Molecular Neurobiology

, Volume 50, Issue 1, pp 88–96 | Cite as

Alterations in Mouse Brain Lipidome after Disruption of CST Gene: A Lipidomics Study

  • Chunyan Wang
  • Miao Wang
  • Yunhua Zhou
  • Jeffrey L. Dupree
  • Xianlin Han


To investigate the effects of a critical enzyme, cerebroside sulfotransferase (CST), involving sulfatide biosynthesis on lipid (particularly sphingolipid) homeostasis, herein, we determined the lipidomes of brain cortex and spinal cord from CST null and heterozygous (CST−/− and CST+/−, respectively) mice in comparison to their wild-type littermates by multi-dimensional mass spectrometry-based shotgun lipidomics. As anticipated, we demonstrated the absence of sulfatide in the tissues from CST−/− mice and found that significant reduction of sulfatide mass levels was also present, but in an age-dependent manner, in CST+/− mice. Unexpectedly, we revealed that the profiles of sulfatide species in CST+/− mice were significantly different from that of littermate controls with an increase in the composition of species containing saturated and hydroxylated fatty acyl chains. Contrary to the changes of sulfatide levels, shotgun lipidomics analysis did not detect significant changes of the mass levels of other lipid classes examined. Taken together, shotgun lipidomics analysis demonstrated anticipated sulfatide mass deficiency in CST defect mouse brain and revealed novel brain lipidome homeostasis in these mice. These results might provide new insights into the role of CST in myelin function.


Alzheimer’s disease Cerebroside sulfotransferase Neurolipidome Shotgun lipidomics Sphingolipidomics Sulfatide 



Alzheimer’s disease






Central nervous system


Cerebroside sulfotransferase


Electrospray ionization






Acyl chain containing m carbons and n double bonds


Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry


Multi-dimensional mass spectrometry-based shotgun lipidomics


Choline glycerophospholipid


Polymerase chain reaction


Statistical deviation




Wild type



This work was supported by National Institute on Aging Grant R01 AG31675 and intramural institutional research funds. Special thanks are expressed to Dr. Juan Pablo Palavicini for his contribution to genotyping, Ms. Jacina Redden and Nicole Harris for their skillful technical support in the analysis of lipids and/or animal care, and Ms. Imee Tiu for her editorial assistance.


