Advertisement

Molecular Neurobiology

, Volume 50, Issue 2, pp 423–437 | Cite as

Neural Stem Cell Transplants Improve Cognitive Function Without Altering Amyloid Pathology in an APP/PS1 Double Transgenic Model of Alzheimer’s Disease

  • Wei Zhang
  • Pei-Jun WangEmail author
  • Hong-ying Sha
  • Jiong Ni
  • Ming-hua Li
  • Guo-jun Gu
Article

Abstract

Neural stem cells (NSCs) are capable of self-renewal and are multipotent. Transplantation of NSCs may represent a promising approach for treating neurodegenerative disorders associated with cognitive decline, such as Alzheimer disease (AD) characterized by extensive loss of neurons. In this study, we investigated the effect of NSC transplantation on cognitive function in the amyloid precursor protein/presenilin-1 (APP/PS1) transgenic mouse, an AD mouse model with age-dependent cognitive deficits. We found that NSCs bilaterally transplanted into hippocampal regions improved spatial learning and memory function in these mice, but did not alter Aβ pathology. Immunohistochemical analyses determined that NSCs proliferated, migrated, and differentiated into three neuronal cell types. The improvement in cognitive function was correlated with enhanced long-term potentiation (LTP) and an increase in the neuron expression of proteins related to cognitive function: N-methyl-d-aspartate (NMDA) 2B unit, synaptophysin (SYP), protein kinase C ζ subtypes (PKCζ), tyrosine receptor kinase B (TrkB), and brain-derived neurotrophic factor (BDNF). Taken together, our data indicated that injected NSCs can rescue cognitive deficits in APP/PS1 transgenic mice by replacing neuronal cell types expressing multiple cognition-related proteins that enhance LTP.

Keywords

Neural stem cells (NSCs) Neuron Oligodendrocytes Astrocyte Transplantation Alzheimer’s disease (AD) APP/PS1 transgenic mouse NMDA Synaptophysin PKCζ TrkB BDNF LTP Cognition Amyloid 

Notes

Acknowledgments

This research was supported by grants from National Natural Science Foundation of China (81171297; 81200934).

