Advertisement

Molecular Neurobiology

, Volume 49, Issue 3, pp 1181–1199 | Cite as

New Insight into Neurodegeneration: the Role of Proteomics

  • Ramavati Pal
  • Guido Alves
  • Jan Petter Larsen
  • Simon Geir MøllerEmail author
Article

Abstract

Recent advances within the field of proteomics, including both upstream and downstream protocols, have fuelled a transition from simple protein identification to functional analysis. A battery of proteomics approaches is now being employed for the analysis of protein expression levels, the monitoring of cellular activities and for gaining an increased understanding into biochemical pathways. Combined, these approaches are changing the way we study disease by allowing accurate and targeted, large scale protein analysis, which will provide invaluable insight into disease pathogenesis. Neurodegenerative disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), prion disease, and other diseases that affect the neuromuscular system, are a leading cause of disability in the aging population. There are no effective intervention strategies for these disorders and diagnosis is challenging as it relies primarily on clinical symptomatic features, which often overlap at early stages of disease. There is, therefore, an urgent need to develop reliable biomarkers to improve early and specific diagnosis, to track disease progression, to measure molecular responses towards treatment regimes and ultimately devise new therapeutic strategies. To accomplish this, a better understanding of disease mechanisms is needed. In this review we summarize recent advances in the field of proteomics applicable to neurodegenerative disorders, and how these advances are fueling our understanding, diagnosis, and treatment of these complex disorders.

Keywords

Neurodegenerative diseases Neuromuscular system Biomarker Mass spectrometry 

Notes

Acknowledgments

Research in our laboratory is funded by The Norwegian Research Council, The Western Norway Regional Health Authority and The Norwegian Centre for Movement Disorders. We thank Katherine Moller for language correction assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Benatar M, Wuu J, Fernandez C, Weihl CC, Katzen H, Steele J, Oskarsson B, Taylor JP (2013) Motor neuron involvement in multisystem proteinopathy: implications for ALS. Neurology 80(20):1874–1880PubMedGoogle Scholar
  2. 2.
    Pardo LM, van Duijn CM (2005) In search of genes involved in neurodegenerative disorders. Mutat Res-Fundam Mol Mech Mutagen 592(1–2):89–101Google Scholar
  3. 3.
    David CR (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443(7113):780–786Google Scholar
  4. 4.
    Coppede F, Mancuso M, Siciliano G, Migliore L, Murri L (2006) Genes and the environment in neurodegeneration. Biosci Rep 26(5):341–367PubMedGoogle Scholar
  5. 5.
    Migliore L, Coppede F (2002) Genetic and environmental factors in cancer and neurodegenerative diseases. Mutat Res 512(2–3):135–153PubMedGoogle Scholar
  6. 6.
    Taylor JP, Hardy J, Fischbeck KH (2002) Biomedicine—toxic proteins in neurodegenerative disease. Science 296(5575):1991–1995PubMedGoogle Scholar
  7. 7.
    Bjorkblom B, Adilbayeva A, Maple-Grodem J, Piston D, Okvist M, Xu XM, Brede C, Larsen JP, Moller SG (2013) The Parkinson’s disease protein DJ-1 binds metals and protects against metal induced cytotoxicity. J Biol Chem 2013:21Google Scholar
  8. 8.
    Fitzmaurice AG, Rhodes SL, Lulla A, Murphy NP, Lam HA, O’Donnell KC, Barnhill L, Casida JE, Cockburn M, Sagasti A, Stahl MC, Maidment NT, Ritz B, Bronstein JM (2013) Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc Natl Acad Sci U S A 110(2):636–641PubMedCentralPubMedGoogle Scholar
  9. 9.
    Wang Z, Sugano E, Isago H, Hiroi T, Tamai M, Tomita H (2011) Differentiation of neuronal cells from NIH/3T3 fibroblasts under defined conditions. Develop Growth Differ 53(3):357–365Google Scholar
  10. 10.
    Campion D, Dumanchin C, Hannequin D, Dubois B, Belliard S, Puel M, Thomas-Anterion C, Michon A, Martin C, Charbonnier F, Raux G, Camuzat A, Penet C, Mesnage V, Martinez M, Clerget-Darpoux F, Brice A, Frebourg T (1999) Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 65(3):664–670PubMedCentralPubMedGoogle Scholar
  11. 11.
    Harvey RJ, Skelton-Robinson M, Rossor MN (2003) The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry 74(9):1206–1209PubMedCentralPubMedGoogle Scholar
  12. 12.
    Bertram L, Tanzi RE (2008) Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9(10):768–778PubMedGoogle Scholar
  13. 13.
    Williamson J, Goldman J, Marder KS (2009) Genetic aspects of Alzheimer disease. Neurologist 15(2):80–86PubMedCentralPubMedGoogle Scholar
  14. 14.
    Harrington CR (2012) The molecular pathology of Alzheimer’s disease. Neuroimaging Clin N Am 22(1):11–22PubMedGoogle Scholar
  15. 15.
    Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584PubMedGoogle Scholar
  16. 16.
    Kawamata T, Taniguchi T, Mukai H, Kitagawa M, Hashimoto T, Maeda K, Ono Y, Tanaka C (1998) A protein kinase, PKN, accumulates in Alzheimer neurofibrillary tangles and associated endoplasmic reticulum-derived vesicles and phosphorylates tau protein. J Neurosci 18(18):7402–7410PubMedGoogle Scholar
  17. 17.
    Zilkova M, Koson P, Zilka N (2006) The hunt for dying neurons: insight into the neuronal loss in Alzheimer’s disease. Bratisl Lek Listy 107(9–10):366–373PubMedGoogle Scholar
  18. 18.
    Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D’Amato CJ, Gilman S (1997) Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Ann Neurol 41(6):706–715PubMedGoogle Scholar
  19. 19.
    Ghosh S, Lippa CF (2013) Clinical subtypes of frontotemporal dementia. Am J Alzheimers Dis Other Demen 2013:29Google Scholar
  20. 20.
    Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26(6):1049–1055PubMedGoogle Scholar
  21. 21.
    Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301PubMedGoogle Scholar
  22. 22.
    Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci 22:123–144PubMedGoogle Scholar
  23. 23.
    Pankratz N, Foroud T (2007) Genetics of Parkinson disease. Genet Med 9(12):801–811PubMedGoogle Scholar
  24. 24.
    Mrak RE, Griffin WS (2007) Dementia with Lewy bodies: definition, diagnosis, and pathogenic relationship to Alzheimer’s disease. Neuropsychiatr Dis Treat 3(5):619–625PubMedCentralPubMedGoogle Scholar
  25. 25.
    Sampathu DM, Giasson BI, Pawlyk AC, Trojanowski JQ, Lee VM (2003) Ubiquitination of alpha-synuclein is not required for formation of pathological inclusions in alpha-synucleinopathies. Am J Pathol 163(1):91–100PubMedCentralPubMedGoogle Scholar
  26. 26.
    Brandt J, Quaid KA, Folstein SE, Garber P, Maestri NE, Abbott MH, Slavney PR, Franz ML, Kasch L, Kazazian HH Jr (1989) Presymptomatic diagnosis of delayed-onset disease with linked DNA markers. The experience in Huntington’s disease. JAMA 261(21):3108–3114PubMedGoogle Scholar
  27. 27.
    Kieburtz K, MacDonald M, Shih C, Feigin A, Steinberg K, Bordwell K, Zimmerman C, Srinidhi J, Sotack J, Gusella J (1994) Trinucleotide repeat length and progression of illness in Huntington’s disease. J Med Genet 31(11):872–874PubMedCentralPubMedGoogle Scholar
  28. 28.
    MacDonald ME, Ambrose CM, Duyao MP, Myers RH, Lin C, Srinidhi L, Barnes G, Taylor SA, James M, Groot N, MacFarlane H, Jenkins B, Anderson MA, Wexler NS, Gusella JF, Bates GP, Baxendale S, Hummerich H, Kirby S, North M, Youngman S, Mott R, Zehetner G, Sedlacek Z, Poustka A, Frischauf A-M, Lehrach H, Buckler AJ, Church D, Doucette-Stamm L, O’Donovan MC, Riba-Ramirez L, Shah M, Stanton VP, Strobel SA, Draths KM, Wales JL, Dervan P, Housman DE, Altherr M, Shiang R, Thompson L, Fielder T, Wasmuth JJ, Tagle D, Valdes J, Elmer L, Allard M, Castilla L, Swaroop M, Blanchard K, Collins FS, Snell R, Holloway T, Gillespie K, Datson N, Shaw D, Harper PS (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72(6):971–983Google Scholar
  29. 29.
    Ha AD, Fung VS (2012) Huntington’s disease. Curr Opin Neurol 25(4):491–498PubMedGoogle Scholar
  30. 30.
    Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(7):S10–S17PubMedGoogle Scholar
  31. 31.
    Tandan R, Bradley WG (1985) Amyotrophic lateral sclerosis: Part 1. Clinical features, pathology, and ethical issues in management. Ann Neurol 18(3):271–280PubMedGoogle Scholar
  32. 32.
    Tandan R, Bradley WG (1985) Amyotrophic leteral sclerosis: part 2. Etiopathogenesis. Ann Neurol 18(4):419–431PubMedGoogle Scholar
  33. 33.
    Ghadge GD, Lee JP, Bindokas VP, Jordan J, Ma L, Miller RJ, Roos RP (1997) Mutant superoxide dismutase-1-linked familial amyotrophic lateral sclerosis: molecular mechanisms of neuronal death and protection. J Neurosci 17(22):8756–8766PubMedGoogle Scholar
  34. 34.
    Battistini S, Giannini F, Greco G, Bibbo G, Ferrera L, Marini V, Causarano R, Casula M, Lando G, Patrosso MC, Caponnetto C, Origone P, Marocchi A, Del Corona A, Siciliano G, Carrera P, Mascia V, Giagheddu M, Carcassi C, Orru S, Garre C, Penco S (2005) SOD1 mutations in amyotrophic lateral sclerosis. Results from a multicenter Italian study. J Neurol 252(7):782–788PubMedGoogle Scholar
  35. 35.
    Van Den Berg-Vos RM, Van Den Berg LH, Visser J, de Visser M, Franssen H, Wokke JH (2003) The spectrum of lower motor neuron syndromes. J Neurol 250(11):1279–1292Google Scholar
  36. 36.
    Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207PubMedGoogle Scholar
  37. 37.
    Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD (2012) Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 41(10):3912–3928PubMedCentralPubMedGoogle Scholar
  38. 38.
    Aggarwal K, Lee KH (2003) Functional genomics and proteomics as a foundation for systems biology. Brief Funct Genomic Proteomic 2(3):175–184PubMedGoogle Scholar
  39. 39.
    Wolf-Yadlin A, Sevecka M, MacBeath G (2009) Dissecting protein function and signaling using protein microarrays. Curr Opin Chem Biol 13(4):398–405PubMedCentralPubMedGoogle Scholar
  40. 40.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912-+PubMedGoogle Scholar
  41. 41.
    Kolch W, Pitt A (2010) Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat Rev Cancer 10(9):618–629PubMedGoogle Scholar
  42. 42.
    Savino R, Paduano S, Preiano M, Terracciano R (2012) The proteomics big challenge for biomarkers and new drug-targets discovery. Int J Mol Sci 13(11):13926–13948PubMedCentralPubMedGoogle Scholar
  43. 43.
    Sin N, Meng L, Auth H, Crews CM (1998) Eponemycin analogues: syntheses and use as probes of angiogenesis. Bioorg Med Chem 6(8):1209–1217PubMedGoogle Scholar
  44. 44.
    Beretta L (2007) Proteomics from the clinical perspective: many hopes and much debate. Nat Methods 4(10):785–786PubMedGoogle Scholar
  45. 45.
    Matt P, Fu Z, Fu Q, Van Eyk JE (2008) Biomarker discovery: proteome fractionation and separation in biological samples. Physiol Genomics 33(1):12–17PubMedGoogle Scholar
  46. 46.
    Butterfield DA, Dalle-Donne I (2012) Redox proteomics. Antioxid Redox Signal 17(11):1487–1489PubMedCentralPubMedGoogle Scholar
  47. 47.
    Ghezzi P, Bonetto V (2003) Redox proteomics: identification of oxidatively modified proteins. Proteomics 3(7):1145–1153PubMedGoogle Scholar
  48. 48.
    Rinalducci S, Murgiano L, Zolla L (2008) Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants. J Exp Bot 59(14):3781–3801PubMedGoogle Scholar
  49. 49.
    Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ, Harper JW, Gygi SP (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44(2):325–340PubMedCentralPubMedGoogle Scholar
  50. 50.
    Dammer EB, Na CH, Xu P, Seyfried NT, Duong DM, Cheng D, Gearing M, Rees H, Lah JJ, Levey AI, Rush J, Peng J (2011) Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease. J Biol Chem 286(12):10457–10465PubMedCentralPubMedGoogle Scholar
  51. 51.
    Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10(11):755–764PubMedCentralPubMedGoogle Scholar
  52. 52.
    Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921–926PubMedGoogle Scholar
  53. 53.
    Hermodson M (1996) Current protocols in protein science. In: Coligan JE, Dunn BM, Ploegh HL, Speicher DW, Wingfield PT (eds) Proteins: Structure, Function, and Bioinformatics 24 (3):409–409Google Scholar
  54. 54.
    Yu C, Cohen L (2004) Tissue sample preparation-not the same old grind. LC GC EUR 17(2):96–111Google Scholar
  55. 55.
    Hanash S (2001) 2-D or not 2-D--is there a future for 2-D gels in proteomics? Insights from the York proteomics meeting. Proteomics 1(5):635–637PubMedGoogle Scholar
  56. 56.
    Ünlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis 18(11):2071–2077PubMedGoogle Scholar
  57. 57.
    Boysen RI, Hearn MTW (2001) HPLC of peptides and proteins. In: Current protocols in protein science. Wiley, New YorkGoogle Scholar
  58. 58.
    Henkel A, Müller K, Lewczuk P, Müller T, Marcus K, Kornhuber J, Wiltfang J (2012) Multidimensional plasma protein separation technique for identification of potential Alzheimer’s disease plasma biomarkers: a pilot study. J Neural Transm 119(7):779–788PubMedGoogle Scholar
  59. 59.
    Issaq HJ, Veenstra TD, Conrads TP, Felschow D (2002) The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem Biophys Res Commun 292(3):587–592PubMedGoogle Scholar
  60. 60.
    Ho CS, Lam CW, Chan MH, Cheung RC, Law LK, Lit LC, Ng KF, Suen MW, Tai HL (2003) Electrospray ionisation mass spectrometry: principles and clinical applications. Clin Biochem Rev 24(1):3–12PubMedCentralPubMedGoogle Scholar
  61. 61.
    Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C (2003) Tandem Mass Tags:  a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904PubMedGoogle Scholar
  62. 62.
    Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169PubMedGoogle Scholar
  63. 63.
    Ong S-E, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386PubMedGoogle Scholar
  64. 64.
    Lehnert S, Jesse S, Rist W, Steinacker P, Soininen H, Herukka S-K, Tumani H, Lenter M, Oeckl P, Ferger B, Hengerer B, Otto M (2012) iTRAQ and multiple reaction monitoring as proteomic tools for biomarker search in cerebrospinal fluid of patients with Parkinson’s disease dementia. Exp Neurol 234(2):499–505PubMedGoogle Scholar
  65. 65.
    Joos TO, Schrenk M, Hopfl P, Kroger K, Chowdhury U, Stoll D, Schorner D, Durr M, Herick K, Rupp S, Sohn K, Hammerle H (2000) A microarray enzyme-linked immunosorbent assay for autoimmune diagnostics. Electrophoresis 21(13):2641–2650PubMedGoogle Scholar
  66. 66.
    Fountoulakis M, Kossida S (2006) Proteomics-driven progress in neurodegeneration research. Electrophoresis 27(8):1556–1573PubMedGoogle Scholar
  67. 67.
    Li KW, Smit AB (2008) Subcellular proteomics in neuroscience. Front Biosci 13:4416–4425PubMedGoogle Scholar
  68. 68.
    Chiang MC, Juo CG, Chang HH, Chen HM, Yi EC, Chern Y (2007) Systematic uncovering of multiple pathways underlying the pathology of Huntington disease by an acid-cleavable isotope-coded affinity tag approach. Mol Cell Proteomics 6(5):781–797PubMedGoogle Scholar
  69. 69.
    Rudrabhatla P, Grant P, Jaffe H, Strong MJ, Pant HC (2010) Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer’s disease by iTRAQ. Faseb J 24(11):4396–4407PubMedCentralPubMedGoogle Scholar
  70. 70.
    Xia Q, Liao L, Cheng D, Duong DM, Gearing M, Lah JJ, Levey AI, Peng J (2008) Proteomic identification of novel proteins associated with Lewy bodies. Front Biosci 13:3850–3856PubMedCentralPubMedGoogle Scholar
  71. 71.
    Hashimoto M, Rockenstein E, Crews L, Masliah E (2003) Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromol Med 4(1–2):21–36Google Scholar
  72. 72.
    Priller C, Bauer T, Mitteregger G, Krebs B, Kretzschmar HA, Herms J (2006) Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 26(27):7212–7221PubMedGoogle Scholar
  73. 73.
    Turner PR, O’Connor K, Tate WP, Abraham WC (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 70(1):1–32PubMedGoogle Scholar
  74. 74.
    Ohnishi S, Takano K (2004) Amyloid fibrils from the viewpoint of protein folding. Cell Mol Life Sci 61(5):511–524PubMedGoogle Scholar
  75. 75.
    Tiraboschi P, Hansen LA, Thal LJ, Corey-Bloom J (2004) The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62(11):1984–1989PubMedGoogle Scholar
  76. 76.
    De Vos KJ, Grierson AJ, Ackerley S, Miller CC (2008) Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 31:151–173PubMedGoogle Scholar
  77. 77.
    Wang Y, Meriin AB, Costello CE, Sherman MY (2007) Characterization of proteins associated with polyglutamine aggregates: a novel approach towards isolation of aggregates from protein conformation disorders. Prion 1(2):128–135PubMedCentralPubMedGoogle Scholar
  78. 78.
    Motoyama A, Venable JD, Ruse CI, Yates JR 3rd (2006) Automated ultra-high-pressure multidimensional protein identification technology (UHP-MudPIT) for improved peptide identification of proteomic samples. Anal Chem 78(14):5109–5118PubMedGoogle Scholar
  79. 79.
    Tofaris GK, Razzaq A, Ghetti B, Lilley KS, Spillantini MG (2003) Ubiquitination of alpha-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J Biol Chem 278(45):44405–44411PubMedGoogle Scholar
  80. 80.
    Zellner M, Baureder M, Rappold E, Bugert P, Kotzailias N, Babeluk R, Baumgartner R, Attems J, Gerner C, Jellinger K, Roth E, Oehler R, Umlauf E (2012) Comparative platelet proteome analysis reveals an increase of monoamine oxidase-B protein expression in Alzheimer’s disease but not in non-demented Parkinson’s disease patients. J Proteomics 75(7):2080–2092PubMedGoogle Scholar
  81. 81.
    Di Domenico F, Sultana R, Barone E, Perluigi M, Cini C, Mancuso C, Cai J, Pierce WM, Butterfield DA (2011) Quantitative proteomics analysis of phosphorylated proteins in the hippocampus of Alzheimer’s disease subjects. J Proteomics 74(7):1091–1103PubMedCentralPubMedGoogle Scholar
  82. 82.
    Licker V, Cote M, Lobrinus JA, Rodrigo N, Kovari E, Hochstrasser DF, Turck N, Sanchez JC, Burkhard PR (2012) Proteomic profiling of the substantia nigra demonstrates CNDP2 overexpression in Parkinson’s disease. J Proteomics 75(15):4656–4667PubMedGoogle Scholar
  83. 83.
    Michael TL, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795Google Scholar
  84. 84.
    Lopez MF, Melov S (2002) Applied proteomics—mitochondrial proteins and effect on function. Circ Res 90(4):380–389PubMedGoogle Scholar
  85. 85.
    Rodolfo C, Ciccosanti F, Giacomo GD, Piacentini M, Fimia GM (2010) Proteomic analysis of mitochondrial dysfunction in neurodegenerative diseases. Expert Rev Proteomics 7(4):519–542PubMedGoogle Scholar
  86. 86.
    Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RP, MacCoss MJ, Pallanck LJ (2013) The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc Natl Acad Sci U S A 110(16):6400–6405PubMedCentralPubMedGoogle Scholar
  87. 87.
    Sultana R, Poon HF, Cai J, Pierce WM, Merchant M, Klein JB, Markesbery WR, Butterfield DA (2006) Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiol Dis 22(1):76–87PubMedGoogle Scholar
  88. 88.
    Woltjer RL, Cimino PJ, Boutte AM, Schantz AM, Montine KS, Larson EB, Bird T, Quinn JF, Zhang J, Montine TJ (2005) Proteomic determination of widespread detergent-insolubility including Abeta but not tau early in the pathogenesis of Alzheimer’s disease. Faseb J 19(13):1923–1925PubMedGoogle Scholar
  89. 89.
    Li X, Zhang YJ, Hu Y-H, Chang M, Liu T, Wang DP, Zhang Y, Hu L-S (2008) Protein component of Lewy bodies (LBs) identified from synthetic proteasome inhibitor (PSI)-induced inclusions in PC12 cells by MS analysis. Chin J Biochem Mol Biol 24(10):906–915Google Scholar
  90. 90.
    Leverenz JB, Umar I, Wang Q, Montine TJ, McMillan PJ, Tsuang DW, Jin JH, Pan C, Shin J, Zhu D, Zhang J (2007) Proteomic identification of novel proteins in cortical Lewy bodies. Brain Pathol 17(2):139–145Google Scholar
  91. 91.
    Galvin J, Lee VM, Trojanowski JQ (2001) Synucleinopathies: clinical and pathological implications. Arch Neurol 58(2):186–190PubMedGoogle Scholar
  92. 92.
    Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, Shen J, Takio K, Iwatsubo T (2002) Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4(2):160–164PubMedGoogle Scholar
  93. 93.
    Giasson B, Duda JE, Murray IV, Chen Q, Souza JM, Hurtig HI, Ischiropoulos H, Trojanowski JQ, Lee VM (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290(5493):985–989PubMedGoogle Scholar
  94. 94.
    Fasano M, Lopiano L (2008) Alpha-synuclein and Parkinson’s disease: a proteomic view. Expert Rev Proteomics 5(2):239–248PubMedGoogle Scholar
  95. 95.
    Sowell RA, Owen JB, Butterfield DA (2009) Proteomics in animal models of Alzheimer’s and Parkinson’s diseases. Ageing Res Rev 8(1):1–17PubMedCentralPubMedGoogle Scholar
  96. 96.
    Zabel C, Mao L, Woodman B, Rohe M, Wacker MA, Klare Y, Koppelstatter A, Nebrich G, Klein O, Grams S, Strand A, Luthi-Carter R, Hartl D, Klose J, Bates GP (2009) A large number of protein expression changes occur early in life and precede phenotype onset in a mouse model for Huntington disease. Mol Cell Proteomics 8(4):720–734PubMedCentralPubMedGoogle Scholar
  97. 97.
    Culver BP, Savas JN, Park SK, Choi JH, Zheng S, Zeitlin SO, Yates JR 3rd, Tanese N (2012) Proteomic analysis of wild-type and mutant huntingtin-associated proteins in mouse brains identifies unique interactions and involvement in protein synthesis. J Biol Chem 287(26):21599–21614PubMedCentralPubMedGoogle Scholar
  98. 98.
    Chou JL, Shenoy DV, Thomas N, Choudhary PK, Laferla FM, Goodman SR, Breen GA (2011) Early dysregulation of the mitochondrial proteome in a mouse model of Alzheimer’s disease. J Proteomics 74(4):466–479PubMedGoogle Scholar
  99. 99.
    Hong I, Kang T, Yoo Y, Park R, Lee J, Lee S, Kim J, Song B, Kim SY, Moon M, Yun KN, Kim JY, Mook-Jung I, Park YM, Choi S (2013) Quantitative proteomic analysis of the hippocampus in the 5XFAD mouse model at early stages of Alzheimer’s disease pathology. J Alzheimers Dis 36(2):321–334PubMedGoogle Scholar
  100. 100.
    Xun Z, Sowell RA, Kaufman TC, Clemmer DE (2008) Quantitative proteomics of a presymptomatic A53T alpha-synuclein Drosophila model of Parkinson disease. Mol Cell Proteomics 7(7):1191–1203PubMedCentralPubMedGoogle Scholar
  101. 101.
    Westphal CH, Chandra SS (2013) Monomeric synucleins generate membrane curvature. J Biol Chem 288(3):1829–1840PubMedCentralPubMedGoogle Scholar
  102. 102.
    Vijitruth R, Liu M, Choi DY, Nguyen XV, Hunter RL, Bing G (2006) Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J Neuroinflammation 3:6PubMedCentralPubMedGoogle Scholar
  103. 103.
    Zhang X, Zhou JY, Chin MH, Schepmoes AA, Petyuk VA, Weitz KK, Petritis BO, Monroe ME, Camp DG, Wood SA, Melega WP, Bigelow DJ, Smith DJ, Qian WJ, Smith RD (2010) Region-specific protein abundance changes in the brain of MPTP-induced Parkinson’s disease mouse model. J Proteome Res 9(3):1496–1509PubMedCentralPubMedGoogle Scholar
  104. 104.
    Chin MH, Qian WJ, Wang H, Petyuk VA, Bloom JS, Sforza DM, Lacan G, Liu D, Khan AH, Cantor RM, Bigelow DJ, Melega WP, Camp DG 2nd, Smith RD, Smith DJ (2008) Mitochondrial dysfunction, oxidative stress, and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson’s disease. J Proteome Res 7(2):666–677PubMedCentralPubMedGoogle Scholar
  105. 105.
    Melega WP, Raleigh MJ, Stout DB, Lacan G, Huang SC, Phelps ME (1997) Recovery of striatal dopamine function after acute amphetamine- and methamphetamine-induced neurotoxicity in the vervet monkey. Brain Res 766(1–2):113–120PubMedGoogle Scholar
  106. 106.
    Sonsalla PK, Jochnowitz ND, Zeevalk GD, Oostveen JA, Hall ED (1996) Treatment of mice with methamphetamine produces cell loss in the substantia nigra. Brain Res 738(1):172–175PubMedGoogle Scholar
  107. 107.
    Keeney JT, Swomley AM, Forster S, Harris JL, Sultana R, Butterfield DA (2013) Apolipoprotein A-I: insights from redox proteomics for its role in neurodegeneration. Proteomics Clin Appl 7(1–2):109–122PubMedCentralPubMedGoogle Scholar
  108. 108.
    Ishigami N, Tokuda T, Ikegawa M, Komori M, Kasai T, Kondo T, Matsuyama Y, Nirasawa T, Thiele H, Tashiro K, Nakagawa M (2012) Cerebrospinal fluid proteomic patterns discriminate Parkinson’s disease and multiple system atrophy. Mov Disord 27(7):851–857PubMedGoogle Scholar
  109. 109.
    Fonteh AN, Harrington RJ, Huhmer AF, Biringer RG, Riggins JN, Harrington MG (2006) Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis Markers 22(1):39–64PubMedCentralPubMedGoogle Scholar
  110. 110.
    Bazan NG, Lukiw WJ (2002) Cyclooxygenase-2 and presenilin-1 gene expression induced by interleukin-1beta and amyloid beta 42 peptide is potentiated by hypoxia in primary human neural cells. J Biol Chem 277(33):30359–30367PubMedGoogle Scholar
  111. 111.
    Farooqui AA, Yang HC, Rosenberger TA, Horrocks LA (1997) Phospholipase A2 and its role in brain tissue. J Neurochem 69(3):889–901PubMedGoogle Scholar
  112. 112.
    Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5(9):785–799PubMedGoogle Scholar
  113. 113.
    Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55(17):3752–3756PubMedGoogle Scholar
  114. 114.
    Saez-Valero J, Barquero MS, Marcos A, McLean CA, Small DH (2000) Altered glycosylation of acetylcholinesterase in lumbar cerebrospinal fluid of patients with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 69(5):664–667PubMedCentralPubMedGoogle Scholar
  115. 115.
    Liu F, Zaidi T, Iqbal K, Grundke-Iqbal I, Merkle RK, Gong CX (2002) Role of glycosylation in hyperphosphorylation of tau in Alzheimer’s disease. FEBS Lett 512(1–3):101–106PubMedGoogle Scholar
  116. 116.
    Ringman JM, Schulman H, Becker C, Jones T, Bai Y, Immermann F, Cole G, Sokolow S, Gylys K, Geschwind DH, Cummings JL, Wan HI (2012) Proteomic changes in cerebrospinal fluid of presymptomatic and affected persons carrying familial Alzheimer disease mutations. Arch Neurol 69(1):96–104PubMedCentralPubMedGoogle Scholar
  117. 117.
    Albertini V, Benussi L, Paterlini A, Glionna M, Prestia A, Bocchio-Chiavetto L, Amicucci G, Galluzzi S, Adorni A, Geroldi C, Binetti G, Frisoni GB, Ghidoni R (2012) Distinct cerebrospinal fluid amyloid-beta peptide signatures in cognitive decline associated with Alzheimer’s disease and schizophrenia. Electrophoresis 33(24):3738–3744PubMedGoogle Scholar
  118. 118.
    Wijte D, McDonnell LA, Balog CI, Bossers K, Deelder AM, Swaab DF, Verhaagen J, Mayboroda OA (2012) A novel peptidomics approach to detect markers of Alzheimer’s disease in cerebrospinal fluid. Methods 56(4):500–507PubMedGoogle Scholar
  119. 119.
    Jahn H, Wittke S, Zürbig P, Raedler TJ, Arlt S (2011) Peptide fingerprinting of Alzheimer’s disease in cerebrospinal fluid: identification and prospective evaluation of new synaptic biomarkers. PLoS ONE 6(10)Google Scholar
  120. 120.
    Zhao X, Xiao WZ, Pu XP, Zhong LJ (2010) Proteome analysis of the sera from Chinese Parkinson’s disease patients. Neurosci Lett 479(2):175–179PubMedGoogle Scholar
  121. 121.
    Chen HM, Lin CY, Wang V (2011) Amyloid P component as a plasma marker for Parkinson’s disease identified by a proteomic approach. Clin Biochem 44(5–6):377–385PubMedGoogle Scholar
  122. 122.
    Sinha A, Srivastava N, Singh S, Singh AK, Bhushan S, Shukla R, Singh MP (2009) Identification of differentially displayed proteins in cerebrospinal fluid of Parkinson’s disease patients: A proteomic approach. Clin Chim Acta 400(1–2):14–20Google Scholar
  123. 123.
    Zhang X, Yin X, Yu H, Liu X, Yang F, Yao J, Jin H, Yang P (2012) Quantitative proteomic analysis of serum proteins in patients with Parkinson’s disease using an isobaric tag for relative and absolute quantification labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. Analyst 137(2):490–495PubMedGoogle Scholar
  124. 124.
    Pan S, Rush J, Peskind ER, Galasko D, Chung K, Quinn J, Jankovic J, Leverenz JB, Zabetian C, Pan C, Wang Y, Oh JH, Gao J, Zhang J, Montine T (2008) Application of targeted quantitative proteomics analysis in human cerebrospinal fluid using a liquid chromatography matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometer (LC MALDI TOF/TOF) platform. J Proteome Res 7(2):720–730PubMedGoogle Scholar
  125. 125.
    Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Zabetian CP, Leverenz JB, Baird G, Montine TJ, Hancock AM, Hwang H, Pan C, Bradner J, Kang UJ, Jensen PH, Zhang J (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133(Pt 3):713–726PubMedCentralPubMedGoogle Scholar
  126. 126.
    Bonifati V, Rizzu P, Squitieri F, Krieger E, Vanacore N, van Swieten JC, Brice A, van Duijn CM, Oostra B, Meco G, Heutink P (2003) DJ-1(PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci 24(3):159–160PubMedGoogle Scholar
  127. 127.
    Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K, Ariga H (2004) DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 5(2):213–218PubMedCentralPubMedGoogle Scholar
  128. 128.
    Shi M, Zabetian CP, Hancock AM, Ginghina C, Hong Z, Yearout D, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Leverenz JB, Zhang J (2010) Significance and confounders of peripheral DJ-1 and alpha-synuclein in Parkinson’s disease. Neurosci Lett 480(1):78–82PubMedCentralPubMedGoogle Scholar
  129. 129.
    Lin X, Cook T, Zabetian C, Leverenz J, Peskind E, Hu S, Cain K, Pan C, Edgar J, Goodlett D, Racette B, Checkoway H, Montine T, Shi M, Zhang J (2012) DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Sci Rep 2(954)Google Scholar
  130. 130.
    Li YH, Wang J, Zheng XL, Zhang YL, Li X, Yu S, He X, Chan P (2011) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry combined with magnetic beads for detecting serum protein biomarkers in parkinson’s disease. Eur Neurol 65(2):105–111PubMedGoogle Scholar
  131. 131.
    Dalrymple A, Wild EJ, Joubert R, Sathasivam K, Bjorkqvist M, Petersen A, Jackson GS, Isaacs JD, Kristiansen M, Bates GP, Leavitt BR, Keir G, Ward M, Tabrizi SJ (2007) Proteomic profiling of plasma in Huntington’s disease reveals neuroinflammatory activation and biomarker candidates. J Proteome Res 6(7):2833–2840PubMedGoogle Scholar
  132. 132.
    Huang YC, Wu YR, Tseng MY, Chen YC, Hsieh SY, Chen CM (2011) Increased prothrombin, apolipoprotein A-IV, and haptoglobin in the cerebrospinal fluid of patients with Huntington’s disease. PLoS ONE 6(1):0015809Google Scholar
  133. 133.
