhibitors of tumour necrosis factor production. Cell Immunol 140:390–9PubMedGoogle Scholar
  182. 182.
    Robinson MK, Roderick ML, Jacobs DO, Rounds JD, Collins KH, Saporoschetz IB, Mannick JA, Wilmore DW (1993) Glutathione depletion in rats impairs T-cell and macrophage immune function. Arch Surg 128:29–35PubMedGoogle Scholar
  183. 183.
    Komatsu H, Hoshino A, Funayama M, Kawahara K, Obala F (2003) Oxidative modulation of the glutathione-redox couple enhances lipopolysaccharide-induced interleukin 12 P40 production by a mouse macrophage cell line, J774A.1. Free Radic Res 37:293–9PubMedGoogle Scholar
  184. 184.
    Grimble RF (2006) The effects of sulfur amino acid intake on immune function in humans. J Nutr 136:1660S–5S, PMID: 16702336PubMedGoogle Scholar
  185. 185.
    Peterson JD, Herzenberg LA, Vasquez K, Waltenbaugh C (1998) Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proc Natl Acad Sci U S A 95:3071–6, PMID: 9501217PubMedCentralPubMedGoogle Scholar
  186. 186.
    Won HY, Sohn JH, Min HJ, Lee K, Woo HA, Ho YS, Park JW, Rhee SG, Hwang ES (2010) Glutathione peroxidase 1 deficiency attenuates allergen-induced airway inflammation by suppressing Th2 and Th17 cell development. Antioxid Redox Signal 13:575–87. doi:10.1089/ars.2009.2989, PMID: 20367278PubMedGoogle Scholar
  187. 187.
    Li W, Busu C, Circu ML, Aw TY (2012) Glutathione in cerebral microvascular endothelial biology and pathobiology: implications for brain homeostasis. Int J Cell Biol 2012:434971. doi:10.1155/2012/434971, PMID: 22745639PubMedCentralPubMedGoogle Scholar
  188. 188.
    Velu CS, Niture SK, Doneanu CE, Pattabiraman N, Srivenugopal KS (2007) Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochem 46:7765–80, PMID: 17555331Google Scholar
  189. 189.
    Qanungo S, Starke DW, Pai HV, Mieyal JJ, Nieminen AL (2007) Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB. J Biol Chem 282:18427–36, PMID: 17468103PubMedGoogle Scholar
  190. 190.
    Staal FJ (1998) Glutathione and HIV infection: reduced reduced, or increased oxidized? Eur J Clin Invest 28:194–6, PMID: 9568464PubMedGoogle Scholar
  191. 191.
    Kurdi M, Sivakumaran V, Duhé RJ, Aon MA, Paolocci N, Booz GW (2012) Depletion of cellular glutathione modulates LIF-induced JAK1-STAT3 signaling in cardiac myocytes. Int J Biochem Cell Biol 44:2106–15. doi:10.1016/j.biocel.2012.08.016, PMID: 22939972PubMedCentralPubMedGoogle Scholar
  192. 192.
    Zeevalk GD, Manzino L, Sonsalla PK, Bernard LP (2007) Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: relevance to Parkinson’s disease. Exp Neurol 203(2):512–20, PMID: 17049515PubMedCentralPubMedGoogle Scholar
  193. 193.
    Shen H, Liu Z (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Rad Biol Med 40:928–39PubMedGoogle Scholar
  194. 194.
    Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 101:665–70PubMedCentralPubMedGoogle Scholar
  195. 195.
    Garcia-Gimenez JL, Markovic J, Dasi F, Queval G, Schnaubelt D, Foyer CH, Pallardo FV (2013) Nuclear glutathione. Biochim Biophys Acta 1830:3304–16PubMedGoogle Scholar
  196. 196.
    Markovic J, Mora NJ, Broseta AM, Gimeno A, de-la Concepción N, Vina J, Pallardo FV (2009) The depletion of nuclear glutathione impairs cell proliferation in 3 t3 fibroblasts. PLoS One 4:e6413. doi:10.1371/journal.pone.0006413 PubMedCentralPubMedGoogle Scholar
  197. 197.
    Takahashi T, Tabuchi T, Tamaki Y, Kosaka K, Takikawa Y, Satoh T (2009) Carnosic acid and carnosol inhibit adipocyte differentiation in mouse 3 T3-L1 cells through induction of phase2 enzymes and activation of glutathione metabolism. Biochem Biophys Res Commun 382:549–54. doi:10.1016/j.bbrc.2009.03.059, PMID: 19289108PubMedGoogle Scholar
  198. 198.
    Messina JP, Lawrence DA (1989) Cell cycle progression of glutathione-depleted human peripheral blood mononuclear cells is inhibited at S phase. J Immunol 143:1974–81, PMID: 2789253PubMedGoogle Scholar
  199. 199.
    Markovic J, Borrás C, Ortega A, Sastre J, Viña J, Pallardó FV (2007) Glutathione is recruited into the nucleus in early phases of cell proliferation. J Biol Chem 282:20416–24, PMID: 17452333PubMedGoogle Scholar
  200. 200.
    Atkuri KR, Cowan TM, Kwan T, Ng A, Herzenberg LA, Herzenberg LA, Enns GM (2009) Inherited disorders affecting mitochondrial function are associated with glutathione deficiency and hypocitrullinemia. Proc Natl Acad Sci U S A 106:3941–5. doi:10.1073/pnas.0813409106, PMID: 19223582PubMedCentralPubMedGoogle Scholar
  201. 201.
    Vali S, Mythri RB, Jagatha B, Padiadpu J, Ramanujan KS, Andersen JK, Gorin F, Bharath MM (2007) Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson’s disease: a dynamic model. Neuroscience 149:917–30, PMID: 17936517PubMedGoogle Scholar
  202. 202.
    Hargreaves IP, Sheena Y, Land JM, Heales SJ (2005) Glutathione deficiency in patients with mitochondrial disease: implications for pathogenesis and treatment. J Inherit Metab Dis 28:81–8, PMID: 15702408PubMedGoogle Scholar
  203. 203.
    Pastore A, Petrillo S, Tozzi G, Carrozzo R, Martinelli D, Dionisi-Vici C, Di Giovamberardino G, Ceravolo F, Klein MB, Miller G, Enns GM, Bertini E, Piemonte F (2013) Glutathione: a redox signature in monitoring EPI-743 therapy in children with mitochondrial encephalomyopathies. Mol Genet Metab 109:208–14. doi:10.1016/j.ymgme.2013.03.011, PMID: 23583222PubMedGoogle Scholar
  204. 204.
    Salmi H, Leonard JV, Rahman S, Lapatto R (2012) Plasma thiol status is altered in children with mitochondrial diseases. Scand J Clin Lab Invest 72:152–7. doi:10.3109/00365513.2011.646299, PMID: 22208644PubMedGoogle Scholar
  205. 205.
    Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA (2007) N-acetylcysteine—a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol 7:355–9, PMID: 17602868PubMedGoogle Scholar
  206. 206.
    Waly MI, Hornig M, Trivedi M, Hodgson N, Kini R, Ohta A, Deth R (2012) Prenatal and postnatal epigenetic programming: implications for GI, immune, and neuronal function in autism. Autism Res Treat 2012:190930. doi:10.1155/2012/190930, PMID: 22934169PubMedCentralPubMedGoogle Scholar
  207. 207.
    Kang PT, Zhang L, Chen CL, Chen J, Green KB, Chen YR (2012) Protein thiyl radical mediates S-glutathionylation of complex I. Free Radic Biol Med 53:962–73. doi:10.1016/j.freeradbiomed.2012.05.025, PMID: 22634394PubMedCentralPubMedGoogle Scholar
  208. 208.
    Townsend DM, Manevich Y, He L, Hutchens S, Pazoles CJ, Tew KD (2009) Novel role for glutathione S-transferase piRegulator of protein S-glutathionylation following oxidative and nitrosative stress. J Biol Chem 284:436–45. doi:10.1074/jbc.M805586200, PMID: 18990698PubMedCentralPubMedGoogle Scholar
  209. 209.
    Borutaite V, Brown GC (2007) Mitochondrial regulation of caspase activation by cytochrome oxidase and tetramethylphenylenediamine via cytosolic cytochrome c redox state. J Biol Chem 282:31124–30, PMID: 17690099PubMedGoogle Scholar
  210. 210.
    Vaughn AE, Deshmukh M (2008) Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c. Nat Cell Biol 10:1477–83. doi:10.1038/ncb1807, PMID: 19029908PubMedCentralPubMedGoogle Scholar
  211. 211.
    Kizhakkayil J, Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S (2012) Glutathione regulates caspase-dependent ceramide production and curcumin-induced apoptosis in human leukemic cells. Free Radic Biol Med 52:1854–64. doi:10.1016/j.freeradbiomed.2012.02.026, PMID: 22387197PubMedGoogle Scholar
  212. 212.
    Martín SF, Sawai H, Villalba JM, Hannun YA (2007) Redox regulation of neutral sphingomyelinase-1 activity in HEK293 cells through a GSH-dependent mechanism. Arch Biochem Biophys 459:295–300, PMID: 17169322PubMedGoogle Scholar
  213. 213.
    Lou H, Kaplowitz N (2007) Glutathione depletion down-regulates tumor necrosis factor alpha-induced NF-kappaB activity via IkappaB kinase-dependent and -independent mechanisms. J Biol Chem 282:29470–81, PMID: 17690092PubMedGoogle Scholar
  214. 214.
    Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16:1303–14. doi:10.1038/cdd.2009.107, PMID: 19662025PubMedGoogle Scholar
  215. 215.
    Allen EM, Mieyal JJ (2012) Protein-thiol oxidation and cell death: regulatory role of glutaredoxins. Antioxid Redox Signal 17:1748–63. doi:10.1089/ars.2012.4644, PMID: 22530666PubMedCentralPubMedGoogle Scholar
  216. 216.
    Franco R, Panayiotidis MI, Cidlowski JA (2007) Glutathione depletion is necessary for apoptosis in lymphoid cells independent of reactive oxygen species formation. J Biol Chem 282:30452–65, PMID: 17724027PubMedCentralPubMedGoogle Scholar
  217. 217.
    Ji L, Shen K, Jiang P, Morahan G, Wang Z (2011) Critical roles of cellular glutathione homeostasis and jnk activation in andrographolide-mediated apoptotic cell death in human hepatoma cells. Mol Carcinog 50:580–91. doi:10.1002/mc.20741, PMID: 21319226PubMedGoogle Scholar
  218. 218.
    Yue P, Zhou Z, Khuri FR, Sun SY (2006) Depletion of intracellular glutathione contributes to JNK-mediated death receptor 5 upregulation and apoptosis induction by the novel synthetic triterpenoid methyl-2-cyano-3, 12-dioxooleana-1, 9-dien-28-oate (CDDO-Me). Cancer Biol Ther 5:492–7, PMID: 16582599PubMedGoogle Scholar
  219. 219.
    Haouzi D, Lekehal M, Tinel M, Vadrot N, Caussanel L, Lettéron P, Moreau A, Feldmann G, Fau D, Pessayre D (2001) Prolonged, but not acute, glutathione depletion promotes Fas-mediated mitochondrial permeability transition and apoptosis in mice. Hepatology 33:1181–8PubMedGoogle Scholar
  220. 220.
    Armstrong JS, Jones DP (2002) Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. FASEB J 16:1263–5, PMID: 12060676PubMedGoogle Scholar
  221. 221.
    Chernyak BV (1997) Redox regulation of the mitochondrial permeability transition pore. Biosci Rep 17:293–302, PMID: 9337484PubMedGoogle Scholar
  222. 222.
    Sato T, Machida T, Takahashi S, Iyama S, Sato Y, Kuribayashi K, Takada K, Oku T, Kawano Y, Okamoto T, Takimoto R, Matsunaga T, Takayama T, Takahashi M, Kato J, Niitsu Y (2004) Fas-mediated apoptosome formation is dependent on reactive oxygen species derived from mitochondrial permeability transition in Jurkat cells. J Immunol 173:285–96, PMID: 15210786PubMedGoogle Scholar
  223. 223.
    D’Alessio M, De Nicola M, Coppola S, Gualandi G, Pugliese L, Cerella C, Cristofanon S, Civitareale P, Ciriolo MR, Bergamaschi A, Magrini A, Ghibelli L (2005) Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis. FASEB J 19:1504–6, PMID: 15972297PubMedGoogle Scholar
  224. 224.
    Kanno T, Nishizaki T (2001) Sphingosine induces apoptosis in hippocampal neurons and astrocytes by activating caspase-3/-9 via a mitochondrial pathway linked to SDK/14-3-3 protein/Bax/cytochrome c. J Cell Physiol 226:2329–37. doi:10.1002/jcp.22571, PMID: 21660956Google Scholar
  225. 225.
    Guha P, Dey A, Sen R, Chatterjee M, Chattopadhyay S, Bandyopadhyay SK (2011) Intracellular GSH depletion triggered mitochondrial Bax translocation to accomplish resveratrol-induced apoptosis in the U937 cell line. J Pharmacol Exp Ther 336:206–14. doi:10.1124/jpet.110.171983, PMID: 20876229PubMedGoogle Scholar
  226. 226.
    Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, Wieckowski MR, Pinton P (2012) Mitochondrial Ca(2+) and apoptosis. Cell Calcium 52:36–43. doi:10.1016/j.ceca.2012.02.008, PMID: 22480931PubMedCentralPubMedGoogle Scholar
  227. 227.
    Jin M, Yaung J, Kannan R, He S, Ryan SJ, Hinton DR (2005) Hepatocyte growth factor protects RPE cells from apoptosis induced by glutathione depletion. Invest Ophthalmol Vis Sci 46:4311–19, PMID: 16249513PubMedGoogle Scholar
  228. 228.