References

  1. 1.
    LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G (1995) The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 9:21–30PubMedCrossRefGoogle Scholar
  2. 2.
    Katzman R (1986) Alzheimer’s disease. N Engl J Med 314:964–973PubMedCrossRefGoogle Scholar
  3. 3.
    Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791PubMedCrossRefGoogle Scholar
  4. 4.
    Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403PubMedCrossRefGoogle Scholar
  6. 6.
    Birmingham K, Frantz S (2002) Set back to Alzheimer vaccine studies. Nat Med 8:199–200PubMedCrossRefGoogle Scholar
  7. 7.
    Carlson C, Estergard W, Oh J, Suhy J, Jack CR Jr, Siemers E, Barakos J (2011) Prevalence of asymptomatic vasogenic edema in pretreatment Alzheimer’s disease study cohorts from phase 3 trials of semagacestat and solanezumab. Alzheimer’s Dement 7:396–401CrossRefGoogle Scholar
  8. 8.
    Imbimbo BP, Giardina GA (2011) γ-secretase inhibitors and modulators for the treatment of Alzheimer’s disease: disappointments and hopes. Curr Top Med Chem 1:1555–1570CrossRefGoogle Scholar
  9. 9.
    Tuszynski MH, Thal L, Pay M, Salmon DP, HS U, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G, Potkin SG, Fallon J, Hansen L, Mufson EJ, Kordower JH, Gall C, Conner J (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555PubMedCrossRefGoogle Scholar
  10. 10.
    Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, Wang L, Blesch A, Kim A, Conner JM, Rockenstein E, Chao MV, Koo EH, Geschwind D, Masliah E, Chiba AA, Tuszynski MH (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15:331–337PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Blennow K, Zetterberg H, Rinne JO, Salloway S, Wei J, Black R, Grundman M, Liu E (2012) Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch Neurol 69:1002–1010PubMedCrossRefGoogle Scholar
  12. 12.
    Musiał A, Bajda M, Malawska B (2007) Recent developments in cholinesterases inhibitors for Alzheimer’s disease treatment. Curr Med Chem 14:2654–2679PubMedCrossRefGoogle Scholar
  13. 13.
    Demars M, Hu YS, Gadadhar A, Lazarov O (2010) Impaired neurogenesis is an early event in the etiology of familial Alzheimer’s disease in transgenic mice. J Neurosci Res 88:2103–2117PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Perry EK, Johnson M, Ekonomou A, Perry RH, Ballard C, Attems J (2012) Neurogenic abnormalities in Alzheimer’s disease differ between stages of neurogenesis and are partly related to cholinergic pathology. Neurobiol Dis 47:155–162PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lu P, Jones LL, Snyder EY, Tuszynski MH (2003) Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 181:115–129PubMedCrossRefGoogle Scholar
  16. 16.
    Ebert AD, Beres AJ, Barber AE, Svendsen CN (2008) Human neural progenitor cells over-expressing IGF-1 protect dopamine neurons and restore function in a rat model of Parkinson’s disease. Exp Neurol 209:213–223PubMedCrossRefGoogle Scholar
  17. 17.
    Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci U S A 106:13594–13599PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Park D, Lee HJ, Joo SS, Bae DK, Yang G, Yang YH, Lim I, Matsuo A, Tooyama I, Kim YB, Kim SU (2012) Human neural stem cells over-expressing choline acetyltransferase restore cognition in rat model of cognitive dysfunction. Exp Neurol 234:521–526PubMedCrossRefGoogle Scholar
  19. 19.
    Marjanska M, Curran GL, Wengenack TM, Henry PG, Bliss RL, Poduslo JF, Jack CR Jr, Ugurbil K, Garwood M (2005) Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 102:11906–119010PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Sher F, Boddeke E, Olah M, Copray S (2012) Dynamic changes in Ezh2 gene occupancy underlie its involvement in neural stem cell self-renewal and differentiation towards oligodendrocytes. PLoS One 7:e40399PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Neri M, Maderna C, Cavazzin C, Deidda-Vigoriti V, Politi LS, Scotti G, Marzola P, Sbarbati A, Vescovi AL, Gritti A (2008) Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles: relevance for in vivo cell tracking. Stem Cells 26:505–516PubMedCrossRefGoogle Scholar
  22. 22.
