Advertisement

Molecular Neurobiology

, Volume 50, Issue 2, pp 406–422 | Cite as

The Potential Role of Rho GTPases in Alzheimer's Disease Pathogenesis

  • Silvia BologninEmail author
  • Erika Lorenzetto
  • Giovanni Diana
  • Mario Buffelli
Article

Abstract

Alzheimer's disease (AD) is characterized by a wide loss of synapses and dendritic spines. Despite extensive efforts, the molecular mechanisms driving this detrimental alteration have not yet been determined. Among the factors potentially mediating this loss of neuronal connectivity, the contribution of Rho GTPases is of particular interest. This family of proteins is classically considered a key regulator of actin cytoskeleton remodeling and dendritic spine maintenance, but new insights into the complex dynamics of its regulation have recently determined how its signaling cascade is still largely unknown, both in physiological and pathological conditions. Here, we review the growing evidence supporting the potential involvement of Rho GTPases in spine loss, which is a unanimously recognized hallmark of early AD pathogenesis. We also discuss some new insights into Rho GTPase signaling framework that might explain several controversial results that have been published. The study of the connection between AD and Rho GTPases represents a quite unchartered avenue that holds therapeutic potential.

Keywords

Beta-amyloid Cytoskeleton Rho-GTPases 

Notes

Acknowledgments

This work was supported by funding of the University of Verona, “Fondazione Cariverona” project Verona Nanomedicine Initiative.

References

  1. 1.
    Hardy J (2009) The amyloid hypothesis for Alzheimer's disease: a critical reappraisal. J Neurochem 110(4):1129–1134. doi: 10.1111/j.1471-4159.2009.06181.x PubMedGoogle Scholar
  2. 2.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297(5580):353–356. doi: 10.1126/science.1072994 PubMedGoogle Scholar
  3. 3.
    Krafft GA, Klein WL (2010) ADDLs and the signaling web that leads to Alzheimer's disease. Neuropharmacology 59(4–5):230–242. doi: 10.1016/j.neuropharm.2010.07.012 PubMedGoogle Scholar
  4. 4.
    Chabrier MA, Blurton-Jones M, Agazaryan AA, Nerhus JL, Martinez-Coria H, LaFerla FM (2012) Soluble Abeta promotes wild-type tau pathology in vivo. J Neurosci 32(48):17345–17350. doi: 10.1523/JNEUROSCI.0172-12.2012 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Cavallucci V, D'Amelio M, Cecconi F (2012) Abeta toxicity in Alzheimer's disease. Mol Neurobiol 45(2):366–378. doi: 10.1007/s12035-012-8251-3 PubMedGoogle Scholar
  6. 6.
    Um JW, Nygaard HB, Heiss JK, Kostylev MA, Stagi M, Vortmeyer A, Wisniewski T, Gunther EC, Strittmatter SM (2012) Alzheimer amyloid-beta oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci 15(9):1227–1235. doi: 10.1038/nn.3178 nn.3178 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci 27(4):796–807. doi: 10.1523/JNEUROSCI.3501-06.2007 PubMedGoogle Scholar
  8. 8.
    Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–1132. doi: 10.1038/nature07761 PubMedPubMedCentralGoogle Scholar
  9. 9.
    Querfurth HW, LaFerla FM (2010) Alzheimer's disease. N Engl J Med 362(4):329–344. doi: 10.1056/NEJMra0909142 362/4/329 PubMedGoogle Scholar
  10. 10.
    Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Del Tredici K, Duyckaerts C, Frosch MP, Haroutunian V, Hof PR, Hulette CM, Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kovari E, Kukull WA, Leverenz JB, Love S, Mackenzie IR, Mann DM, Masliah E, McKee AC, Montine TJ, Morris JC, Schneider JA, Sonnen JA, Thal DR, Trojanowski JQ, Troncoso JC, Wisniewski T, Woltjer RL, Beach TG (2012) Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 71(5):362–381. doi: 10.1097/NEN.0b013e31825018f7 PubMedPubMedCentralGoogle Scholar
  11. 11.
    Castellani RJ, Lee HG, Siedlak SL, Nunomura A, Hayashi T, Nakamura M, Zhu X, Perry G, Smith MA (2009) Reexamining Alzheimer's disease: evidence for a protective role for amyloid-beta protein precursor and amyloid-beta. J Alzheimers Dis 18(2):447–452. doi: 10.3233/JAD-2009-1151 GP32KR1683114225 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Lee HG, Zhu X, Castellani RJ, Nunomura A, Perry G, Smith MA (2007) Amyloid-beta in Alzheimer disease: the null versus the alternate hypotheses. J Pharmacol Exp Ther 321(3):823–829. doi: 10.1124/jpet.106.114009 PubMedGoogle Scholar
  13. 13.
    Bettens K, Sleegers K, Van Broeckhoven C (2010) Current status on Alzheimer disease molecular genetics: from past, to present, to future. Hum Mol Genet 19(R1):R4–R11. doi: 10.1093/hmg/ddq142 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Heilig EA, Xia W, Shen J, Kelleher RJ 3rd (2010) A presenilin-1 mutation identified in familial Alzheimer disease with cotton wool plaques causes a nearly complete loss of gamma-secretase activity. J Biol Chem 285(29):22350–22359. doi: 10.1074/jbc.M110.116962 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R (2003) APP processing and synaptic function. Neuron 37(6):925–937PubMedGoogle Scholar
  16. 16.
    Puzzo D, Privitera L, Leznik E, Fa M, Staniszewski A, Palmeri A, Arancio O (2008) Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 28(53):14537–14545. doi: 10.1523/JNEUROSCI.2692-08.2008 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Puzzo D, Arancio O (2013) Amyloid-beta peptide: Dr. Jekyll or Mr Hyde? J Alzheimers Dis 33(Suppl 1):S111–S120. doi: 10.3233/JAD-2012-129033 PubMedPubMedCentralGoogle Scholar
  18. 18.
    Bennett DA, Schneider JA, Arvanitakis Z, Kelly JF, Aggarwal NT, Shah RC, Wilson RS (2006) Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 66(12):1837–1844. doi: 10.1212/01.wnl.0000219668.47116.e6 PubMedGoogle Scholar
  19. 19.
    Perl DP (2010) Neuropathology of Alzheimer's disease. Mt Sinai J Med N Y 77(1):32–42. doi: 10.1002/msj.20157 Google Scholar
  20. 20.
    Scheff SW, Price DA, Schmitt FA, DeKosky ST, Mufson EJ (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68(18):1501–1508. doi: 10.1212/01.wnl.0000260698.46517.8f PubMedGoogle Scholar
  21. 21.
    Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580. doi: 10.1002/ana.410300410 PubMedGoogle Scholar
  22. 22.
    Palop JJ, Chin J, Mucke L (2006) A network dysfunction perspective on neurodegenerative diseases. Nature 443(7113):768–773. doi: 10.1038/nature05289 PubMedGoogle Scholar
  23. 23.
    Penzes P, Vanleeuwen JE (2011) Impaired regulation of synaptic actin cytoskeleton in Alzheimer's disease. Brain Res Rev 67(1–2):184–192. doi: 10.1016/j.brainresrev.2011.01.003 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron 44(1):181–193. doi: 10.1016/j.neuron.2004.09.010 PubMedGoogle Scholar
  25. 25.
    Coleman PD, Yao PJ (2003) Synaptic slaughter in Alzheimer's disease. Neurobiol Aging 24(8):1023–1027PubMedGoogle Scholar
  26. 26.
    Scheff SW, Price DA (1993) Synapse loss in the temporal lobe in Alzheimer's disease. Ann Neurol 33(2):190–199. doi: 10.1002/ana.410330209 PubMedGoogle Scholar
  27. 27.
    Arendt T (2009) Synaptic degeneration in Alzheimer's disease. Acta Neuropathol 118(1):167–179. doi: 10.1007/s00401-009-0536-x PubMedGoogle Scholar
  28. 28.
    Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW Jr, Morris JC (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer's disease. Neurology 56(1):127–129PubMedGoogle Scholar
  29. 29.
    Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WL (2004) Synaptic targeting by Alzheimer's-related amyloid beta oligomers. J Neurosci 24(45):10191–10200. doi: 10.1523/JNEUROSCI.3432-04.2004 PubMedGoogle Scholar
  30. 30.
    Koffie RM, Hashimoto T, Tai HC, Kay KR, Serrano-Pozo A, Joyner D, Hou S, Kopeikina KJ, Frosch MP, Lee VM, Holtzman DM, Hyman BT, Spires-Jones TL (2012) Apolipoprotein E4 effects in Alzheimer's disease are mediated by synaptotoxic oligomeric amyloid-beta. Brain 135(Pt 7):2155–2168. doi: 10.1093/brain/aws127 PubMedPubMedCentralGoogle Scholar
  31. 31.
    Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27(11):2866–2875. doi: 10.1523/JNEUROSCI.4970-06.2007 PubMedGoogle Scholar
  32. 32.
    Cullen WK, Suh YH, Anwyl R, Rowan MJ (1997) Block of LTP in rat hippocampus in vivo by beta-amyloid precursor protein fragments. NeuroReport 8(15):3213–3217PubMedGoogle Scholar
  33. 33.
    Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95(11):6448–6453PubMedPubMedCentralGoogle Scholar
  34. 34.
    Itoh A, Akaike T, Sokabe M, Nitta A, Iida R, Olariu A, Yamada K, Nabeshima T (1999) Impairments of long-term potentiation in hippocampal slices of beta-amyloid-infused rats. Eur J Pharmacol 382(3):167–175PubMedGoogle Scholar
  35. 35.
    Chen QS, Kagan BL, Hirakura Y, Xie CW (2000) Impairment of hippocampal long-term potentiation by Alzheimer amyloid beta-peptides. J Neurosci Res 60(1):65–72PubMedGoogle Scholar
  36. 36.
    Freir DB, Holscher C, Herron CE (2001) Blockade of long-term potentiation by beta-amyloid peptides in the CA1 region of the rat hippocampus in vivo. J Neurophysiol 85(2):708–713PubMedGoogle Scholar
  37. 37.
    Kim JH, Anwyl R, Suh YH, Djamgoz MB, Rowan MJ (2001) Use-dependent effects of amyloidogenic fragments of (beta)-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. J Neurosci 21(4):1327–1333PubMedGoogle Scholar
  38. 38.
    Malm T, Ort M, Tahtivaara L, Jukarainen N, Goldsteins G, Puolivali J, Nurmi A, Pussinen R, Ahtoniemi T, Miettinen TK, Kanninen K, Leskinen S, Vartiainen N, Yrjanheikki J, Laatikainen R, Harris-White ME, Koistinaho M, Frautschy SA, Bures J, Koistinaho J (2006) beta-Amyloid infusion results in delayed and age-dependent learning deficits without role of inflammation or beta-amyloid deposits. Proc Natl Acad Sci U S A 103(23):8852–8857. doi: 10.1073/pnas.0602896103 PubMedPubMedCentralGoogle Scholar
  39. 39.
    Vitolo OV, Sant'Angelo A, Costanzo V, Battaglia F, Arancio O, Shelanski M (2002) Amyloid beta -peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proc Natl Acad Sci U S A 99(20):13217–13221. doi: 10.1073/pnas.172504199 PubMedPubMedCentralGoogle Scholar
  40. 40.
    Walsh DM, Klyubin I, Fadeeva JV, Rowan MJ, Selkoe DJ (2002) Amyloid-beta oligomers: their production, toxicity and therapeutic inhibition. Biochem Soc Trans 30(4):552–557. doi:http://www.ncbi.nlm.nih.gov/pubmed/12196135 PubMedGoogle Scholar
  41. 41.
    Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539. doi: 10.1038/416535a PubMedGoogle Scholar
  42. 42.
    Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 14(8):837–842. doi: 10.1038/nm1782 PubMedPubMedCentralGoogle Scholar
  43. 43.
    Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D (2009) Soluble oligomers of amyloid Beta protein facilitate hippocampal long–term depression by disrupting neuronal glutamate uptake. Neuron 62(6):788–801. doi: 10.1016/j.neuron.2009.05.012 PubMedPubMedCentralGoogle Scholar
  44. 44.
    Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52(5):831–843. doi: 10.1016/j.neuron.2006.10.035 PubMedPubMedCentralGoogle Scholar
  45. 45.
    Marcello E, Epis R, Saraceno C, Di Luca M (2012) Synaptic dysfunction in Alzheimer's disease. Adv Exp Med Biol 970:573–601. doi: 10.1007/978-3-7091-0932-8_25 PubMedGoogle Scholar
  46. 46.
    Crimins JL, Rocher AB, Luebke JI (2012) Electrophysiological changes precede morphological changes to frontal cortical pyramidal neurons in the rTg4510 mouse model of progressive tauopathy. Acta Neuropathol 124(6):777–795. doi: 10.1007/s00401-012-1038-9 PubMedPubMedCentralGoogle Scholar
  47. 47.
    Crimins JL, Rocher AB, Peters A, Shultz P, Lewis J, Luebke JI (2011) Homeostatic responses by surviving cortical pyramidal cells in neurodegenerative tauopathy. Acta Neuropathol 122(5):551–564. doi: 10.1007/s00401-011-0877-0 PubMedGoogle Scholar
  48. 48.
    Zempel H, Mandelkow EM (2012) Linking amyloid-beta and tau: amyloid-beta induced synaptic dysfunction via local wreckage of the neuronal cytoskeleton. Neurodegener Dis 10(1–4):64–72. doi: 10.1159/000332816 PubMedGoogle Scholar
  49. 49.
    Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat Neurosci 13(7):812–818. doi: 10.1038/nn.2583 PubMedPubMedCentralGoogle Scholar
  50. 50.
    Crimins JL, Pooler A, Polydoro M, Luebke JI, Spires-Jones TL (2013) The intersection of amyloid beta and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer's disease. Ageing Res Rev 12(3):757–763. doi: 10.1016/j.arr.2013.03.002 PubMedPubMedCentralGoogle Scholar
  51. 51.
    Tampellini D, Gouras GK (2010) Synapses, synaptic activity and intraneuronal abeta in Alzheimer's disease. Front Aging Neurosci 2. doi: 10.3389/fnagi.2010.00013
  52. 52.
    Spires-Jones T, Knafo S (2012) Spines, plasticity, and cognition in Alzheimer's model mice. Neural Plast 2012:319836. doi: 10.1155/2012/319836 PubMedPubMedCentralGoogle Scholar
  53. 53.
    Bhatt DH, Zhang S, Gan WB (2009) Dendritic spine dynamics. Annu Rev Physiol 71:261–282. doi: 10.1146/annurev.physiol.010908.163140 PubMedGoogle Scholar
  54. 54.
    Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44(5):749–757. doi: 10.1016/j.neuron.2004.11.011 PubMedGoogle Scholar
  55. 55.
    Yang Y, Zhou Q (2009) Spine modifications associated with long-term potentiation. Neuroscientist 15(5):464–476. doi: 10.1177/1073858409340800 PubMedGoogle Scholar
  56. 56.
    Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14(3):285–293. doi: 10.1038/nn.2741 PubMedPubMedCentralGoogle Scholar
  57. 57.
    Hotulainen P, Hoogenraad CC (2010) Actin in dendritic spines: connecting dynamics to function. J Cell Biol 189(4):619–629. doi: 10.1083/jcb.201003008 PubMedPubMedCentralGoogle Scholar
  58. 58.
    Penzes P, Rafalovich I (2012) Regulation of the actin cytoskeleton in dendritic spines. Adv Exp Med Biol 970:81–95. doi: 10.1007/978-3-7091-0932-8_4 PubMedPubMedCentralGoogle Scholar
  59. 59.
    Matus A (2005) Growth of dendritic spines: a continuing story. Curr Opin Neurobiol 15(1):67–72. doi: 10.1016/j.conb.2005.01.015 PubMedGoogle Scholar
  60. 60.
    Cerri C, Fabbri A, Vannini E, Spolidoro M, Costa M, Maffei L, Fiorentini C, Caleo M (2011) Activation of rho GTPases triggers structural remodeling and functional plasticity in the adult rat visual cortex. J Neurosci 31(42):15163–15172. doi: 10.1523/JNEUROSCI.2617-11.2011 PubMedGoogle Scholar
  61. 61.
    Bongmba OY, Martinez LA, Elhardt ME, Butler K, Tejada-Simon MV (2011) Modulation of dendritic spines and synaptic function by Rac1: a possible link to fragile X syndrome pathology. Brain Res 1399:79–95. doi: 10.1016/j.brainres.2011.05.020 PubMedPubMedCentralGoogle Scholar
  62. 62.
    Hall A, Lalli G (2010) Rho and Ras GTPases in axon growth, guidance, and branching. Cold Harb Perspect Biol 2(2):a001818. doi: 10.1101/cshperspect.a001818 Google Scholar
  63. 63.
    Martino A, Ettorre M, Musilli M, Lorenzetto E, Buffelli M, Diana G (2013) Rho GTPase-dependent plasticity of dendritic spines in the adult brain. Front Cell Neurosci 7:62. doi: 10.3389/fncel.2013.00062 PubMedPubMedCentralGoogle Scholar
  64. 64.
    Tolias KF, Duman JG, Um K (2011) Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog Neurobiol 94(2):133–148. doi: 10.1016/j.pneurobio.2011.04.011 PubMedPubMedCentralGoogle Scholar
  65. 65.
    Chen C, Wirth A, Ponimaskin E (2012) Cdc42: an important regulator of neuronal morphology. Int J Biochem Cell Biol 44(3):447–451. doi: 10.1016/j.biocel.2011.11.022 PubMedGoogle Scholar
  66. 66.
    Sekino Y, Kojima N, Shirao T (2007) Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem Int 51(2–4):92–104. doi: 10.1016/j.neuint.2007.04.029 PubMedGoogle Scholar
  67. 67.
    Miller MB, Yan Y, Eipper BA, Mains RE (2013) Neuronal Rho GEFs in synaptic physiology and behavior. Neuroscientist 19(3):255–273. doi: 10.1177/1073858413475486 PubMedPubMedCentralGoogle Scholar
  68. 68.
    Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P, Abell A, Johnson GL, Hahn KM, Danuser G (2009) Coordination of Rho GTPase activities during cell protrusion. Nature 461(7260):99–103. doi: 10.1038/nature08242 PubMedPubMedCentralGoogle Scholar
  69. 69.
    Niederost B, Oertle T, Fritsche J, McKinney RA, Bandtlow CE (2002) Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1. J Neurosci 22(23):10368–10376PubMedGoogle Scholar
  70. 70.
    Zhang H, Macara IG (2006) The polarity protein PAR-3 and TIAM1 cooperate in dendritic spine morphogenesis. Nat Cell Biol 8(3):227–237. doi: 10.1038/ncb1368 PubMedGoogle Scholar
  71. 71.
    Zhang H, Macara IG (2008) The PAR-6 polarity protein regulates dendritic spine morphogenesis through p190 RhoGAP and the Rho GTPase. Dev Cell 14(2):216–226. doi: 10.1016/j.devcel.2007.11.020 PubMedPubMedCentralGoogle Scholar
  72. 72.
    Muly EC, Nairn AC, Greengard P, Rainnie DG (2008) Subcellular distribution of the Rho-GEF Lfc in primate prefrontal cortex: effect of neuronal activation. J Comp Neurol 508(6):927–939. doi: 10.1002/cne.21703 PubMedPubMedCentralGoogle Scholar
  73. 73.
    Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1(5):253–259. doi: 10.1038/12963 PubMedGoogle Scholar
  74. 74.
    Arber S, Han B, Mendelsohn M, Smith M, Jessell TM, Sockanathan S (1999) Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23(4):659–674PubMedGoogle Scholar
  75. 75.
    Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393(6687):809–812. doi: 10.1038/31735 PubMedGoogle Scholar
  76. 76.
    Tomasevic N, Jia Z, Russell A, Fujii T, Hartman JJ, Clancy S, Wang M, Beraud C, Wood KW, Sakowicz R (2007) Differential regulation of WASP and N-WASP by Cdc42, Rac1, Nck, and PI(4,5)P2. Biochemistry 46(11):3494–3502. doi: 10.1021/bi062152y PubMedGoogle Scholar
  77. 77.
    Wegner AM, Nebhan CA, Hu L, Majumdar D, Meier KM, Weaver AM, Webb DJ (2008) N-wasp and the arp2/3 complex are critical regulators of actin in the development of dendritic spines and synapses. J Biol Chem 283(23):15912–15920. doi: 10.1074/jbc.M801555200 PubMedPubMedCentralGoogle Scholar
  78. 78.
    Miki H, Suetsugu S, Takenawa T (1998) WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J 17(23):6932–6941. doi: 10.1093/emboj/17.23.6932 PubMedPubMedCentralGoogle Scholar
  79. 79.
    Soderling SH, Guire ES, Kaech S, White J, Zhang F, Schutz K, Langeberg LK, Banker G, Raber J, Scott JD (2007) A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory. J Neurosci 27(2):355–365. doi: 10.1523/JNEUROSCI.3209-06.2006 PubMedPubMedCentralGoogle Scholar
  80. 80.
    Kim Y, Sung JY, Ceglia I, Lee KW, Ahn JH, Halford JM, Kim AM, Kwak SP, Park JB, Ho Ryu S, Schenck A, Bardoni B, Scott JD, Nairn AC, Greengard P (2006) Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442(7104):814–817. doi: 10.1038/nature04976 PubMedGoogle Scholar
  81. 81.
    Korobova F, Svitkina T (2010) Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol Biol Cell 21(1):165–176. doi: 10.1091/mbc.E09-07-0596 PubMedPubMedCentralGoogle Scholar
  82. 82.
    Hotulainen P, Llano O, Smirnov S, Tanhuanpaa K, Faix J, Rivera C, Lappalainen P (2009) Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol 185(2):323–339. doi: 10.1083/jcb.200809046 PubMedPubMedCentralGoogle Scholar
  83. 83.
    Tashiro A, Minden A, Yuste R (2000) Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb Cortex 10(10):927–938PubMedGoogle Scholar
  84. 84.
    Schubert V, Dotti CG (2007) Transmitting on actin: synaptic control of dendritic architecture. J Cell Sci 120(Pt 2):205–212. doi: 10.1242/jcs.03337 PubMedGoogle Scholar
  85. 85.
    Murakoshi H, Wang H, Yasuda R (2011) Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472(7341):100–104. doi: 10.1038/nature09823 nature09823 PubMedPubMedCentralGoogle Scholar
  86. 86.
    Asrar S, Meng Y, Zhou Z, Todorovski Z, Huang WW, Jia Z (2009) Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1). Neuropharmacology 56(1):73–80. doi: 10.1016/j.neuropharm.2008.06.055 PubMedGoogle Scholar
  87. 87.
    Rex CS, Chen LY, Sharma A, Liu J, Babayan AH, Gall CM, Lynch G (2009) Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J Cell Biol 186(1):85–97. doi: 10.1083/jcb.200901084 jcb.200901084 PubMedPubMedCentralGoogle Scholar
  88. 88.
    O'Kane EM, Stone TW, Morris BJ (2003) Distribution of Rho family GTPases in the adult rat hippocampus and cerebellum. Brain Res Mol Brain Res 114(1):1–8PubMedGoogle Scholar
  89. 89.
    Tejada-Simon MV, Villasana LE, Serrano F, Klann E (2006) NMDA receptor activation induces translocation and activation of Rac in mouse hippocampal area CA1. Biochem Biophys Res Commun 343(2):504–512. doi: 10.1016/j.bbrc.2006.02.183 PubMedPubMedCentralGoogle Scholar
  90. 90.
    Martinez LA, Tejada-Simon MV (2011) Pharmacological inactivation of the small GTPase Rac1 impairs long-term plasticity in the mouse hippocampus. Neuropharmacology 61(1–2):305–312. doi: 10.1016/j.neuropharm.2011.04.017 PubMedPubMedCentralGoogle Scholar
  91. 91.
    O'Kane EM, Stone TW, Morris BJ (2004) Increased long-term potentiation in the CA1 region of rat hippocampus via modulation of GTPase signalling or inhibition of Rho kinase. Neuropharmacology 46(6):879–887. doi: 10.1016/j.neuropharm.2003.11.020 PubMedGoogle Scholar
  92. 92.
    Diana G, Valentini G, Travaglione S, Falzano L, Pieri M, Zona C, Meschini S, Fabbri A, Fiorentini C (2007) Enhancement of learning and memory after activation of cerebral Rho GTPases. Proc Natl Acad Sci U S A 104(2):636–641. doi: 10.1073/pnas.0610059104 PubMedPubMedCentralGoogle Scholar
  93. 93.
    Martinez LA, Klann E, Tejada-Simon MV (2007) Translocation and activation of Rac in the hippocampus during associative contextual fear learning. Neurobiol Learn Mem 88(1):104–113. doi: 10.1016/j.nlm.2007.01.008 PubMedGoogle Scholar
  94. 94.
    Haditsch U, Leone DP, Farinelli M, Chrostek-Grashoff A, Brakebusch C, Mansuy IM, McConnell SK, Palmer TD (2009) A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol Cell Neurosci 41(4):409–419. doi: 10.1016/j.mcn.2009.04.005 PubMedPubMedCentralGoogle Scholar
  95. 95.
    Bamburg JR, Bloom GS (2009) Cytoskeletal pathologies of Alzheimer disease. Cell Motil Cytoskeleton 66(8):635–649. doi: 10.1002/cm.20388 PubMedPubMedCentralGoogle Scholar
  96. 96.
    Allison DW, Gelfand VI, Spector I, Craig AM (1998) Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J Neurosci 18(7):2423–2436PubMedGoogle Scholar
  97. 97.
    Maloney MT, Bamburg JR (2007) Cofilin-mediated neurodegeneration in Alzheimer's disease and other amyloidopathies. Mol Neurobiol 35(1):21–44PubMedGoogle Scholar
  98. 98.
    Davis RC, Marsden IT, Maloney MT, Minamide LS, Podlisny M, Selkoe DJ, Bamburg JR (2011) Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin-phosphorylation. Mol Neurodegener 6:10. doi: 10.1186/1750-1326-6-10 1750-1326-6-10 PubMedPubMedCentralGoogle Scholar
  99. 99.
    Davis RC, Maloney MT, Minamide LS, Flynn KC, Stonebraker MA, Bamburg JR (2009) Mapping cofilin-actin rods in stressed hippocampal slices and the role of cdc42 in amyloid-beta-induced rods. J Alzheimers Dis 18(1):35–50. doi: 10.3233/JAD-2009-1122 PubMedGoogle Scholar
  100. 100.
    Whiteman IT, Minamide LS, Gohde L, Bamburg JR, Goldsbury C (2011) Rapid changes in phospho-MAP/tau epitopes during neuronal stress: cofilin-actin rods primarily recruit microtubule binding domain epitopes. PLoS One 6(6):e20878. doi: 10.1371/journal.pone.0020878 PubMedPubMedCentralGoogle Scholar
  101. 101.
    Maloney MT, Minamide LS, Kinley AW, Boyle JA, Bamburg JR (2005) Beta-secretase-cleaved amyloid precursor protein accumulates at actin inclusions induced in neurons by stress or amyloid beta: a feedforward mechanism for Alzheimer's disease. J Neurosci 25(49):11313–11321. doi: 10.1523/JNEUROSCI.3711-05.2005 PubMedGoogle Scholar
  102. 102.
    Zhu X, Raina AK, Boux H, Simmons ZL, Takeda A, Smith MA (2000) Activation of oncogenic pathways in degenerating neurons in Alzheimer disease. Int J Dev Neurosci 18(4–5):433–437PubMedGoogle Scholar
  103. 103.
    Perez SE, Getova DP, He B, Counts SE, Geula C, Desire L, Coutadeur S, Peillon H, Ginsberg SD, Mufson EJ (2012) Rac1b increases with progressive tau pathology within cholinergic nucleus basalis neurons in Alzheimer's disease. Am J Pathol 180(2):526–540. doi: 10.1016/j.ajpath.2011.10.027 PubMedPubMedCentralGoogle Scholar
  104. 104.
    Otth C, Mendoza-Naranjo A, Mujica L, Zambrano A, Concha II, Maccioni RB (2003) Modulation of the JNK and p38 pathways by cdk5 protein kinase in a transgenic mouse model of Alzheimer's disease. NeuroReport 14(18):2403–2409. doi: 10.1097/01.wnr.0000099988.54721.3c PubMedGoogle Scholar
  105. 105.
    Matsui C, Inoue E, Kakita A, Arita K, Deguchi-Tawarada M, Togawa A, Yamada A, Takai Y, Takahashi H (2012) Involvement of the gamma-secretase-mediated EphA4 signaling pathway in synaptic pathogenesis of Alzheimer's disease. Brain Pathol 22(6):776–787. doi: 10.1111/j.1750-3639.2012.00587.x PubMedGoogle Scholar
  106. 106.
    Wang PL, Niidome T, Akaike A, Kihara T, Sugimoto H (2009) Rac1 inhibition negatively regulates transcriptional activity of the amyloid precursor protein gene. J Neurosci Res 87(9):2105–2114. doi: 10.1002/jnr.22039 PubMedGoogle Scholar
  107. 107.
    Santos Da Silva J, Schubert V, Dotti CG (2004) RhoA, Rac1, and cdc42 intracellular distribution shift during hippocampal neuron development. Mol Cell Neurosci 27(1):1–7. doi: 10.1016/j.mcn.2004.03.008 PubMedGoogle Scholar
  108. 108.
    Maillet M, Robert SJ, Cacquevel M, Gastineau M, Vivien D, Bertoglio J, Zugaza JL, Fischmeister R, Lezoualc'h F (2003) Crosstalk between Rap1 and Rac regulates secretion of sAPPalpha. Nat Cell Biol 5(7):633–639. doi: 10.1038/ncb1007 PubMedGoogle Scholar
  109. 109.
    Boo JH, Sohn JH, Kim JE, Song H, Mook-Jung I (2008) Rac1 changes the substrate specificity of gamma-secretase between amyloid precursor protein and Notch1. Biochem Biophys Res Commun 372(4):913–917. doi: 10.1016/j.bbrc.2008.05.153 PubMedGoogle Scholar
  110. 110.
    Mendoza-Naranjo A, Gonzalez-Billault C, Maccioni RB (2007) Abeta1-42 stimulates actin polymerization in hippocampal neurons through Rac1 and Cdc42 Rho GTPases. J Cell Sci 120(Pt 2):279–288. doi: 10.1242/jcs.03323 PubMedGoogle Scholar
  111. 111.
    Manterola L, Hernando-Rodriguez M, Ruiz A, Apraiz A, Arrizabalaga O, Vellon L, Alberdi E, Cavaliere F, Lacerda HM, Jimenez S, Parada LA, Matute C, Zugaza JL (2013) 1–42 beta-amyloid peptide requires PDK1/nPKC/Rac 1 pathway to induce neuronal death. Transl Psychiatr 3:e219. doi: 10.1038/tp.2012.147 Google Scholar
  112. 112.
    Petratos S, Li QX, George AJ, Hou X, Kerr ML, Unabia SE, Hatzinisiriou I, Maksel D, Aguilar MI, Small DH (2008) The beta-amyloid protein of Alzheimer's disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism. Brain 131(Pt 1):90–108. doi: 10.1093/brain/awm260 PubMedGoogle Scholar
  113. 113.
    Kawarabayashi T, Shoji M, Younkin LH, Wen-Lang L, Dickson DW, Murakami T, Matsubara E, Abe K, Ashe KH, Younkin SG (2004) Dimeric amyloid beta protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer's disease. J Neurosci 24(15):3801–3809. doi: 10.1523/JNEUROSCI.5543-03.2004 PubMedGoogle Scholar
  114. 114.