    Robillard JM, Gordon GR, Choi HB, Christie BR, MacVicar BA (2011) Glutathione restores the mechanism of synaptic plasticity in aged mice to that of the adult. PLoS One 6:e20676. doi:10.1371/journal.pone.0020676, PMID: 21655192PubMedCentralPubMedGoogle Scholar
  229. 229.
    Steullet P, Neijt HC, Cuénod M, Do KQ (2006) Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: relevance to schizophrenia. Neuroscience 137:807–19, PMID: 16330153PubMedGoogle Scholar
  230. 230.
    Abramov AY, Canevari L, Duchen MR (2003) Changes in intracellular calcium and glutathione in astrocytes as the primary mechanism of amyloid neurotoxicity. J Neurosci 23:5088–95, PMID: 12832532PubMedGoogle Scholar
  231. 231.
    Dallas M, Boycott HE, Atkinson L, Miller A, Boyle JP, Pearson HA, Peers C (2007) Hypoxia suppresses glutamate transport in astrocytes. J Neurosci 27:3946–55, PMID: 17428968PubMedGoogle Scholar
  232. 232.
    Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT (1989) Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2:1547–58, PMID: 2576375PubMedGoogle Scholar
  233. 233.
    Juurlink BH (1997) Response of glial cells to ischemia: roles of reactive oxygen species and glutathione. Neurosci Biobehav Rev 21:151–66, PMID: 9062938PubMedGoogle Scholar
  234. 234.
    Stewart VC, Stone R, Gegg ME, Sharpe MA, Hurst RD, Clark JB, Heales SJ (2002) Preservation of extracellular glutathione by an astrocyte derived factor with properties comparable to extracellular superoxide dismutase. J Neurochem 83:984–91, PMID: 12421371PubMedGoogle Scholar
  235. 235.
    Dringen R, Pfeiffer B, Hamprecht B (1999) Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione. J Neurosci 19:562–9, PMID: 9880576PubMedGoogle Scholar
  236. 236.
    Dringen R, Gutterer JM, Gros C, Hirrlinger J (2001) Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. J Neurosci Res 66:1003–8, PMID: 11746430PubMedGoogle Scholar
  237. 237.
    Aoyama K, Watabe M, Nakaki T (2008) Regulation of neuronal glutathione synthesis. J Pharmacol Sci 108:227–38, PMID: 19008644PubMedGoogle Scholar
  238. 238.
    Lertratanangkoon K, Wu CJ, Savaraj N, Thomas ML (1997) Alterations of DNA methylation by glutathione depletion. Cancer Lett 120:149–56, PMID: 9461031PubMedGoogle Scholar
  239. 239.
    Campos AC, Molognoni F, Melo FH, Galdieri LC, Carneiro CR, D’Almeida V, Correa M, Jasiulionis MG (2007) Oxidative stress modulates DNA methylation during melanocyte anchorage blockade associated with malignant transformation. Neoplasia 9:1111–21, PMID: 18084618PubMedCentralPubMedGoogle Scholar
  240. 240.
    Hartnett L, Egan LJ (2012) Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis 33:723–31. doi:10.1093/carcin/bgs006, PMID: 22235026PubMedGoogle Scholar
  241. 241.
    Wachsman JT (1997) DNA methylation and the association between genetic and epigenetic changes: relation to carcinogenesis. Mutat Res 375:1–8, PMID: 9129674PubMedGoogle Scholar
  242. 242.
    Weitzman SA, Turk PW, Milkowski DH, Kozlowski K (1994) Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci U S A 91:1261–4, PMID: 8108398PubMedCentralPubMedGoogle Scholar
  243. 243.
    Kuchino Y, Mori F, Kasai H, Inoue H, Iwai S, Miura K, Ohtsuka E, Nishimura S (1987) Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature 327:77–9, PMID: 3574469PubMedGoogle Scholar
  244. 244.
    Hitchler MJ, Domann FE (2007) An epigenetic perspective on the free radical theory of development. Free Radic Biol Med 43:1023–36, PMID: 17761298PubMedCentralPubMedGoogle Scholar
  245. 245.
    McCaddon A, Regland B, Hudson P, Davies G (2002) Functional vitamin B(12) deficiency and Alzheimer disease. Neurology 58:1395–9, PMID: 12011287PubMedGoogle Scholar
  246. 246.
    Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M (2008)) How environmenta and genetic factors combine to cause autism: a redox/methylation hypothesis. Neurotoxicol 29:190–201, PMID: 1803-1821Google Scholar
  247. 247.
    Looney JM, Childs HM (1934) The lactic acid and glutathione content of the blood of schizophrenic patients. J Clin Invest 13:963–8, PMID: 16694262PubMedCentralPubMedGoogle Scholar
  248. 248.
    Rybka J, Kędziora-Kornatowska K, Banaś-Leżańska P, Majsterek I, Carvalho LA, Cattaneo A, Anacker C, Kędziora J (2013) Interplay between the pro-oxidant and antioxidant systems and proinflammatory cytokine levels, in relation to iron metabolism and the erythron in depression. Free Radic Biol Med 63:187–194. doi:10.1016/j.freeradbiomed.2013.05.019, PMID: 23707456PubMedGoogle Scholar
  249. 249.
    Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2011) Lower whole blood glutathione peroxidase (GPX) activity in depression, but not in myalgic encephalomyelitis/chronic fatigue syndrome: another pathway that may be associated with coronary artery disease and neuroprogression in depression. Neuro Endocrinol Lett 32:133–40, PMID: 21552194PubMedGoogle Scholar
  250. 250.
    Kaddurah-Daouk R, Yuan P, Boyle SH, Matson W, Wang Z, Zeng ZB, Zhu H, Dougherty GG, Yao JK, Chen G, Guitart X, Carlson PJ, Neumeister A, Zarate C, Krishnan RR, Manji HK, Drevets W (2012) Cerebrospinal fluid metabolome in mood disorders-remission state has a unique metabolic profile. Sci Rep 2:667, PMID: 22993692PubMedCentralPubMedGoogle Scholar
  251. 251.
    Stefanescu C, Ciobica A (2012) The relevance of oxidative stress status in first episode and recurrent depression. J Affect Disorder 20;143(1-3):34–8. doi:10.1016/j.jad.2012.05.022 Google Scholar
  252. 252.
    Gibson SA, Korade Ž, Shelton RC (2012) Oxidative stress and glutathione response in tissue cultures from persons with major depression. J Psychiatr Res 46:1326–32. doi:10.1016/j.jpsychires.2012.06.008, PMID: 22841833PubMedCentralPubMedGoogle Scholar
  253. 253.
    Gawryluk JW, Wang JF, Andreazza AC, Shao L, Yatham LN, Young LT (2011) Prefrontal cortex glutathione S-transferase levels in patients with bipolar disorder, major depression and schizophrenia. Int J Neuropsychopharmacol 14:1069–74. doi:10.1017/S1461145711000617, PMID: 21733244PubMedGoogle Scholar
  254. 254.
    Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14:123–30. doi:10.1017/S1461145710000805, PMID: 20633320PubMedGoogle Scholar
  255. 255.
    Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ (2012) Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2:e134. doi:10.1038/tp.2012.61, PMID: 22781167PubMedCentralPubMedGoogle Scholar
  256. 256.
    Mathew SJ, Murrough JW, Mao X, Pillemer S, Shungu DC (2010) Proton magnetic resonance spectroscopy measurement of brain glutathione supports increased oxidative stress in major depressive Ddsorder. 49th American College of Neuropsychopharmacology Annual Meeting, Miami, Fl., December 5. Poster Session 1: 153Google Scholar
  257. 257.
    Do KQ, Trabesinger AH, Kirsten-Krüger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P, Cuénod M (2000) Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur J Neurosci 12:3721–8, PMID: 11029642PubMedGoogle Scholar
  258. 258.
    Matsuzawa D, Obata T, Shirayama Y, Nonaka H, Kanazawa Y, Yoshitome E, Takanashi J, Matsuda T, Shimizu E, Ikehira H, Iyo M, Hashimoto K (2008) Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3 T 1H-MRS study. PLoS One 3:e1944, PMID: 18398470PubMedCentralPubMedGoogle Scholar
  259. 259.
    Berk M, Johansson S, Wray NR, Williams L, Olsson C, Haavik J, Bjerkeset O (2011) Glutamate cysteine ligase (GCL) and self reported depression: an association study from the HUNT. J Affect Disord 131:207–13. doi:10.1016/j.jad.2010.12.019, PMID: 21277635PubMedGoogle Scholar
  260. 260.
    Maes M, Van de Vyvere J, Vandoolaeghe E, Bril T, Demedts P, Wauters A, Neels H (1996) Alterations in iron metabolism and the erythron in major depression: further evidence for a chronic inflammatory process. J Affect Disord 40:23–33. doi:10.1016/0165-0327(96)00038-9. PMID: 8882911 PubMedGoogle Scholar
  261. 261.
    Edwards R, Peet M, Shay J, Horrobin D (1998) Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J Affect Disord 48:149–55. doi:10.1016/S0165-0327(97)00166-3. PMID: 9543204 PubMedGoogle Scholar
  262. 262.
    Peet M, Murphy B, Shay J, Horrobin D (1998) Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatry 43:315–9, PMID: 9513745PubMedGoogle Scholar
  263. 263.
    Richards RS, Wang L, Jelinek H (2007) Erythrocyte oxidative damage in chronic fatigue syndrome. Arch Med Res 38:94–8PubMedGoogle Scholar
  264. 264.
    Raftos JE, Whillier S, Kuchel PW (2010) Glutathione synthesis and turnover in the human erythrocyte: alignment of a model based on detailed enzyme kinetics with experimental data. J Biol Chem 285:23557–67. doi:10.1074/jbc.M109.067017, PMID: 20498365PubMedCentralPubMedGoogle Scholar
  265. 265.
    Tavazzi B, Amorini AM, Fazzina G, Di Pierro D, Tuttobene M, Giardina B, Lazzarino G (2001) Oxidative stress induces impairment of human erythrocyte energy metabolism through the oxygen radical-mediated direct activation of AMP-deaminase. J Biol Chem 276:48083–92, PMID: 11675377PubMedGoogle Scholar
  266. 266.
    Pandey KB, Rizvi SI (2010) Markers of oxidative stress in erythrocytes and plasma during aging in humans. Oxid Med Cell Longev 3:2–12. doi:10.4161/oxim.3.1.10476, PMID: 20716923PubMedCentralPubMedGoogle Scholar
  267. 267.
    Morris G, Maes M (2013) Case definitions and diagnostic criteria for myalgic encephalomyelitis and chronic fatigue syndrome: from clinical-consensus to evidence-based case definitions. Neuro-Endocrinol Lett 34:185–99, PMID: 23685416PubMedGoogle Scholar
  268. 268.
    Shungu DC, Weiduschat N, Murrough JW, Mao X, Pillemer S, Dyke JP, Medow MS, Natelson BH, Stewart JM, Mathew SJ (2012) Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed 25:1073–87. doi:10.1002/nbm.2772, PMID: 22281935PubMedCentralPubMedGoogle Scholar
  269. 269.
    Puri BK, Agour M, Gunatilake KD, Fernando KA, Gurusinghe AI, Treasaden IH (2009) An in vivo proton neurospectroscopy study of cerebral oxidative stress in myalgic encephalomyelitis (chronic fatigue syndrome). Prostaglandins Leukot Essent Fatty Acids 81:303–5. doi:10.1016/j.plefa.2009.10.002, PMID: 19906518PubMedGoogle Scholar
  270. 270.
    Kennedy G, Spence VA, McLaren M, Hill A, Underwood C, Belch JJ (2005) Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Biol Med 39:584–9, PMID: 16085177PubMedGoogle Scholar
  271. 271.
    Richards RS, Roberts TK, Dunstan RH, McGregor NR, Butt HL (2000) Free radicals in chronic fatigue syndrome: cause or effect? Redox Rep 5:146–7PubMedGoogle Scholar
  272. 272.
    Fulle S, Mecocci P, Fanó G, Vecchiet I, Vecchini A, Racciotti D, Cherubini A, Pizzigallo E, Vecchiet L, Senin U, Beal MF (2000) Specific oxidative alterations in vastus lateralis muscle of patients with the diagnosis of chronic fatigue syndrome. Free Radic Biol Med 29:1252–9, PMID: 11118815PubMedGoogle Scholar
  273. 273.
    Logan AC, Wong C (2001) Chronic fatigue syndrome: oxidative stress and dietary modifications. Altern Med Rev 6:450–9, PMID: 11703165PubMedGoogle Scholar
  274. 274.
    Jammes Y, Steinberg JG, Mambrini O, Brégeon F, Delliaux S (2005) Chronic fatigue syndrome: assessment of increased oxidative stress and altered muscle excitability in response to incremental exercise. J Intern Med 257:299–310, PMID: 15715687PubMedGoogle Scholar
  275. 275.
    Bested AC, Saunders PR, Logan AC (2001) Chronic fatigue syndrome: neurological findings may be related to blood–brain barrier permeability. Med Hypotheses 57:231–7, PMID: 11461179PubMedGoogle Scholar
  276. 276.
    Kim HG, Cho JH, Yoo SR, Lee JS, Han JM, Lee NH, Ahn YC, Son CG (2013) Antifatigue effects of Panax ginseng C.A. Meyer: a randomised, double-blind, placebo-controlled trial. PLoS One 8:e61271PubMedCentralPubMedGoogle Scholar
  277. 277.
    Kim HG, Yoo SR, Park HJ, Son CG (2013) Indirect moxibustion (CV4 and CV8) ameliorates chronic fatigue: a randomized, double-blind, controlled study. J Altern Complement Med 19:134–40. doi:10.1089/acm.2011.0503, PMID: 22757691PubMedCentralPubMedGoogle Scholar
  278. 278.