    Kiyota T, Yamamoto M, Schroder B, Jacobsen MT, Swan RJ, Lambert MP, Klein WL, Gendelman HE, Ransohoff RM, Ikezu T (2009) AAV1/2-mediated CNS gene delivery of dominant-negative CCL2 mutant suppresses gliosis, beta-amyloidosis, and learning impairment of APP/PS1 mice. Mol Ther 17:803–809PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kiyota T, Ingraham KL, Jacobsen MT, Xiong H, Ikezu T (2011) FGF2 gene transfer restores hippocampal functions in mouse models of Alzheimer’s disease and has therapeutic implications for neurocognitive disorders. Proc Natl Acad Sci U S A 108:E1339–E1348PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60PubMedCrossRefGoogle Scholar
  25. 25.
    Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45:675–688PubMedCrossRefGoogle Scholar
  26. 26.
    Kelly PH, Bondolfi L, Hunziker D, Schlecht HP, Carver K, Maguire E, Abramowski D, Wiederhold KH, Sturchler-Pierrat C, Jucker M, Bergmann R, Staufenbiel M, Sommer B (2003) Progressive age-related impairment of cognitive behavior in APP23 transgenic mice. Neurobiol Aging 24:365–378PubMedCrossRefGoogle Scholar
  27. 27.
    Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M, Flamez P, Dequenne A, Godaux E, van Leuven F, Fahrenholz F (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113:1456–1464PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Dewachter I, van Dorpe J, Spittaels K, Tesseur I, Van Den Haute C, Moechars D, Van Leuven F (2000) Modeling Alzheimer’s disease in transgenic mice: effect of age and of presenilin1 on amyloid biochemistry and pathology in APP/London mice. Exp Gerontol 35:831–841PubMedCrossRefGoogle Scholar
  29. 29.
    LaFerla FM, Hall CK, Ngo L, Jay G (1996) Extracellular deposition of beta-amyloid upon p53-dependent neuronal cell death in transgenic mice. J Clin Invest 98:1626–1632PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Yamamoto M, Horiba M, Buescher JL, Huang D, Gendelman HE, Ransohoff RM, Ikezu T (2005) Overexpression of monocyte chemotactic protein-1/CCL2 in beta-amyloid precursor protein transgenic mice show accelerated diffuse beta-amyloid deposition. Am J Pathol 166:1475–1485PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Zhang Q, Wu Y, Zhang P, Sha H, Jia J, Hu Y, Zhu J (2012) Exercise induces mitochondrial biogenesis after brain ischemia in rats. Neuroscience 205:10–17PubMedCrossRefGoogle Scholar
  32. 32.
    Sacktor TC, Osten P, Valsamis H, Jiang X, Naik MU, Sublette E (1993) Persistent activation of the zeta isoform of protein kinase C in the maintenance of long-term potentiation. Proc Natl Acad Sci U S A 90:8342–8346PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Hrabetova S, Sacktor TC (1996) Bidirectional regulation of protein kinase M zeta in the maintenance of long-term potentiation and long-term depression. J Neurosci 16:5324–5333PubMedGoogle Scholar
  34. 34.
    Anderson ER, Gendelman HE, Xiong H (2004) Memantine protects hippocampal neuronal function in murine human immunodeficiency virus type 1 encephalitis. J Neurosci 24:7194–7198PubMedCrossRefGoogle Scholar
  35. 35.
    Scharf MT, Woo NH, Lattal KM, Young JZ, Nguyen PV, Abel T (2002) Protein synthesis is required for the enhancement of long-term potentiation and long-term memory by spaced training. J Neurophysiol 87:2770–2777PubMedGoogle Scholar
  36. 36.
    Ma T, Hoeffer CA, Wong H, Massaad CA, Zhou P, Iadecola C, Murphy MP, Pautler RG, Klann E (2011) Amyloid β-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide. J Neurosci 31:5589–5595PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Gallagher JJ, Minogue AM, Lynch MA (2013) Impaired performance of female APP/PS1 mice in the Morris water maze is coupled with increased Aβ accumulation and microglial activation. Neurodegener Dis 11:33–41PubMedCrossRefGoogle Scholar
  38. 38.
    Guntern R, Bouras C, Hof PR, Vallet PG (1992) An improved thioflavin S method for staining neurofibrillary tangles and senile plaques in Alzheimer’s disease. Experientia 48:8–10PubMedCrossRefGoogle Scholar
  39. 39.
    Garzon DJ, Fahnestock M (2007) Oligomeric amyloid decreases basal levels of brain-derived neurotrophic factor (BDNF) mRNA via specific downregulation of BDNF transcripts IV and V in differentiated human neuroblastoma cells. J Neurosci 27:2628–2635PubMedCrossRefGoogle Scholar
  40. 40.