    Benilova I, Karran E, De Strooper B (2012) The toxic Abeta oligomer and Alzheimer's disease: an emperor in need of clothes. Nat Neurosci 15(3):349–357. doi: 10.1038/nn.3028 PubMedGoogle Scholar
  115. 115.
    Ma QL, Yang F, Calon F, Ubeda OJ, Hansen JE, Weisbart RH, Beech W, Frautschy SA, Cole GM (2008) p21-activated kinase-aberrant activation and translocation in Alzheimer disease pathogenesis. J Biol Chem 283(20):14132–14143. doi: 10.1074/jbc.M708034200 PubMedPubMedCentralGoogle Scholar
  116. 116.
    Zhao L, Ma QL, Calon F, Harris-White ME, Yang F, Lim GP, Morihara T, Ubeda OJ, Ambegaokar S, Hansen JE, Weisbart RH, Teter B, Frautschy SA, Cole GM (2006) Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat Neurosci 9(2):234–242. doi: 10.1038/nn1630 PubMedGoogle Scholar
  117. 117.
    Hayashi ML, Choi SY, Rao BS, Jung HY, Lee HK, Zhang D, Chattarji S, Kirkwood A, Tonegawa S (2004) Altered cortical synaptic morphology and impaired memory consolidation in forebrain- specific dominant-negative PAK transgenic mice. Neuron 42(5):773–787. doi: 10.1016/j.neuron.2004.05.003 PubMedGoogle Scholar
  118. 118.
    Yang K, Belrose J, Trepanier CH, Lei G, Jackson MF, MacDonald JF (2011) Fyn, a potential target for Alzheimer's disease. J Alzheimers Dis 27(2):243–252. doi: 10.3233/JAD-2011-110353 PubMedGoogle Scholar
  119. 119.
    Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wolfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Gotz J (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models. Cell 142(3):387–397. doi: 10.1016/j.cell.2010.06.036 PubMedGoogle Scholar
  120. 120.
    Um JW, Strittmatter SM (2013) Amyloid-beta induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease. Prion 7(1):37–41. doi: 10.4161/pri.22212 PubMedPubMedCentralGoogle Scholar
  121. 121.
    Fujimura M, Usuki F (2012) Differing effects of toxicants (methylmercury, inorganic mercury, lead, amyloid beta, and rotenone) on cultured rat cerebrocortical neurons: differential expression of rho proteins associated with neurotoxicity. Toxicol Sci 126(2):506–514. doi: 10.1093/toxsci/kfr352 PubMedGoogle Scholar
  122. 122.
    Bate C, Williams A (2010) Amyloid-beta(1–40) inhibits amyloid-beta(1–42) induced activation of cytoplasmic phospholipase A2 and synapse degeneration. J Alzheimers Dis 21(3):985–993. doi: 10.3233/JAD-2010-100528 PubMedGoogle Scholar
  123. 123.
    Shen JN, Wang DS, Wang R (2012) The protection of acetylcholinesterase inhibitor on beta-amyloid-induced the injury of neurite outgrowth via regulating axon guidance related genes expression in neuronal cells. Int J Clin Exp Pathol 5(9):900–913PubMedPubMedCentralGoogle Scholar
  124. 124.
    Bernstein BW, Chen H, Boyle JA, Bamburg JR (2006) Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons. Am J Physiol Cell Physiol 291(5):C828–C839. doi: 10.1152/ajpcell.00066.2006 PubMedGoogle Scholar
  125. 125.
    Huesa G, Baltrons MA, Gomez-Ramos P, Moran A, Garcia A, Hidalgo J, Frances S, Santpere G, Ferrer I, Galea E (2010) Altered distribution of RhoA in Alzheimer's disease and AbetaPP overexpressing mice. J Alzheimers Dis 19(1):37–56. doi: 10.3233/JAD-2010-1203 PubMedGoogle Scholar
  126. 126.
    Chacon PJ, Garcia-Mejias R, Rodriguez-Tebar A (2011) Inhibition of RhoA GTPase and the subsequent activation of PTP1B protects cultured hippocampal neurons against amyloid beta toxicity. Mol Neurodegener 6(1):14. doi: 10.1186/1750-1326-6-14 PubMedPubMedCentralGoogle Scholar
  127. 127.
    Yu C, Nwabuisi-Heath E, Laxton K, Ladu MJ (2010) Endocytic pathways mediating oligomeric Abeta42 neurotoxicity. Mol Neurodegener 5:19. doi: 10.1186/1750-1326-5-19 PubMedPubMedCentralGoogle Scholar
  128. 128.
    Zhou Y, Su Y, Li B, Liu F, Ryder JW, Wu X, Gonzalez-DeWhitt PA, Gelfanova V, Hale JE, May PC, Paul SM, Ni B (2003) Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science 302(5648):1215–1217. doi: 10.1126/science.1090154 PubMedGoogle Scholar
  129. 129.
    Desire L, Bourdin J, Loiseau N, Peillon H, Picard V, De Oliveira C, Bachelot F, Leblond B, Taverne T, Beausoleil E, Lacombe S, Drouin D, Schweighoffer F (2005) RAC1 inhibition targets amyloid precursor protein processing by gamma-secretase and decreases Abeta production in vitro and in vivo. J Biol Chem 280(45):37516–37525. doi: 10.1074/jbc.M507913200 PubMedGoogle Scholar
  130. 130.
    Kumanogoh H, Miyata S, Sokawa Y, Maekawa S (2001) Biochemical and morphological analysis on the localization of Rac1 in neurons. Neurosci Res 39(2):189–196PubMedGoogle Scholar
  131. 131.
    Abdul-Hay SO, Luo J, Ashghodom RT, Thatcher GR (2009) NO-flurbiprofen reduces amyloid-beta, is neuroprotective in cell culture, and enhances cognition in response to cholinergic blockade. J Neurochem 111(3):766–776. doi: 10.1111/j.1471-4159.2009.06353.x PubMedPubMedCentralGoogle Scholar
  132. 132.
    Eriksen JL, Sagi SA, Smith TE, Weggen S, Das P, McLendon DC, Ozols VV, Jessing KW, Zavitz KH, Koo EH, Golde TE (2003) NSAIDs and enantiomers of flurbiprofen target gamma-secretase and lower Abeta 42 in vivo. J Clin Invest 112(3):440–449. doi: 10.1172/JCI18162 PubMedPubMedCentralGoogle Scholar
  133. 133.