    Ding W, Liu Y (2011) Genistein attenuates genioglossus muscle fatigue under chronic intermittent hypoxia by down-regulation of oxidative stress level and up-regulation of antioxidant enzyme activity through ERK1/2 signaling pathway. Oral Dis 17:677–84. doi:10.1111/j.1601-0825.2011.01822.x, PMID: 21729219PubMedGoogle Scholar
  279. 279.
    Liu CZ, Lei B (2012) Effect of acupuncture on serum malonaldehyde content, superoxide dismutase and glutathione peroxidase activity in chronic fatigue syndrome rats. Zhen Ci Yan Jiu 37:38–40, PMID: 22574567PubMedGoogle Scholar
  280. 280.
    Sachdeva AK, Kuhad A, Tiwari V, Chopra K (2009) Epigallocatechin gallate ameliorates chronic fatigue syndrome in mice: behavioral and biochemical evidence. Behav Brain Res 205:414–20. doi:10.1016/j.bbr.2009.07.020, PMID: 19643148PubMedGoogle Scholar
  281. 281.
    Kumar A, Garg R (2009) Protective effects of antidepressants against chronic fatigue syndrome-induced behavioral changes and biochemical alterations. Fundam Clin Pharmacol 23:89–95. doi:10.1111/j.1472-8206.2008.00638.x, PMID: 19207541PubMedGoogle Scholar
  282. 282.
    Kumar A, Garg R (2008) Kumar P (2008) Nitric oxide modulation mediates the protective effect of trazodone in a mouse model of chronic fatigue syndrome. Pharmacol Rep 60(5):664–72, PubMed PMID: 19066412PubMedGoogle Scholar
  283. 283.
    Dhir A, Kulkarni SK (2008) Venlafaxine reverses chronic fatigue-induced behavioral, biochemical and neurochemical alterations in mice. Pharmacol, Biochem Behav 89:563–71. doi:10.1016/j.pbb.2008.02.011, PMID: 18336891Google Scholar
  284. 284.
    Singal A, Kaur S, Tirkey N, Chopra K (2005) Green tea extract and catechin ameliorate chronic fatigue-induced oxidative stress in mice. J Med Food 8:47–52, PMID: 15857209PubMedGoogle Scholar
  285. 285.
    Singh A, Garg V, Gupta S, Kulkarni SK (2002) Role of antioxidants in chronic fatigue syndrome in mice. Indian J Exp Biol 40:1240–4, PMID:13677625PubMedGoogle Scholar
  286. 286.
    Morris G, Maes M (2013) Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics. BMC Med 11:205. doi:10.1186/1741-7015-11-205, PMID: 24229326PubMedCentralPubMedGoogle Scholar
  287. 287.
    Morris G, Maes M (2014) Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis 29(1):19–36PubMedGoogle Scholar
  288. 288.
    Kubera M, Obuchowicz E, Goehler L, Brzeszcz J, Maes M (2011) In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):744–59. doi:10.1016/j.pnpbp.2010.08.026, PubMed PMID: 20828592PubMedGoogle Scholar
  289. 289.
    Vialou V, Feng J, Robison AJ, Nestler EJ (2013) Epigenetic mechanisms of depression and antidepressant action. Annu Rev Pharmacol Toxicol 53:59–87. doi:10.1146/annurev-pharmtox-010611-134540, PMID: 23020296PubMedCentralPubMedGoogle Scholar
  290. 290.
    Menzies V, Lyon DE, Archer KJ, Zhou Q, Brumelle J, Jones KH, Gao G, York TP, Jackson-Cook C (2013) Epigenetic alterations and an increased frequency of micronuclei in women with fibromyalgia. Nurs Res Pract 2013:795784. doi:10.1155/2013/795784, PMID: 24058735PubMedCentralPubMedGoogle Scholar
  291. 291.
    Rönnbäck L, Hansson E (2004) On the potential role of glutamate transport in mental fatigue. J Neuroinflammation 1:22, PMID: 15527505PubMedCentralPubMedGoogle Scholar
  292. 292.
    Moylan S, Maes M, Wray NR, Berk M (2013) The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 18:595–606. doi:10.1038/mp.2012.33, PMID: 22525486PubMedGoogle Scholar
  293. 293.
    Anderson G, Maes M (2013) Oxidative/nitrosative stress and immuno-inflammatory pathways in depression: treatment implications. Curr Pharm Des [Epub ahead of print] PubMed PMID: 24180395.Google Scholar
  294. 294.
    Keane PC, Kurzawa M, Blain PG, Morris CM (2011) Mitochondrial dysfunction in Parkinson’s disease. Parkinsons Dis 2011:716871. doi:10.4061/2011/716871, PMID: 21461368PubMedCentralPubMedGoogle Scholar
  295. 295.
    Hsu M, Srinivas B, Kumar J, Subramanian R, Andersen J (2005) Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson’s disease. J Neurochem 92:1091–103, PMID: 15715660PubMedGoogle Scholar
  296. 296.
    Auchère F, Santos R, Planamente S, Lesuisse E, Camadro JM (2008) Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich’s ataxia. Hum Mol Genet 17:2790–802. doi:10.1093/hmg/ddn178, PMID: 18562474PubMedGoogle Scholar
  297. 297.
    Friedlich AL, Smith MA, Zhu X, Takeda A, Nunomura A, Moreira PI, Perry G (2009) Oxidative stress in Parkinson’s disease. Open Pathology J 3:38–42Google Scholar
  298. 298.
    Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87. doi:10.1016/j.tox.2011.03.001, PMID: 21414382PubMedGoogle Scholar
  299. 299.
    Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–208, PMID: 15892631PubMedGoogle Scholar
  300. 300.
    Morris G, Maes M (2014) Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis 29:19–36. doi:10.1007/s11011-013-9435-x, PMID: 24557875PubMedGoogle Scholar
  301. 301.
    Sadowska AM, Manuel-Y-Keenoy B, De Backer WA (2007) Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review. Pulm Pharmacol Ther 20:9–22, PMID: 16458553PubMedGoogle Scholar
  302. 302.
    Cotgreave IA (1997) N-acetylcysteine: pharmacological considerations and experimental and clinical applications. Adv Pharmacol 38:205–27, PMID: 8895810PubMedGoogle Scholar
  303. 303.
    Jain A, Mårtensson J, Stole E, Auld PA, Meister A (1991) Glutathione deficiency leads to mitochondrial damage in brain. Proc Natl Acad Sci U S A 88:1913–7, PMID: 2000395PubMedCentralPubMedGoogle Scholar
  304. 304.
    Zeevalk GD, Razmpour R, Bernard LP (2008) Glutathione and Parkinson’s disease: is this the elephant in the room? Biomed Pharmacother 62:236–49PubMedGoogle Scholar
  305. 305.
    De Flora S, Bennicelli C, Camoirano A, Serra D, Romano M, Rossi GA, Morelli A, De Flora A (1985) In vivo effects of N-acetylcysteine on glutathione metabolism and on the biotransformation of carcinogenic and/or mutagenic com-pounds. Carcinogenesis 6:1735–45PubMedGoogle Scholar
  306. 306.
    Hoffer E, Baum Y, Tabak A, Taitelman U (1996) N-acetylcysteine increases the glutathione content and protects rat alveolar type II cells against paraquat-induced cytotoxicity. Toxicol Lett 84:7–12PubMedGoogle Scholar
  307. 307.
    Corcoran GB, Wong BK (1986) Role of glutathionein prevention of acetaminophen-induced hepatotoxicity by N-acetyl-l-cysteine in vivo: studies with N-acetyl-d-cysteine in mice. J Pharmacol Exp Ther 238:54–61PubMedGoogle Scholar
  308. 308.
    Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA (2007) N-Acetylcysteine—a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol 7:355–9PubMedGoogle Scholar
  309. 309.
    Samuni Y, Goldstein S, Dean OM, Berk M (2013) The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta 1830:4117–29. doi:10.1016/j.bbagen.2013.04.016 PubMedGoogle Scholar
  310. 310.
    Arranz L, Fernández C, Rodríguez A, Ribera JM, De la Fuente M (2008) The glutathione precursor N-acetylcysteine improves immune function in postmenopausal women. Free Radic Biol Med 45:1252–62. doi:10.1016/j.freeradbiomed.2008.07.014 PubMedGoogle Scholar
  311. 311.
    Banner W Jr, Koch M, Capin DM, Hopf SB, Chang S, Tong TG (1986) Experimental chelation therapy in chromium, lead, and boron intoxication with N-acetylcysteine and other compounds. Toxicol Appl Pharmacol 83:142–7PubMedGoogle Scholar
  312. 312.
    de Quay B, Malinverni R, Lauterburg BH (1992) Glutathione depletion in HIV-infected patients: role of cysteine deficiency and effect of oral N-acetylcysteine. AIDS 6:815–9PubMedGoogle Scholar
  313. 313.
    Akerlund B, Jarstrand C, Lindeke B, Sonnerborg A, Akerblad AC, Rasool O (1996) Effect of n-acetylcysteine (NAC) treatment onHIV-1 infection: a double-blind placebo-controlled trial. Eur J Clin Pharmacol 50:457–61PubMedGoogle Scholar
  314. 314.
    Herzenberg LA, De Rosa SC, Dubs JG, Roederer M, Anderson MT, Ela SW, Deresinski SC, Herzenberg LA (1997) Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci U S A 94:1967–72PubMedCentralPubMedGoogle Scholar
  315. 315.
    Chen F, Lewis W, Hollander JM, Baseler W, Finkel MS (1985) N-acetylcysteine reverses cardiac myocyte dysfunction in HIV-Tat proteinopathy. J Appl Physiol 113:105–13. doi:10.1152/japplphysiol.00068.2012 Google Scholar
  316. 316.
    Berk M, Copolov DL, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Bush AI (2008) N-acetyl cysteine for depressive symptoms in bipolar disorder—a double-blind randomized placebo-controlled trial. Biol Psychiatry 64:468–75. doi:10.1016/j.biopsych.2008.04.022, PMID: 18534556PubMedGoogle Scholar
  317. 317.
    Magalhães PV, Dean OM, Bush AI, Copolov DL, Malhi GS, Kohlmann K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Berk M (2011) N-acetylcysteine for major depressive episodes in bipolar disorder. Rev Bras Psiquiatr 33:374–8, PMID: 22189927PubMedGoogle Scholar
  318. 318.
    Berk M, Dean O, Cotton SM, Gama CS, Kapczinski F, Fernandes BS, Kohlmann K, Jeavons S, Hewitt K, Allwang C, Cobb H, Bush AI, Schapkaitz I, Dodd S, Malhi GS (2011) The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial. J Affect Disord 135:389–94. doi:10.1016/j.jad.2011.06.005 PubMedGoogle Scholar
  319. 319.
    Farokhnia M, Azarkolah A, Adinehfar F, Khodaie-Ardakani MR, Hosseini SM, Yekehtaz H, Tabrizi M, Rezaei F, Salehi B, Sadeghi SM, Moghadam M, Gharibi F, Mirshafiee O, Akhondzadeh S (2013) N-acetylcysteine as an adjunct to risperidone for treatment of negative symptoms in patients with chronic schizophrenia: a randomized, double-blind, placebo-controlled study. Clin Neuropharmacol 36:185–92PubMedGoogle Scholar
  320. 320.
    Ghanizadeh A, Moghimi-Sarani E (2013) A randomized double blind placebo controlled clinical trial of N-acetylcysteine added to risperidone for treating autistic disorders. BMC Psychiatry 13:196. doi:10.1186/1471-244X-13-196 PubMedCentralPubMedGoogle Scholar
  321. 321.
    Child DF, Hudson PR, Jones H, Davies GK, De P, Mukherjee S, Brain AM, Williams CP, Harvey JN (2004) The effect of oral folic acid on glutathione, glycaemia and lipids in type 2 diabetes. Diabetes Nutr Metab 17:95–102PubMedGoogle Scholar
  322. 322.
    Chanson A, Rock E, Martin JF, Liotard A, Brachet P (2007) Preferential response of glutathione-related enzymes to folate-dependent changes in the redox state of rat liver. Eur J Nutr 46:204–12PubMedGoogle Scholar
  323. 323.
    Papakostas GI, Shelton RC, Zajecka JM, Etemad B, Rickels K, Clain A, Baer L, Dalton ED, Sacco GR, Schoenfeld D, Pencina M, Meisner A, Bottiglieri T, Nelson E, Mischoulon D, Alpert JE, Barbee JG, Zisook S, Fava M (2012) l-Methylfolate as adjunctive therapy for SSRI-resistant major depression: results of two randomized, double-blind, parallel-sequential trials. Am J Psychiatry 169:1267–74PubMedGoogle Scholar
  324. 324.
    Reynolds EH (2002) Folic acid, ageing, depression, and dementia. BMJ 324:1512–5, PMID: 12077044PubMedCentralPubMedGoogle Scholar
  325. 325.
    Passeri M, Cucinotta D, Abate G, Senin U, Ventura A, Stramba BM, Diana R, La Greca P, Le Grazie C (1993) Oral 5′-methyltetrahydrofolic acid in senile organic mental disorders with depression: results of a double-blind multicenter study. Aging 5:63–71PubMedGoogle Scholar
  326. 326.
    Fava M, Borus JS, Alpert JE, Nierenberg AA, Rosenbaum JF, Bottiglieri T (1997) Folate, vitamin B12, and homocysteine in major depressive disorder. Am J Psychiatry 154:426–8PubMedGoogle Scholar
  327. 327.
    Guaraldi GP, Fava M, Mazzi F, la Greca P (1993) An open trial of methyltetrahydrofolate in elderly depressed patients. Ann Clin Psychiatry 5:101–5PubMedGoogle Scholar
  328. 328.