    Peng S, Wuu J, Mufson EJ, Fahnestock M (2005) Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J Neurochem 93:1412–1421PubMedCrossRefGoogle Scholar
  41. 41.
    Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci U S A 96:3228–3233PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Dickey CA, Loring JF, Montgomery J, Gordon MN, Eastman PS, Morgan D (2003) Selectively reduced expression of synaptic plasticity-related genes in amyloid precursor protein + presenilin-1 transgenic mice. J Neurosci 23:5219–5226PubMedGoogle Scholar
  43. 43.
    LaFerla FM, Oddo S (2005) Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol Med 11:170–176PubMedCrossRefGoogle Scholar
  44. 44.
    Fumagalli F, Racagni G, Riva MA (2006) The expanding role of BDNF: a therapeutic target for Alzheimer’s disease? Pharmacogenomics J 6:8–15PubMedCrossRefGoogle Scholar
  45. 45.
    Ginsberg SD, Che S, Wuu J, Counts SE, Mufson EJ (2006) Down regulation of trk but not p75NTR gene expression in single cholinergic basal forebrain neurons mark the progression of Alzheimer’s disease. J Neurochem 97:475–487PubMedCrossRefGoogle Scholar
  46. 46.
    Tackenberg C, Grinschgl S, Trutzel A, Santuccione AC, Frey MC, Konietzko U, Grimm J, Brandt R, Nitsch RM (2013) NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss. Cell Death Dis 4:e608. doi: 10.1038/cddis.2013.129 PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807PubMedCrossRefGoogle Scholar
  48. 48.
    Calhoun ME, Jucker M, Martin LJ, Thinakaran G, Price DL, Mouton PR (1996) Comparative evaluation of synaptophysin-based methods for quantification of synapses. J Neurocytol 25:821–828PubMedCrossRefGoogle Scholar
  49. 49.
    Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9:484–496PubMedGoogle Scholar
  50. 50.
    Alkon DL, Epstein H, Kuzirian A, Bennett MC, Nelson TJ (2005) Protein synthesis required for long-term memory is induced by PKC activation on days before associative learning. Proc Natl Acad Sci U S A 102:16432–16437PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Gureviciene I, Ikonen S, Gurevicius K et al (2004) Normal induction but accelerated decay of LTP in APP + PS1 transgenic mice. Neurobiol Dis 15:188–195PubMedCrossRefGoogle Scholar
  52. 52.
    Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11:272–280PubMedCrossRefGoogle Scholar
  53. 53.
    Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2:24–32PubMedCrossRefGoogle Scholar
  54. 54.
    Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63:71–124PubMedCrossRefGoogle Scholar
  55. 55.
    Yamada K, Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91:267–270PubMedCrossRefGoogle Scholar
  56. 56.
    Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH (2008) BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci U S A 105:2711–2716PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Xu B, Gottschalk W, Chow A et al (2000) The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving TrkB. J Neurosci 20:6888–6897PubMedPubMedCentralGoogle Scholar
  58. 58.
    Ferrer I, Marín C, Rey MJ et al (1999) BDNF and full-length and truncated TrkB expression in Alzheimer disease. Implications in therapeutic strategies. J Neuropathol Exp Neurol 58:729–739PubMedCrossRefGoogle Scholar
  59. 59.
    Zeng Y, Zhao D, Xie CW (2010) Neurotrophins enhance CaMKII activity and rescue amyloid-β-induced deficits in hippocampal synaptic plasticity. J Alzheimers Dis 21:823–831PubMedPubMedCentralGoogle Scholar
  60. 60.
    Zhang W, Wang PJ, Li MH, Wang GL, Li P, Gao XL (2013) 1H-MRS Assessment of the therapeutic effect of bilateral intraventricular BDNF infusion into APP/PS1 double transgenic. J Mol Neurosci 50:434–442PubMedCrossRefGoogle Scholar
  61. 61.
    Prior M, Dargusch R, Ehren JL, Chiruta C, Schubert D (2013) The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer’s disease mice. Alzheimers Res Ther 5:25PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Li W, Yu J, Liu Y, Huang X, Abumaria N, Zhu Y, Huang X, Xiong W, Ren C, Liu XG, Chui D, Liu G (2013) Elevation of brain magnesium prevents and reverses cognitive deficits and synaptic loss in Alzheimer’s disease mouse model. J Neurosci 33:8423–8441PubMedCrossRefGoogle Scholar
  63. 63.