    Ranganathan S, Williams E, Ganchev P, Gopalakrishnan V, Lacomis D, Urbinelli L, Newhall K, Cudkowicz ME, Brown RH Jr, Bowser R (2005) Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J Neurochem 95(5):1461–1471PubMedCentralPubMedGoogle Scholar
  134. 134.
    Pasinetti GM, Ungar LH, Lange DJ, Yemul S, Deng H, Yuan X, Brown RH, Cudkowicz ME, Newhall K, Peskind E, Marcus S, Ho L (2006) Identification of potential CSF biomarkers in ALS. Neurology 66(8):1218–1222PubMedGoogle Scholar
  135. 135.
    Brettschneider J, Lehmensiek V, Mogel H, Pfeifle M, Dorst J, Hendrich C, Ludolph AC, Tumani H (2010) Proteome analysis reveals candidate markers of disease progression in amyotrophic lateral sclerosis (ALS). Neurosci Lett 468(1):23–27PubMedGoogle Scholar
  136. 136.
    Constantinescu R, Andreasson U, Li S, Podust VN, Mattsson N, Anckarsater R, Anckarsater H, Rosengren L, Holmberg B, Blennow K, Wikkelso C, Ruetschi U, Zetterberg H (2010) Proteomic profiling of cerebrospinal fluid in parkinsonian disorders. Parkinsonism Relat Disord 16(8):545–549PubMedGoogle Scholar
  137. 137.
    Villen J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3(10):1630–1638PubMedCentralPubMedGoogle Scholar
  138. 138.
    Stasyk T, Morandell S, Bakry R, Feuerstein I, Huck CW, Stecher G, Bonn GK, Huber LA (2005) Quantitative detection of phosphoproteins by combination of two-dimensional difference gel electrophoresis and phosphospecific fluorescent staining. Electrophoresis 26(14):2850–2854PubMedGoogle Scholar
  139. 139.
    Steinberg TH, Agnew BJ, Gee KR, Leung WY, Goodman T, Schulenberg B, Hendrickson J, Beechem JM, Haugland RP, Patton WF (2003) Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics 3(7):1128–1144PubMedGoogle Scholar
  140. 140.
    D’Ambrosio C, Arena S, Fulcoli G, Scheinfeld MH, Zhou D, D’Adamio L, Scaloni A (2006) Hyperphosphorylation of JNK-interacting protein 1, a protein associated with Alzheimer disease. Mol Cell Proteomics 5(1):97–113PubMedGoogle Scholar
  141. 141.
    Zahid S, Oellerich M, Asif AR, Ahmed N (2012) Phosphoproteome profiling of substantia nigra and cortex regions of Alzheimer’s disease patients. J Neurochem 121(6):954–963PubMedGoogle Scholar
  142. 142.
    Bonifati V, Oostra BA, Heutink P (2004) Unraveling the pathogenesis of Parkinson’s disease - the contribution of monogenic forms. Cell Mol Life Sci 61(14):1729–1750PubMedGoogle Scholar
  143. 143.
    Gasser T (2005) Genetics of Parkinson’s disease. Curr Opin Neurol 18(4):363–369PubMedGoogle Scholar
  144. 144.
    Golbe LI (2003) Alpha-synuclein and Parkinson’s disease. In: Gordin A, Kaakkola S, Teravainen H (eds) Parkinson’s Disease, vol 91. Advances in Neurology. pp 165–174Google Scholar
  145. 145.
    Hardy J, Cai HB, Cookson MR, Gwinn-Hardy K, Singleton A (2006) Genetics of Parkinson’s disease and parkinsonism. Ann Neurol 60(4):389–398PubMedGoogle Scholar
  146. 146.
    Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: Dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3(12):932–942PubMedGoogle Scholar
  147. 147.
    Zhang Y, Dawson VL, Dawson TM (2000) Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol Dis 7(4):240–250PubMedGoogle Scholar
  148. 148.
    Valente E, Bentivoglio AR, Dixon PH, Ferraris A, Ialongo T, Frontali M, Albanese A, Wood NW (2001) Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet 68(4):895–900PubMedCentralPubMedGoogle Scholar
  149. 149.
    Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonaldo R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160PubMedGoogle Scholar
  150. 150.
    Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F (2002) A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol 51(3):296–301PubMedGoogle Scholar
  151. 151.
    Kumari U, Tan EK (2009) LRRK2 in Parkinson’s disease: genetic and clinical studies from patients. Febs J 276(22):6455–6463PubMedGoogle Scholar
  152. 152.
    Dumitriu A, Pacheco CD, Wilk JB, Strathearn KE, Latourelle JC, Goldwurm S, Pezzoli G, Rochet JC, Lindquist S, Myers RH (2012) Cyclin-G-associated kinase modifies alpha-synuclein expression levels and toxicity in Parkinson’s disease: results from the GenePD Study. Hum Mol Genet 20(8):1478–1487Google Scholar
  153. 153.
    Rhodes SL, Sinsheimer JS, Bordelon Y, Bronstein JM, Ritz B (2011) Replication of GWAS Associations for GAK and MAPT in Parkinson’s Disease. Ann Hum Genet 75:195–200PubMedCentralPubMedGoogle Scholar
  154. 154.
    Carballo-Carbajal I, Weber-Endress S, Rovelli G, Chan D, Wolozin B, Klein CL, Patenge N, Gasser T, Kahle PJ (2010) Leucine-rich repeat kinase 2 induces alpha-synuclein expression via the extracellular signal-regulated kinase pathway. Cell Signal 22(5):821–827PubMedCentralPubMedGoogle Scholar
  155. 155.
    Hsu CH, Chan D, Wolozin B (2010) LRRK2 and the stress response: interaction with MKKs and JNK-interacting proteins. Neurodegener Dis 7(1–3):68–75PubMedCentralPubMedGoogle Scholar
  156. 156.
    Gloeckner CJ, Boldt K, von Zweydorf F, Helm S, Wiesent L, Sarioglu H, Ueffing M (2010) Phosphopeptide analysis reveals two discrete clusters of phosphorylation in the N-Terminus and the Roc domain of the Parkinson-disease associated protein kinase LRRK2. J Proteome Res 9 (4):1738–1745Google Scholar
  157. 157.
    Burke RE (2007) Inhibition of mitogen-activated protein kinase and stimulation of Akt kinase signaling pathways: Two approaches with therapeutic potential in the treatment of neurodegenerative disease. Pharmacol Ther 114(3):261–277PubMedCentralPubMedGoogle Scholar
  158. 158.
    Cuny GD (2009) Kinase inhibitors as potential therapeutics for acute and chronic neurodegenerative conditions. Curr Pharm Des 15(34):3919–3939PubMedGoogle Scholar
  159. 159.
    Bonifati V (2010) Shaking the genome: new studies reveal genetic risk for Parkinson’s disease. Lancet Neurol 9(2):136–138PubMedGoogle Scholar
  160. 160.
    Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, Simon-Sanchez J, Schulte C, Lesage S, Sveinbjornsdottir S, Arepalli S, Barker R, Ben-Shlomo Y, Berendse HW, Berg D, Bhatia K, de Bie RMA, Biffi A, Bloem B, Bochdanovits Z, Bonin M, Bras JM, Brockmann K, Brooks J, Burn DJ, Charlesworth G, Chen HL, Chinnery PF, Chong S, Clarke CE, Cookson MR, Cooper JM, Corvol JC, Counsell C, Damier P, Dartigues JF, Deloukas P, Deuschl G, Dexter DT, van Dijk KD, Dillman A, Durif F, Durr A, Edkins S, Evans JR, Foltynie T, Gao JJ, Gardner M, Gibbs JR, Goate A, Gray E, Guerreiro R, Gustafsson O, Harris C, van Hilten JJ, Hofman A, Hollenbeck A, Holton J, Hu M, Huang XM, Huber H, Hudson G, Hunt SE, Huttenlocher J, Illig T, Jonsson PV, Lambert JC, Langford C, Lees A, Lichtner P, Limousin P, Lopez G, Lorenz D, McNeill A, Moorby C, Moore M, Morris HR, Morrison KE, Mudanohwo E, O’Sullivan SS, Pearson J, Perlmutter JS, Petursson H, Pollak P, Post B, Potter S, Ravina B, Revesz T, Riess O, Rivadeneira F, Rizzu P, Ryten M, Sawcer S, Schapira A, Scheffer H, Shaw K, Shoulson I, Sidransky E, Smith C, Spencer CCA, Stefansson H, Stockton JD, Strange A, Talbot K, Tanner CM, Tashakkori-Ghanbaria A, Tison F, Trabzuni D, Traynor BJ, Uitterlinden AG, Velseboer D, Vidailhet M, Walker R, van de Warrenburg B, Wickremaratchi M, Williams N, Williams-Gray CH, Winder-Rhodes S, Stefansson K, Martinez M, Hardy J, Heutink P, Brice A, Gasser T, Singleton AB, Wood NW, Int Parkinson Dis Genomics C, Wellcome Trust Case-Control C (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377(9766):641–649PubMedGoogle Scholar
  161. 161.
    Fujioka S, Wszolek ZK (2012) Update on Genetics of Parkinsonism. Neurodegener Dis 10(1–4):257–260PubMedCentralPubMedGoogle Scholar
  162. 162.
    Plun-Favreau H, Klupsch K, Moisoi N, Gandhi S, Kjaer S, Frith D, Harvey K, Deas E, Harvey RJ, McDonald N, Wood NW, Martins LM, Downward J (2007) The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat Cell Biol 9(11):1243–U1263PubMedGoogle Scholar
  163. 163.
    Shiba-Fukushima K, Imai Y, Yoshida S, Ishihama Y, Kanao T, Sato S, Hattori N (2012) PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep 2(1002):19Google Scholar
  164. 164.
    Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL, Gygi SP, Harper JW (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496(7445):372–376PubMedCentralPubMedGoogle Scholar
  165. 165.
    Di Domenico F, Sultana R, Ferree A, Smith K, Barone E, Perluigi M, Coccia R, Pierce W, Cai J, Mancuso C, Squillace R, Wiengele M, Dalle-Donne I, Wolozin B, Butterfield DA (2012) Redox proteomics analyses of the influence of co-expression of wild-type or mutated LRRK2 and Tau on C. elegans protein expression and oxidative modification: relevance to Parkinson disease. Antioxid Redox Signal 17(11):1490–1506PubMedCentralPubMedGoogle Scholar
  166. 166.
    Gloeckner CJ, Schumacher A, Boldt K, Ueffing M (2009) The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J Neurochem 109(4):959–968PubMedGoogle Scholar
  167. 167.
    Hsu CH, Chan D, Greggio E, Saha S, Guillily MD, Ferree A, Raghavan K, Shen GC, Segal L, Ryu H, Cookson MR, Wolozin B (2010) MKK6 binds and regulates expression of Parkinson’s disease-related protein LRRK2. J Neurochem 112(6):1593–1604PubMedCentralPubMedGoogle Scholar
  168. 168.
    Kim AH, Yano H, Cho H, Meyer D, Monks B, Margolis B, Birnbaum MJ, Chao MV (2002) Akt1 regulates a JNK scaffold during excitotoxic apoptosis. Neuron 35(4):697–709PubMedGoogle Scholar
  169. 169.
    Hanash S (2003) Disease proteomics. Nature 422(6928):226–232PubMedGoogle Scholar
  170. 170.
    Holmes C (2002) Genotype and phenotype in Alzheimer’s disease. Br J Psychiatry 180:131–134PubMedGoogle Scholar
  171. 171.
    Marras C, Lang A (2013) Parkinson’s disease subtypes: lost in translation? J Neurol Neurosurg Psychiatry 84(4):409–415PubMedGoogle Scholar
  172. 172.
    Itzhaki RF, Wozniak MA (2008) Herpes simplex virus type 1 in Alzheimer’s disease: the enemy within. J Alzheimers Dis 13(4):393–405PubMedGoogle Scholar
  173. 173.
    Trojanowski JQ, Lee VM (1998) Aggregation of neurofilament and alpha-synuclein proteins in Lewy bodies: implications for the pathogenesis of Parkinson disease and Lewy body dementia. Arch Neurol 55(2):151–152PubMedGoogle Scholar
  174. 174.
    Hansen L, Salmon D, Galasko D, Masliah E, Katzman R, DeTeresa R, Thal L, Pay MM, Hofstetter R, Klauber M et al (1990) The Lewy body variant of Alzheimer's disease: a clinical and pathologic entity. Neurology 40(1):1–8PubMedGoogle Scholar
  175. 175.
    Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228PubMedGoogle Scholar
  176. 176.
    Chemale G, Morphew R, Moxon JV, Morassuti AL, LaCourse EJ, Barrett J, Johnston DA, Brophy PM (2006) Proteomic analysis of glutathione transferases from the liver fluke parasite, Fasciola hepatica. Proteomics 6(23):6263–6273PubMedGoogle Scholar
  177. 177.
    Fischbeck KH, Lieberman A, Bailey CK, Abel A, Merry DE (1999) Androgen receptor mutation in Kennedy’s disease. Philos Trans R Soc Lond B Biol Sci 354(1386):1075–1078PubMedCentralPubMedGoogle Scholar
  178. 178.
    Nardo G, Pozzi S, Pignataro M, Lauranzano E, Spano G, Garbelli S, Mantovani S, Marinou K, Papetti L, Monteforte M, Torri V, Paris L, Bazzoni G, Lunetta C, Corbo M, Mora G, Bendotti C, Bonetto V (2011) Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells. PLoS ONE 6(10):5Google Scholar
  179. 179.
    Ikeuchi T, Koide R, Onodera O, Tanaka H, Oyake M, Takano H, Tsuji S (1995) Dentatorubral-pallidoluysian atrophy (DRPLA). Molecular basis for wide clinical features of DRPLA. Clin Neurosci 3(1):23–27PubMedGoogle Scholar
  180. 180.
    Tsuji S (1999) Dentatorubral-pallidoluysian atrophy (DRPLA): clinical features and molecular genetics. Adv Neurol 79:399–409PubMedGoogle Scholar
  181. 181.
    Berciano J, Infante J, Mateo I, Combarros O (2002) Hereditary ataxias and paraplegias: a clinicogenetic review]. Neurologia 17(1):40–51PubMedGoogle Scholar
  182. 182.
    Wijesekera LC, Leigh PN (2009) Amyotrophic lateral sclerosis. Orphanet J Rare Dis 4(3):1750–1172Google Scholar
  183. 183.
    Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550PubMedGoogle Scholar
  184. 184.
    Bhidayasiri R, Ling H (2008) Multiple system atrophy. Neurologist 14(4):224–237PubMedGoogle Scholar
  185. 185.
    Cocciolo A, Di Domenico F, Coccia R, Fiorini A, Cai J, Pierce WM, Mecocci P, Butterfield DA, Perluigi M (2012) Decreased expression and increased oxidation of plasma haptoglobin in Alzheimer disease: Insights from redox proteomics. Free Radic Biol Med 53(10):1868–1876PubMedGoogle Scholar
  186. 186.
    Thambisetty M, Simmons A, Hye A, Campbell J, Westman E, Zhang Y, Wahlund LO, Kinsey A, Causevic M, Killick R, Kloszewska I, Mecocci P, Soininen H, Tsolaki M, Vellas B, Spenger C, Lovestone S (2011) Plasma biomarkers of brain atrophy in Alzheimer’s disease. PLoS ONE 6(12):21Google Scholar
  187. 187.
    Guo LH, Alexopoulos P, Wagenpfeil S, Kurz A, Perneczky R (2013) Plasma Proteomics for the Identification of Alzheimer Disease. Alzheimer Dis Assoc Disord 2013:14Google Scholar
  188. 188.
    Takano M, Yamashita T, Nagano K, Otani M, Maekura K, Kamada H, Tsunoda S, Tsutsumi Y, Tomiyama T, Mori H, Matsuura K, Matsuyama S (2013) Proteomic analysis of the hippocampus in Alzheimer’s disease model mice by using two-dimensional fluorescence difference in gel electrophoresis. Neurosci Lett 534:85–89PubMedGoogle Scholar
  189. 189.
    Chaput D, Kirouac LH, Bell-Temin H, Stevens SM Jr, Padmanabhan J (2012) SILAC-based proteomic analysis to investigate the impact of amyloid precursor protein expression in neuronal-like B103 cells. Electrophoresis 33(24):3728–3737PubMedCentralPubMedGoogle Scholar
  190. 190.
    Andreev VP, Petyuk VA, Brewer HM, Karpievitch YV, Xie F, Clarke J, Camp D, Smith RD, Lieberman AP, Albin RL, Nawaz Z, El Hokayem J, Myers AJ (2012) Label-Free Quantitative LC-MS Proteomics of Alzheimer’s Disease and Normally Aged Human Brains. J Proteome Res 2012:17Google Scholar
  191. 191.
    Sultana R, Butterfield DA (2009) Proteomics identification of carbonylated and HNE-bound brain proteins in Alzheimer’s disease. Methods Mol Biol 566:123–135PubMedGoogle Scholar
  192. 192.
    Riederer IM, Schiffrin M, Kovari E, Bouras C, Riederer BM (2009) Ubiquitination and cysteine nitrosylation during aging and Alzheimer’s disease. Brain Res Bull 80(4–5):233–241PubMedGoogle Scholar
  193. 193.
    Alberio T, Bossi AM, Milli A, Parma E, Gariboldi MB, Tosi G, Lopiano L, Fasano M (2010) Proteomic analysis of dopamine and alpha-synuclein interplay in a cellular model of Parkinson’s disease pathogenesis. Febs J 277(23):4909–4919PubMedGoogle Scholar
  194. 194.
    De Iuliis A, Grigoletto J, Recchia A, Giusti P, Arslan P (2005) A proteomic approach in the study of an animal model of Parkinson’s disease. Clinica Chimica Acta 357(2):202–209Google Scholar
  195. 195.
    Zabel C, Klose J (2004) Influence of Huntington’s disease on the human and mouse proteome. Int Rev Neurobiol 61:241–283PubMedGoogle Scholar
  196. 196.
    Mitsui K, Doi H, Nukina N (2006) Proteomics of polyglutamine aggregates. Methods Enzymol 412:63–76PubMedGoogle Scholar
  197. 197.
    Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros J, Cabiscol E (2008) Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med 45(5):667–678PubMedGoogle Scholar
  198. 198.
    Ratovitski T, Gucek M, Jiang H, Chighladze E, Waldron E, D’Ambola J, Hou Z, Liang Y, Poirier MA, Hirschhorn RR, Graham R, Hayden MR, Cole RN, Ross CA (2009) Mutant huntingtin N-terminal fragments of specific size mediate aggregation and toxicity in neuronal cells. J Biol Chem 284(16):10855–10867PubMedCentralPubMedGoogle Scholar
  199. 199.
    Deschepper M, Hoogendoorn B, Brooks S, Dunnett SB, Jones L (2012) Proteomic changes in the brains of Huntington’s disease mouse models reflect pathology and implicate mitochondrial changes. Brain Res Bull 88(2–3):210–222PubMedGoogle Scholar
  200. 200.
    Ratovitski T, Chighladze E, Arbez N, Boronina T, Herbrich S, Cole RN, Ross CA (2012) Huntingtin protein interactions altered by polyglutamine expansion as determined by quantitative proteomic analysis. Cell Cycle 11(10):2006–2021PubMedCentralPubMedGoogle Scholar
  201. 201.
    Dong G, Callegari E, Gloeckner CJ, Ueffing M, Wang H (2012) Mass spectrometric identification of novel posttranslational modification sites in Huntingtin. Proteomics 12(12):2060–2064PubMedGoogle Scholar
  202. 202.
    Fukada K, Zhang F, Vien A, Cashman NR, Zhu H (2004) Mitochondrial proteomic analysis of a cell line model of familial amyotrophic lateral sclerosis. Mol Cell Proteomics 3(12):1211–1223PubMedCentralPubMedGoogle Scholar
  203. 203.
    Wei X, Herbst A, Ma D, Aiken J, Li L (2011) A quantitative proteomic approach to prion disease biomarker research: Delving into the glycoproteome. J Proteome Res 10(6):2687–2702Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ramavati Pal
    • 1
  • Guido Alves
    • 2
  • Jan Petter Larsen
    • 2
  • Simon Geir Møller
    • 1
    • 2
    Email author
  1. 1.Department of Biological SciencesSt. John’s UniversityNew YorkUSA
  2. 2.Norwegian Center for Movement DisordersStavanger University HospitalStavangerNorway

Personalised recommendations