    Stahl SM (2007) Novel therapeutics for depression: l-methylfolate as a trimonoamine modulator and antidepressant-augmenting agent. CNS Spectr 12:739–44, PMID: 17934378PubMedGoogle Scholar
  329. 329.
    Liu J (2008) The effects and mechanisms of mitochondrial nutrient alpha-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview. Neurochem Res 33:194–203PubMedGoogle Scholar
  330. 330.
    Valdecantos MP, Pérez-Matute P, González-Muniesa P, Prieto-Hontoria PL, Moreno-Aliaga MJ, Martínez JA (2012) Lipoic acid improves mitochondrial function in nonalcoholic steatosis through the stimulation of sirtuin 1 and sirtuin 3. Obesity (Silver Spring) 20:1974–83Google Scholar
  331. 331.
    Schmelzer C, Lindner I, Rimbach G, Niklowitz P, Menke T, Döring F (2008) Functions of coenzyme Q10 in inflammation and gene expression. Biofactors 32:179–83PubMedGoogle Scholar
  332. 332.
    Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2009) Lower plasma Coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness. Neuro-Endocrinol Lett 30:462–9PubMedGoogle Scholar
  333. 333.
    Aboul-Fotouh S (2013) Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed rats. Pharmacol, Biochem Behav 104:105–12Google Scholar
  334. 334.
    Forester BP, Zuo CS, Ravichandran C, Harper DG, Du F, Kim S, Cohen BM, Renshaw PF (2012) Coenzyme Q10 effects on creatine kinase activity and mood in geriatric bipolar depression. J Geriatr Psychiatry Neurol 25:43–50. doi:10.1177/0891988712436688, PMID: 22467846PubMedGoogle Scholar
  335. 335.
    Jeong YY, Park HJ, Cho YW, Kim EJ, Kim GT, Mun YJ, Lee JD, Shin JH, Sung NJ, Kang D, Han J (2012) Aged red garlic extract reduces cigarette smoke extract-induced cell death in human bronchial smooth muscle cells by increasing intracellular glutathione levels. Phytother Res 26:18–25. doi:10.1002/ptr.3502 PubMedGoogle Scholar
  336. 336.
    Rodríguez-Ramiro I, Ramos S, Bravo L, Goya L, Martín MÁ (2011) Procyanidin B2 and a cocoa polyphenolic extract inhibit acrylamide-induced apoptosis in human Caco-2 cells by preventing oxidative stress and activation of JNK pathway. J Nutr Biochem 22:1186–94. doi:10.1016/j.jnutbio.2010.10.005 PubMedGoogle Scholar
  337. 337.
    Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL (2013) The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1:45–9, PMID: 24024136PubMedCentralPubMedGoogle Scholar
  338. 338.
    Maes M, Fišar Z, Medina M, Scapagnini G, Nowak G, Berk M (2012) New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates–Nrf2 activators and GSK-3 inhibitors. Inflammopharmacol 20:127–50Google Scholar
  339. 339.
    Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–60PubMedGoogle Scholar
  340. 340.
    Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99:11908–13PubMedCentralPubMedGoogle Scholar
  341. 341.
    Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A, Biswal S (2009) Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 46:443–53. doi:10.1016/j.freeradbiomed.2008.10.040 PubMedCentralPubMedGoogle Scholar
  342. 342.
    Tsai CC, Chen HS, Chen SL, Ho YP, Ho KY, Wu YM, Hung CC (2005) Lipid peroxidation: a possible role in the induction and progression of chronic periodontitis. J Periodontal Res 40:378–84PubMedGoogle Scholar
  343. 343.
    Dias VV, Brissos S, Cardoso C, Andreazza AC, Kapczinski F (2009) Serum homocysteine levels and cognitive functioning in euthymic bipolar patients. J Affect Disord 113:285–90PubMedGoogle Scholar
  344. 344.
    Godman CA, Chheda KP, Hightower LE, Perdrizet G, Shin DG, Giardina C (2010) Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones 15:431–42PubMedCentralPubMedGoogle Scholar
  345. 345.
    Thom SR (1985) Oxidative stress is fundamental to hyperbaric oxygen therapy. J Appl Physiol 106:988–95. doi:10.1152/japplphysiol.91004.2008, PMID: 18845776Google Scholar
  346. 346.
    Soejima Y, Ostrowski RP, Manaenko A, Fujii M, Tang J, Zhang JH (2012) Hyperbaric oxygen preconditioning attenuates hyperglycemia enhanced hemorrhagic transformation after transient MCAO in rats. Med Gas Res 2:9PubMedCentralPubMedGoogle Scholar
  347. 347.
    Avtan SM, Kaya M, Orhan N, Arslan A, Arican N, Toklu AS, Gürses C, Elmas I, Kucuk M, Ahishali B (2011) The effects of hyperbaric oxygen therapy on blood-brain barrier permeability in septic rats. Brain Res 1412:63–72. doi:10.1016/j.brainres.2011.07.020 PubMedGoogle Scholar
  348. 348.
    Haapaniemi T, Sirsjö A, Nylander G, Larsson J (1995) Hyperbaric oxygen treatment attenuates glutathione depletion and improves metabolic restitution in postischemic skeletal muscle. Free Radic Res 23:91–101PubMedGoogle Scholar
  349. 349.
    Purucker E, Lutz J (1992) Effect of hyperbaric oxygen treatment and perfluorochemical administration on glutathione status of the lung. Adv Exp Med Biol 317:131–6PubMedGoogle Scholar
  350. 350.
    Li Q, Li J, Zhang L, Wang B, Xiong L (2007) Preconditioning with hyperbaric oxygen induces tolerance against oxidative injury via increased expression of heme oxygenase-1 in primary cultured spinal cord neurons. Life Sci 80:1087–93. doi:10.1016/j.lfs.2006.11.043 PubMedGoogle Scholar
  351. 351.
    Rothfuss A, Speit G (2002) Investigations on the mechanism of hyperbaric oxygen (HBO)-induced adaptive protection against oxidative stress. Mutat Res 508:157–65PubMedGoogle Scholar
  352. 352.
    Speit G, Dennog C, Eichhorn U, Rothfuss A, Kaina B (2000) Induction of heme oxygenase-1 and adaptive protection against the induction of DNA damage after hyperbaric oxygen treatment. Carcinogenesis 21:1795–9PubMedGoogle Scholar
  353. 353.
    Surh YJ, Kundu JK, Na HK (2008) Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 74:1526–39PubMedGoogle Scholar
  354. 354.
    Biswas SK, McClure D, Jimenez LA, Megson IL, Rahman I (2005) Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal 7:32–41PubMedGoogle Scholar
  355. 355.
    Kode A, Rajendrasozhan S, Caito S, Yang SR, Megson IL, Rahman I (2008) Resveratrol induces glutathione synthesis by activation of Nrf2 and protects against cigarette smokemediated oxidative stress in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 294:L478–488PubMedGoogle Scholar
  356. 356.
    Garg R, Gupta S, Maru GB (2008) Dietary curcumin modulates transcriptional regulators of phase I and phase II enzymes in benzo[a]pyrene-treated mice: mechanism of its anti-initiating action. Carcinogenesis 29:1022–32PubMedGoogle Scholar
  357. 357.
    Natarajan VT, Singh A, Kumar AA (2010) Transcriptional upregulation of Nrf2-dependent phase II detoxification genes in the involved epidermis of vitiligo vulgaris. J Invest Dermatol 130:2781–9PubMedGoogle Scholar
  358. 358.
    Shen G, Xu C, Hu R (2006) Modulation of nuclear factor E2-related factor 2-mediated gene expression in mice liver and small intestine by cancer chemopreventive agent curcumin. Mol Cancer Ther 5:39–51PubMedGoogle Scholar
  359. 359.
    McNally SJ, Harrison EM, Ross JA, Garden OJ, Wigmore SJ (2007) Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p38 activation and phosphatase inhibition. Int J Mol Med 19:165–72PubMedGoogle Scholar
  360. 360.
    Rushworth SA, Ogborne RM, Charalambos CA, O’Connell MA (2006) Role of protein kinase C δ in curcumin-induced antioxidant response element-mediated gene expression in human monocytes. Biochem Biophys Res Commun 341:1007–16PubMedGoogle Scholar
  361. 361.
    Sanmukhani J, Satodia V, Trivedi J, Patel T, Tiwari D, Panchal B, Goel A, Tripathi CB (2013) Efficacy and safety of curcumin in major depressive disorder: a randomized controlled trial. Phytother Res doi:. doi:10.1002/ptr.5025 Google Scholar
  362. 362.
    Kulkarni S, Dhir A, Akula KK (2009) Potentials of curcumin as an antidepressant. Sci World J 9:1233–41. doi:10.1100/tsw.2009.137 Google Scholar
  363. 363.
    Gupta A, Vij G, Sharma S, Tirkey N, Rishi P, Chopra K (2009) Curcumin, a polyphenolic antioxidant, attenuates chronic fatigue syndrome in murine water immersion stress model. Immunobiol 214:33–9Google Scholar
  364. 364.
    Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, De Galarreta CM, Cuadrado A (2004) Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 279:8919–29PubMedGoogle Scholar
  365. 365.
    Kong AN, Yu R, Hebbar V, Chen C, Owuor E, Hu R, Ee R, Mandlekar S (2001) Signal transduction events elicited by cancer prevention compounds. Mutat Res 480–481:231–41PubMedGoogle Scholar
  366. 366.
    Wondrak GT, Cabello CM, Villeneuve NF, Zhang S, Ley S, Li Y, Sun Z, Zhang DD (2008) Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress. Free Radic Biol Med 45:385–95PubMedCentralPubMedGoogle Scholar
  367. 367.
    Moriya J, Chen R, Yamakawa J, Sasaki K, Ishigaki Y, Takahshi T (2011) Resveratrol improves hippocampal atrophy in chronic fatigue mice by enhancing neurogenesis and inhibiting apoptosis of granular cells. Biol Pharm Bull 34:354–9PubMedGoogle Scholar
  368. 368.
    Niu K, Hozawa A, Kuriyama S, Ebihara S, Guo HM, Nakaya N, Ohmori-Matsuda K, Takahashi H, Masamune Y, Asada M, Sasaki S, Arai H, Awata S, Nagatomi R, Tsuji I (2009) Green tea consumption is associated with depressive symptoms in the elderly. Am J Clin Nutr 90:1615–22PubMedGoogle Scholar
  369. 369.
    Han SG, Han SS, Toborek M, Hennig B (2012) EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicol Appl Pharmacol 261:181–8PubMedCentralPubMedGoogle Scholar
  370. 370.
    Steele ML, Fuller S, Patel M, Kersaitis C, Ooi L, Münch G (2013) Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biol 1:441–5. doi:10.1016/j.redox.2013.08.006 PubMedCentralPubMedGoogle Scholar
  371. 371.
    Lin SX, Lisi L, Russo CD, Polak PE, Sharp A, Weinberg G, Kalinin S, Feinstein DL (2011) The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1. ASN Neuro 3:e00055. doi:10.1042/AN20100033 PubMedCentralPubMedGoogle Scholar
  372. 372.
    Lukashev M, Zeng M, Goelz S, Lee D, Linker R, Drukach B, VanDam A (2007) Activation of Nrf2 and modulation of disease progression in EAE models by BG-12 (dimethyl fumarate) suggests a novel mechanism of action combining anti-inflammatory and neuroprotective modalities. Mult Scler 13:149Google Scholar
  373. 373.
    Linker RA, Gold R (2013) Dimethyl fumarate for treatment of multiple sclerosis: mechanism of action, effectiveness, and side effects. Curr Neurol Neurosci Rep 13:394. doi:10.1007/s11910-013-0394-8 PubMedGoogle Scholar
  374. 374.
    Moharregh-Khiabani D, Linker RA, Gold R, Stangel M (2009) Fumaric Acid and its esters: an emerging treatment for multiple sclerosis. Curr Neuropharmacol 7:60–64. doi:10.2174/157015909787602788 PubMedCentralPubMedGoogle Scholar
  375. 375.
    Kappos L, Gold R, Miller DH, Macmanus DG, Havrdova E, Limmroth V, Polman CH, Schmierer K, Yousry TA, Yang M, Eraksoy M, Meluzinova E, Rektor I, Dawson KT, Sandrock AW, O’Neil GN, BG-12 Phase IIb Study Investigators (2008) Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 372:1463–72Google Scholar
  376. 376.
    Dodd S, Maes M, Anderson G, Dean O, Moylan S, Berk M (2013) Putative neuroprotective agents in major psychoses. Prog Neuropsychopharmacol Biol Psychiatry 42:135–145PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gerwyn Morris
    • 1
  • George Anderson
    • 2
  • Olivia Dean
    • 3
  • Michael Berk
    • 3
    • 4
    • 5
    • 6
    • 7
  • Piotr Galecki
    • 8
  • Marta Martin-Subero
    • 9
  • Michael Maes
    • 3
    • 10
  1. 1.Tir Na NogLlanelliUK
  2. 2.CRC Clinical Research Centre/CommunicationsGlasgowUK
  3. 3.Barwon Health, School of MedicineDeakin UniversityGeelongAustralia
  4. 4.Orygen Youth Health Research CentreParkvilleAustralia
  5. 5.Centre of Youth Mental HealthUniversity of MelbourneParkvilleAustralia
  6. 6.The Florey Institute for Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
  7. 7.Department of PsychiatryUniversity of MelbourneParkvilleAustralia
  8. 8.Department of Adult PsychiatryMedical University of LodzLodzPoland
  9. 9.Department of PsychiatryHospital Germans Trias i PujolBadalonaSpain
  10. 10.Department of Psychiatry, Faculty of MedicineChulalongkorn UniversityBangkokThailand

Personalised recommendations