    Kamei N, Tanaka N, Oishi Y et al (2007) BDNF, NT-3, and NGF released from transplanted neural progenitor cells promote corticospinal axon growth in organotypic cocultures. Spine 32:1272–1278PubMedCrossRefGoogle Scholar
  64. 64.
    Nagahara AH, Bernot T, Moseanko R, Brignolo L, Blesch A, Conner JM, Ramirez A, Gasmi M, Tuszynski MH (2009) Long-term reversal of cholinergic neuronal decline in aged non-human primates by lentiviral NGF gene delivery. Exp Neurol 215:153–159PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Schmitt U, Tanimoto N, Seeliger M, Schaeffel F, Leube RE (2009) Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neuroscience 162:234–243PubMedCrossRefGoogle Scholar
  66. 66.
    Janz R, Südhof TC, Hammer RE et al (1999) Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 24:687–700PubMedCrossRefGoogle Scholar
  67. 67.
    Hamos JE, DeGennaro LJ, Drachman DA (1989) Synaptic loss in Alzheimer’s disease and other dementias. Neurology 39:355–361PubMedCrossRefGoogle Scholar
  68. 68.
    Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580PubMedCrossRefGoogle Scholar
  69. 69.
    Xuan AG, Luo M, Ji WD, Long DH (2009) Effects of engrafted neural stem cells in Alzheimer’s disease rats. Neurosci Lett 450:167–171PubMedCrossRefGoogle Scholar
  70. 70.
    Albensi BC, Alasti N, Mueller AL (2000) Long-term potentiation in the presence of NMDA receptor antagonist arylalkylamine spider toxins. J Neurosci Res 62:177–185PubMedCrossRefGoogle Scholar
  71. 71.
    Clayton DA, Mesches MH, Alvarez E, Bickford PC, Browning MD (2002) A hippocampal NR2B deficit can mimic age-related changes in long-term potentiation and spatial learning in the Fischer 344 rat. J Neurosci 22:3628–3637PubMedGoogle Scholar
  72. 72.
    Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39PubMedCrossRefGoogle Scholar
  73. 73.
    Rowan MJ, Klyubin I, Cullen WK, Anwyl R (2003) Synaptic plasticity in animal models of early Alzheimer’s disease. Philos Trans R Soc Lond B Biol Sci 358:821–828PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429:184–187PubMedCrossRefGoogle Scholar
  75. 75.
    Masliah E, Cole G, Shimohama S, Hansen L, DeTeresa R, Terry RD, Saitoh T (1990) Differential involvement of protein kinase C isozymes in Alzheimer’s disease. J Neurosci 10:2113–2124PubMedGoogle Scholar
  76. 76.
    Kuperstein F, Reiss N, Koudinova N, Yavin E (2001) Biphasic modulation of protein kinase C and enhanced cell toxicity by amyloid beta peptide and anoxia in neuronal cultures. J Neurochem 76:758–767PubMedCrossRefGoogle Scholar
  77. 77.
    Malinow R, Schulman H, Tsien RW (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245:862–866PubMedCrossRefGoogle Scholar
  78. 78.
    Hongpaisan J, Sun MK, Alkon DL (2011) PKC ε activation prevents synaptic loss, Aβ elevation, and cognitive deficits in Alzheimer’s disease transgenic mice. J Neurosci 31:630–643PubMedCrossRefGoogle Scholar
  79. 79.
    Ling DS, Benardo LS, Serrano PA, Blace N, Kelly MT, Crary JF, Sacktor TC (2002) Protein kinase Mzeta is necessary and sufficient for LTP maintenance. Nat Neurosci 5:295–296PubMedCrossRefGoogle Scholar
  80. 80.
    Osten P, Valsamis L, Harris A, Sacktor TC (1996) Protein synthesis-dependent formation of protein kinase Mzeta in long-term potentiation. J Neurosci 16:2444–2451PubMedGoogle Scholar
  81. 81.
    Rasool S, Martinez-Coria H, Wu JW, Laferla F, Glabe CG (2013) Systemic vaccination with anti-oligomeric monoclonal antibodies improves cognitive function by reducing Aβ deposition and tau pathology in 3xTg-AD mice. J Neurochem 126:473–482PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101:18117–18122PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Duffy AM, Hölscher C (2013) The incretin analogue d-Ala(2)GIP reduces plaque load, astrogliosis and oxidative stress in an APP/PS1 mouse model of Alzheimer’s disease. Neuroscience 228:294–300PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Wei Zhang
    • 1
  • Pei-Jun Wang
    • 1
    Email author
  • Hong-ying Sha
    • 2
  • Jiong Ni
    • 1
  • Ming-hua Li
    • 1
  • Guo-jun Gu
    • 1
  1. 1.Department of Medical Imaging, Tongji HospitalMedical School of Tongji UniversityShanghaiChina
  2. 2.National Key Laboratory for Medical NeurobiologyFudan UniversityShanghaiChina

Personalised recommendations