    Weggen S, Eriksen JL, Sagi SA, Pietrzik CU, Ozols V, Fauq A, Golde TE, Koo EH (2003) Evidence that nonsteroidal anti-inflammatory drugs decrease amyloid beta 42 production by direct modulation of gamma-secretase activity. J Biol Chem 278(34):31831–31837. doi: 10.1074/jbc.M303592200 PubMedGoogle Scholar
  134. 134.
    Ding J, Li QY, Yu JZ, Wang X, Sun CH, Lu CZ, Xiao BG (2010) Fasudil, a Rho kinase inhibitor, drives mobilization of adult neural stem cells after hypoxia/reoxygenation injury in mice. Mol Cell Neurosci 43(2):201–208. doi: 10.1016/j.mcn.2009.11.001 PubMedGoogle Scholar
  135. 135.
    Song Y, Chen X, Wang LY, Gao W, Zhu MJ (2013) Rho kinase inhibitor fasudil protects against beta-amyloid-induced hippocampal neurodegeneration in rats. CNS Neurosci Ther 19(8):603–610. doi: 10.1111/cns.12116 PubMedGoogle Scholar
  136. 136.
    Ostrowski SM, Wilkinson BL, Golde TE, Landreth G (2007) Statins reduce amyloid-beta production through inhibition of protein isoprenylation. J Biol Chem 282(37):26832–26844. doi: 10.1074/jbc.M702640200 PubMedGoogle Scholar
  137. 137.
    Pedrini S, Carter TL, Prendergast G, Petanceska S, Ehrlich ME, Gandy S (2005) Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK. PLoS Med 2(1):e18. doi: 10.1371/journal.pmed.0020018 PubMedPubMedCentralGoogle Scholar
  138. 138.
    Mattson MP (2003) Gene-diet interactions in brain aging and neurodegenerative disorders. Ann Intern Med 139(5 Pt 2):441–444PubMedGoogle Scholar
  139. 139.
    Bonda DJ, Lee HG, Camins A, Pallas M, Casadesus G, Smith MA, Zhu X (2011) The sirtuin pathway in ageing and Alzheimer disease: mechanistic and therapeutic considerations. Lancet Neurol 10(3):275–279. doi: 10.1016/S1474-4422(11)70013-8 PubMedPubMedCentralGoogle Scholar
  140. 140.
    Smith J (2002) Human Sir2 and the ‘silencing’ of p53 activity. Trends Cell Biol 12(9):404–406PubMedGoogle Scholar
  141. 141.
    Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23(12):2369–2380. doi: 10.1038/sj.emboj.7600244 PubMedPubMedCentralGoogle Scholar
  142. 142.
    Antebi A (2004) Tipping the balance toward longevity. Dev Cell 6(3):315–316PubMedGoogle Scholar
  143. 143.
    Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, Puigserver P, Sadoshima J, Deng H, Pedrini S, Gandy S, Sauve AA, Pasinetti GM (2006) Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem 281(31):21745–21754. doi: 10.1074/jbc.M602909200 PubMedGoogle Scholar
  144. 144.
    Tang BL (2005) Alzheimer's disease: channeling APP to non-amyloidogenic processing. Biochem Biophys Res Commun 331(2):375–378. doi: 10.1016/j.bbrc.2005.03.074 PubMedGoogle Scholar
  145. 145.
    Qin W, Chachich M, Lane M, Roth G, Bryant M, de Cabo R, Ottinger MA, Mattison J, Ingram D, Gandy S, Pasinetti GM (2006) Calorie restriction attenuates Alzheimer's disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus). J Alzheimers Dis 10(4):417–422PubMedGoogle Scholar
  146. 146.
    Feng X, Liang N, Zhu D, Gao Q, Peng L, Dong H, Yue Q, Liu H, Bao L, Zhang J, Hao J, Gao Y, Yu X, Sun J (2013) Resveratrol inhibits beta-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS One 8(3):e59888. doi: 10.1371/journal.pone.0059888 PubMedPubMedCentralGoogle Scholar
  147. 147.
    Linseman DA, Laessig T, Meintzer MK, McClure M, Barth H, Aktories K, Heidenreich KA (2001) An essential role for Rac/Cdc42 GTPases in cerebellar granule neuron survival. J Biol Chem 276(42):39123–39131. doi: 10.1074/jbc.M103959200 M103959200 PubMedGoogle Scholar
  148. 148.
    Le SS, Loucks FA, Udo H, Richardson-Burns S, Phelps RA, Bouchard RJ, Barth H, Aktories K, Tyler KL, Kandel ER, Heidenreich KA, Linseman DA (2005) Inhibition of Rac GTPase triggers a c-Jun- and Bim-dependent mitochondrial apoptotic cascade in cerebellar granule neurons. J Neurochem 94(4):1025–1039. doi: 10.1111/j.1471-4159.2005.03252.x PubMedPubMedCentralGoogle Scholar
  149. 149.
    Bonda DJ, Wang X, Perry G, Nunomura A, Tabaton M, Zhu X, Smith MA (2010) Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology 59(4–5):290–294. doi: 10.1016/j.neuropharm.2010.04.005 PubMedGoogle Scholar
  150. 150.
    Choi DH, Cristovao AC, Guhathakurta S, Lee J, Joh TH, Beal MF, Kim YS (2012) NADPH oxidase 1-mediated oxidative stress leads to dopamine neuron death in Parkinson's disease. Antioxid Redox Signal 16(10):1033–1045. doi: 10.1089/ars.2011.3960 PubMedPubMedCentralGoogle Scholar
  151. 151.
    Hashimoto Y, Chiba T, Yamada M, Nawa M, Kanekura K, Suzuki H, Terashita K, Aiso S, Nishimoto I, Matsuoka M (2005) Transforming growth factor beta2 is a neuronal death-inducing ligand for amyloid-beta precursor protein. Mol Cell Biol 25(21):9304–9317. doi: 10.1128/MCB.25.21.9304-9317.2005 PubMedPubMedCentralGoogle Scholar
  152. 152.
    Tachi N, Hashimoto Y, Matsuoka M (2012) MOCA is an integrator of the neuronal death signals that are activated by familial Alzheimer's disease-related mutants of amyloid beta precursor protein and presenilins. Biochem J 442(2):413–422. doi: 10.1042/BJ20100993 PubMedGoogle Scholar
  153. 153.
    Musilli M, Nicolia V, Borrelli S, Scarpa S, Diana G (2013) Behavioral effects of Rho GTPase modulation in a model of Alzheimer's disease. Behav Brain Res 237:223–229. doi: 10.1016/j.bbr.2012.09.043 PubMedGoogle Scholar
  154. 154.
    Loizzo S, Rimondini R, Travaglione S, Fabbri A, Guidotti M, Ferri A, Campana G, Fiorentini C (2013) CNF1 increases brain energy level, counteracts neuroinflammatory markers and rescues cognitive deficits in a murine model of Alzheimer's disease. PLoS One 8(5):e65898. doi: 10.1371/journal.pone.0065898 PubMedPubMedCentralGoogle Scholar
  155. 155.
    Borrelli S, Musilli M, Martino A, Diana G (2013) Long-lasting efficacy of the cognitive enhancer cytotoxic necrotizing factor 1. Neuropharmacology 64(1):74–80. doi: 10.1016/j.neuropharm.2012.05.031 PubMedGoogle Scholar
  156. 156.
    De Viti S, Martino A, Musilli M, Fiorentini C, Diana G (2010) The Rho GTPase activating CNF1 improves associative working memory for object-in-place. Behav Brain Res 212(1):78–83. doi: 10.1016/j.bbr.2010.03.049 PubMedGoogle Scholar
  157. 157.
    De Filippis B, Fabbri A, Simone D, Canese R, Ricceri L, Malchiodi-Albedi F, Laviola G, Fiorentini C (2012) Modulation of RhoGTPases improves the behavioral phenotype and reverses astrocytic deficits in a mouse model of Rett syndrome. Neuropsychopharmacology 37(5):1152–1163. doi: 10.1038/npp.2011.301 PubMedPubMedCentralGoogle Scholar
  158. 158.
    Haag MD, Hofman A, Koudstaal PJ, Stricker BH, Breteler MM (2009) Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam study. J Neurol Neurosurg Psychiatr 80(1):13–17. doi: 10.1136/jnnp.2008.150433 PubMedGoogle Scholar
  159. 159.
    Samuel F, Hynds DL (2010) RHO GTPase signaling for axon extension: is prenylation important? Mol Neurobiol 42(2):133–142. doi: 10.1007/s12035-010-8144-2 PubMedGoogle Scholar
  160. 160.
    Hamano T, Yen SH, Gendron T, Ko LW, Kuriyama M (2012) Pitavastatin decreases tau levels via the inactivation of Rho/ROCK. Neurobiol Aging 33(10):2306–2320. doi: 10.1016/j.neurobiolaging.2011.10.020 PubMedGoogle Scholar
  161. 161.
    Yang P, Arnold SA, Habas A, Hetman M, Hagg T (2008) Ciliary neurotrophic factor mediates dopamine D2 receptor-induced CNS neurogenesis in adult mice. J Neurosci 28(9):2231–2241. doi: 10.1523/JNEUROSCI.3574-07.2008 28/9/2231 PubMedGoogle Scholar
  162. 162.
    Hitoshi S, Seaberg RM, Koscik C, Alexson T, Kusunoki S, Kanazawa I, Tsuji S, van der Kooy D (2004) Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev 18(15):1806–1811. doi: 10.1101/gad.1208404 18/15/1806 PubMedPubMedCentralGoogle Scholar
  163. 163.
    Bolognin S, Blanchard J, Wang X, Basurto-Islas G, Tung YC, Kohlbrenner E, Grundke-Iqbal I, Iqbal K (2012) An experimental rat model of sporadic Alzheimer's disease and rescue of cognitive impairment with a neurotrophic peptide. Acta Neuropathol 123(1):133–151. doi: 10.1007/s00401-011-0908-x PubMedPubMedCentralGoogle Scholar
  164. 164.
    Pertz O (2010) Spatio-temporal Rho GTPase signaling — where are we now? J Cell Sci 123(Pt 11):1841–1850. doi: 10.1242/jcs.064345 123/11/1841 PubMedGoogle Scholar
  165. 165.
    Harvey CD, Yasuda R, Zhong H, Svoboda K (2008) The spread of Ras activity triggered by activation of a single dendritic spine. Science 321(5885):136–140. doi: 10.1126/science.1159675 1159675 PubMedPubMedCentralGoogle Scholar
  166. 166.
    Yasuda R, Murakoshi H (2011) The mechanisms underlying the spatial spreading of signaling activity. Curr Opin Neurobiol 21(2):313–321. doi: 10.1016/j.conb.2011.02.008 PubMedPubMedCentralGoogle Scholar
  167. 167.
    Yoshizaki H, Ohba Y, Kurokawa K, Itoh RE, Nakamura T, Mochizuki N, Nagashima K, Matsuda M (2003) Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J Cell Biol 162(2):223–232. doi: 10.1083/jcb.200212049 jcb.200212049 PubMedPubMedCentralGoogle Scholar
  168. 168.
    Yoshizaki H, Aoki K, Nakamura T, Matsuda M (2006) Regulation of RalA GTPase by phosphatidylinositol 3-kinase as visualized by FRET probes. Biochem Soc Trans 34(Pt 5):851–854. doi: 10.1042/BST0340851 PubMedGoogle Scholar
  169. 169.
    Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93(1):269–309. doi: 10.1152/physrev.00003.2012 93/1/269 PubMedGoogle Scholar
  170. 170.
    Lamarche N, Tapon N, Stowers L, Burbelo PD, Aspenstrom P, Bridges T, Chant J, Hall A (1996) Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87(3):519–529PubMedGoogle Scholar
  171. 171.
    Lorenzetto E, Ettorre M, Pontelli V, Bolomini-Vittori M, Bolognin S, Zorzan S, Laudanna C, Buffelli M (2013) Rac1 selective activation improves retina ganglion cell survival and regeneration. PLoS One 8(5):e64350. doi: 10.1371/journal.pone.0064350 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Silvia Bolognin
    • 1
    Email author
  • Erika Lorenzetto
    • 1
  • Giovanni Diana
    • 2
  • Mario Buffelli
    • 1
    • 3
    • 4
  1. 1.Department of Neurological and Movement Sciences, Section of PhysiologyUniversity of VeronaVeronaItaly
  2. 2.Department of Therapeutic Research and Medicines EvaluationIstituto Superiore di SanitaRomeItaly
  3. 3.Center for Biomedical ComputingUniversity of VeronaVeronaItaly
  4. 4.National Institute of NeuroscienceVeronaItaly

Personalised recommendations