  1. 1.
    Eckhardt M (2008) The role and metabolism of sulfatide in the nervous system. Mol Neurobiol 37:93–103PubMedCrossRefGoogle Scholar
  2. 2.
    Takahashi T, Suzuki T (2012) Role of sulfatide in normal and pathological cells and tissues. J Lipid Res 53:1437–1450PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Vos JP, Lopes-Cardozo M, Gadella BM (1994) Metabolic and functional aspects of sulfogalactolipids. Biochim Biophys Acta 1211:125–149PubMedCrossRefGoogle Scholar
  4. 4.
    Kolodny EH, Fluharty AL (eds) (1995) Metachromatic leukodystrophy and multiple sulfatase deficiency: sulfatide lipidosis. McGraw-Hill, New YorkGoogle Scholar
  5. 5.
    Eckhardt M, Hedayati KK, Pitsch J, Lullmann-Rauch R, Beck H, Fewou SN, Gieselmann V (2007) Sulfatide storage in neurons causes hyperexcitability and axonal degeneration in a mouse model of metachromatic leukodystrophy. J Neurosci 27:9009–9021PubMedCrossRefGoogle Scholar
  6. 6.
    Svennerholm L, Gottfries CG (1994) Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J Neurochem 62:1039–1047PubMedCrossRefGoogle Scholar
  7. 7.
    Han X, Holtzman DM, McKeel DW Jr, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818PubMedCrossRefGoogle Scholar
  8. 8.
    Han X, Cheng H, Fryer JD, Fagan AM, Holtzman DM (2003) Novel role for apolipoprotein E in the central nervous system: modulation of sulfatide content. J Biol Chem 278:8043–8051PubMedCrossRefGoogle Scholar
  9. 9.
    Han X (2007) Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stages of Alzheimer’s disease: a tale of shotgun lipidomics. J Neurochem 103(s1):171–179PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Honke K, Hirahara Y, Dupree J, Suzuki K, Popko B, Fukushima K, Fukushima J, Nagasawa T, Yoshida N, Wada Y, Taniguchi N (2002) Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci U S A 99:4227–4232PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, Dupree JL (2006) Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53:372–381PubMedCrossRefGoogle Scholar
  12. 12.
    Suzuki A, Hoshi T, Ishibashi T, Hayashi A, Yamaguchi Y, Baba H (2004) Paranodal axoglial junction is required for the maintenance of the Nav1.6-type sodium channel in the node of Ranvier in the optic nerves but not in peripheral nerve fibers in the sulfatide-deficient mice. Glia 46:274–283PubMedCrossRefGoogle Scholar
  13. 13.
    Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of the cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24:367–412PubMedCrossRefGoogle Scholar
  14. 14.
    Yang K, Cheng H, Gross RW, Han X (2009) Automated lipid identification and quantification by multi-dimensional mass spectrometry-based shotgun lipidomics. Anal Chem 81:4356–4368PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Han X, Yang K, Gross RW (2012) Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom Rev 31:134–178PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Cheng H, Guan S, Han X (2006) Abundance of triacylglycerols in ganglia and their depletion in diabetic mice: implications for the role of altered triacylglycerols in diabetic neuropathy. J Neurochem 97:1288–1300PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Cheng H, Jiang X, Han X (2007) Alterations in lipid homeostasis of mouse dorsal root ganglia induced by apolipoprotein E deficiency: a shotgun lipidomics study. J Neurochem 101:57–76PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Jiang X, Cheng H, Yang K, Gross RW, Han X (2007) Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low abundance regime of cellular sphingolipids. Anal Biochem 371:135–145PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Han X, Yang K, Gross RW (2008) Microfluidics-based electrospray ionization enhances intrasource separation of lipid classes and extends identification of individual molecular species through multi-dimensional mass spectrometry: development of an automated high throughput platform for shotgun lipidomics. Rapid Commun Mass Spectrom 22:2115–2124PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Cheng H, Sun G, Yang K, Gross RW, Han X (2010) Selective desorption/ionization of sulfatides by MALDI-MS facilitated using 9-aminoacridine as matrix. J Lipid Res 51:1599–1609PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Yang K, Han X (2011) Accurate quantification of lipid species by electrospray ionization mass spectrometry— meets a key challenge in lipidomics. Metabolites 1:21–40PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Poduslo SE, Jang Y (1984) Myelin development in infant brain. Neurochem Res 9:1615–1626PubMedCrossRefGoogle Scholar
  23. 23.
    Deoni SC, Mercure E, Blasi A, Gasston D, Thomson A, Johnson M, Williams SC, Murphy DG (2011) Mapping infant brain myelination with magnetic resonance imaging. J Neurosci 31:784–791PubMedCrossRefGoogle Scholar
  24. 24.
    Ishibashi T, Dupree JL, Ikenaka K, Hirahara Y, Honke K, Peles E, Popko B, Suzuki K, Nishino H, Baba H (2002) A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci 22:6507–6514PubMedGoogle Scholar
  25. 25.
    Cheng H, Mancuso DJ, Jiang X, Guan S, Yang J, Yang K, Sun G, Gross RW, Han X (2008) Shotgun lipidomics reveals the temporally dependent, highly diversified cardiolipin profile in the mammalian brain: temporally coordinated postnatal diversification of cardiolipin molecular species with neuronal remodeling. Biochemistry 47:5869–5880PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Cheng H, Wang M, Li J-L, Cairns NJ, Han X (2013) Specific changes of sulfatide levels in individuals with pre-clinical Alzheimer’s disease: an early event in disease pathogenesis. J Neurochem 127:733–738Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Chunyan Wang
    • 1
  • Miao Wang
    • 1
  • Yunhua Zhou
    • 2
  • Jeffrey L. Dupree
    • 3
  • Xianlin Han
    • 1
  1. 1.Diabetes and Obesity Research CenterSanford-Burnham Medical Research InstituteOrlandoUSA
  2. 2.Department of Anatomy, Histology and Embryology, Shanghai Medical CollegeFudan UniversityShanghaiChina
  3. 3.Department of Anatomy and NeurobiologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations